JPH0477054B2 - - Google Patents

Info

Publication number
JPH0477054B2
JPH0477054B2 JP1106984A JP1106984A JPH0477054B2 JP H0477054 B2 JPH0477054 B2 JP H0477054B2 JP 1106984 A JP1106984 A JP 1106984A JP 1106984 A JP1106984 A JP 1106984A JP H0477054 B2 JPH0477054 B2 JP H0477054B2
Authority
JP
Japan
Prior art keywords
dust
zinc
sintering
compound
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1106984A
Other languages
Japanese (ja)
Other versions
JPS60155631A (en
Inventor
Toshio Matsuoka
Shinichi Kuromame
Yukio Furuyabu
Tadamitsu Nagai
Seiji Sugimori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP59011069A priority Critical patent/JPS60155631A/en
Priority to EP19850100674 priority patent/EP0150805B1/en
Priority to CA000472631A priority patent/CA1239020A/en
Priority to DE8585100674T priority patent/DE3564966D1/en
Priority to US06/695,030 priority patent/US4595574A/en
Priority to KR1019850000481A priority patent/KR910001010B1/en
Publication of JPS60155631A publication Critical patent/JPS60155631A/en
Publication of JPH0477054B2 publication Critical patent/JPH0477054B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/34Obtaining zinc oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 この発明は、金属精錬原料の前処理工程あるい
は金属精錬工程より発生するダスト等の亜鉛化合
物を含有する物質から亜鉛を回収する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering zinc from materials containing zinc compounds such as dust generated from a pretreatment process of metal refining raw materials or a metal refining process.

例えば製鉄所で発生する各種ダストは、資源の
有効利用及び環境対策の見地から回収再利用され
ている。しかし、この場合Zn化合物が最大の問
題となる。Zn濃度の低いダストは直接、焼結機、
転炉、電気炉等へ供給される場合もあるが、Zn
濃度の高い高炉ダスト等を製鉄原料として再利用
するためには、前処理として脱Zn処理を施す必
要がある。現在、脱Znの処理法としては湿式サ
イクロンによる分級分離、ロータリーキルンによ
る還元蒸発が代表的なものである。
For example, various types of dust generated in steel mills are collected and reused from the standpoint of effective resource use and environmental protection. However, in this case, the Zn compound poses the biggest problem. Dust with low Zn concentration is directly processed by sintering machine,
Zn may be supplied to converters, electric furnaces, etc.
In order to reuse highly concentrated blast furnace dust as a raw material for steelmaking, it is necessary to perform Zn removal treatment as a pretreatment. Currently, typical methods for removing Zn include classification separation using a wet cyclone and reduction evaporation using a rotary kiln.

前者の湿式サイクロン法はZnが細粒側に濃縮
する性質を利用したもので、この方法による除去
率(脱Zn率)は60〜80%程度である。後者のロ
ータリーキルン法は、金属Znの沸点が約910℃で
あるのを利用したもので、ダスト中のZnは主と
して下記の反応によつて除去される。
The former wet cyclone method utilizes the property of Zn concentrating on the fine grain side, and the removal rate (Zn removal rate) by this method is about 60 to 80%. The latter rotary kiln method utilizes the fact that the boiling point of metallic Zn is about 910°C, and Zn in dust is mainly removed by the following reaction.

C(S)+CO2(g)=2CO(g) (ブルドワー反応) −(1) ZnO(S)+CO(g)=Zn(g)+CO2 (ZnOの還元とZnの蒸発) −(2) Zn(g)+I/2O2(g)=ZnO(S) (Znの酸化と回収) −(3) ロータリーキルン法によるZnの除去率は80〜
95%である。
C(S) + CO 2 (g) = 2CO (g) (Bourdower reaction) -(1) ZnO (S) + CO (g) = Zn (g) + CO 2 (Reduction of ZnO and evaporation of Zn) -(2) Zn (g) + I/2O 2 (g) = ZnO (S) (oxidation and recovery of Zn) −(3) The removal rate of Zn by rotary kiln method is 80~
It is 95%.

湿式サイクロン法はロータリーキルン法に較べ
て、処理コストは低いがZn除去率が低い欠点が
ある。これに較べてロータリーキルン法はZn除
去率は高いが処理コストが高く含鉄ダストが還元
ペレツトになるという利益を考慮に入れても尚採
算が取れない。このような理由から製鉄資源とし
てのダストの価値評価は低く、資源の有効利用の
見地からよりむしろ環境対策上処理を行つている
のが現状である。
The wet cyclone method has a lower processing cost than the rotary kiln method, but has the disadvantage of a lower Zn removal rate. In comparison, the rotary kiln method has a high Zn removal rate, but the processing cost is high and it is still unprofitable even taking into account the benefit of turning iron-containing dust into reduced pellets. For these reasons, the value of dust as a steelmaking resource is low, and at present it is disposed of for environmental reasons rather than from the standpoint of effective resource utilization.

本発明はかゝる諸問題を解決し、安価なダスト
処理法(Zn除去法)に基づくダストの有効利用
及び環境対策を兼ねそなえた亜鉛回収方法を提供
することを目的とするものであり、本発明の実施
により、ダストから除去された亜鉛を亜鉛化合物
として高濃度で捕集し、後工程の金属亜鉛精錬へ
付加価値の高い原料として供給することを可能と
するものである。さらに本発明では製鉄所で発生
するダストの脱亜鉛のみならず金属精錬原料の前
処理工程あるいは金属精錬工程より発生するダス
トを脱亜鉛処理し、亜鉛を回収するのに好適なる
亜鉛回収方法を提供することを目的とする。
The purpose of the present invention is to solve these problems and provide a zinc recovery method based on an inexpensive dust treatment method (Zn removal method) that combines effective use of dust and environmental measures. By carrying out the present invention, it is possible to collect zinc removed from dust at high concentration as a zinc compound and supply it as a raw material with high added value to the subsequent process of refining metal zinc. Furthermore, the present invention provides a zinc recovery method that is suitable for not only dezincifying dust generated in steel plants, but also for dezincifying dust generated from the pretreatment process of metal refining raw materials or the metal refining process, and recovering zinc. The purpose is to

上記目的の達成のため、本発明は、亜鉛化合物
を含有する物質に要すれば炭素質物質を混合し、
団鉱の後、さらにカルシユウム化合物で被覆した
後当該団鉱物をDL型焼結装置内に供給し、焼結
温度帯域に於て極部的に強還元雰囲気を生成する
ことにより当該物質中の亜鉛化合物を金属化蒸発
分離せしめた後、当該強酸化性雰囲気のもと蒸気
状亜鉛の酸化により亜鉛酸化物を生成させ、その
状態で当該装置から排出することを特徴とするも
のである。
In order to achieve the above object, the present invention mixes a carbonaceous material with a substance containing a zinc compound, if necessary,
After the briquette is coated with a calcium compound, the briquette is fed into a DL type sintering device, and a strong reducing atmosphere is generated locally in the sintering temperature range to remove the zinc in the material. After the compound has been separated by metallization and evaporation, zinc oxide is produced by oxidizing the vaporized zinc in the strongly oxidizing atmosphere, and this state is discharged from the apparatus.

以下本発明の一実施例を基づき説明する。 An embodiment of the present invention will be described below.

本実施例においては、亜鉛化合物を含有する物
質として製鉄所から排出されるダストを選び、焼
結装置として通常のDL型焼結機を利用している。
第1図において、Aはダストの混練、団鉱工程を
示し、BはDL型焼結機による焼結およびダスト
の脱亜鉛工程を示す。含Znダスト原料は混練機
1に送られ、必要に応じて炭素質還元剤、低Zn
含鉄物質が添加され、含炭素濃度、含Zn濃度の
調整を行なう。炭素Zn濃度を調整したダストは
団鉱機2に送られ団鉱される。さらに団鉱物は団
鉱機3に送られカルシユウム化合物で被覆され
る。被覆剤は、後段の脱亜鉛工程において亜鉛含
有ダストを強酸化性雰囲気から遮断するためのも
のであり、当然亜鉛含有量が零か極少量である必
要があり、石灰石、ドロマイトが好ましい。続い
て団鉱物は焼結機へ送られ、第1図に示すよう
に、焼結原料5とグレートバー保護のため装入さ
れる床敷鉱6の間に層状に装入される。
In this example, dust discharged from a steel mill is selected as the substance containing zinc compounds, and a normal DL type sintering machine is used as the sintering device.
In FIG. 1, A shows the dust kneading and briquetting process, and B shows the sintering and dust dezincing process using a DL type sintering machine. The Zn-containing dust raw material is sent to the kneader 1, where it is mixed with a carbonaceous reducing agent and low Zn as necessary.
Iron-containing substances are added to adjust the carbon-containing concentration and the Zn-containing concentration. The dust with adjusted carbon and Zn concentration is sent to briquette machine 2 and briquettered. Further, the briquette mineral is sent to the briquette machine 3 and coated with a calcium compound. The coating material is for shielding the zinc-containing dust from a strongly oxidizing atmosphere in the subsequent dezincing process, and naturally needs to have zero or very small zinc content, and limestone and dolomite are preferable. Subsequently, the aggregate mineral is sent to a sintering machine, and as shown in FIG. 1, it is charged in a layer between the sintering raw material 5 and the bedding ore 6 that is charged to protect the great bar.

焼結原料は、まず点火炉16によつてその上面
が点火され、その後、焼結機上を移動する過程で
装入空気9によつて燃焼される。焼結鉱の燃焼帯
は上面から下方に向つて、連続的に移動し、最下
層の燃焼が完了した後、冷却機へ排出される。こ
のため焼結原料の最下層に装入された含Znダス
トペレツトの燃焼は排鉱側に近い所で起こる。含
Znダストペレツト層が燃焼を開始すると、ロー
タリーキルン法と同様に含炭の作用によつて上記
(1)(2)の反応が起り、ペレツトから金属亜鉛が蒸発
除去される。ここで含Znダストペレツトを被覆
剤で被覆しているため、叙上の如く該ペレツトは
酸化性雰囲気から遮断され、上記(2)の反応が促進
される。蒸発したZnは酸化気流中で上記(3)の反
応によつて酸化亜鉛となり、焼結過程で発生した
ダストと一緒に集塵機へ導びかれる。
The upper surface of the sintering raw material is first ignited by the ignition furnace 16, and then it is combusted by the charged air 9 as it moves over the sintering machine. The sintered ore combustion zone moves continuously from the upper surface downward, and after the combustion of the lowest layer is completed, it is discharged to the cooler. For this reason, the combustion of the Zn-containing dust pellets charged in the lowest layer of the sintering material occurs near the ore discharge side. Contains
When the Zn dust pellet layer starts to burn, the above-mentioned
Reactions (1) and (2) occur, and metal zinc is evaporated and removed from the pellets. Here, since the Zn-containing dust pellets are coated with a coating agent, the pellets are shielded from the oxidizing atmosphere as described above, and the reaction (2) above is promoted. The evaporated Zn becomes zinc oxide through the reaction (3) above in the oxidizing gas flow, and is led to the dust collector together with the dust generated during the sintering process.

この際、第1図に示すように、該ダストペレツ
ト層が燃焼している部分(前述の排鉱側に近い
所)の排ガスを、他の排ガスと分離して集塵(集
塵機12で粗粒ダストを除去、このダストはダス
ト原料にリサイクル、集塵機13で酸化亜鉛を捕
集)することによつて、Zn濃度の高いダストの
選択的捕集が可能になる。
At this time, as shown in Fig. 1, the exhaust gas in the part where the dust pellet layer is burning (the place near the above-mentioned ore discharge side) is separated from other exhaust gases and collected (a dust collector 12 collects coarse dust). This dust is recycled as a dust raw material, and the dust collector 13 collects zinc oxide), thereby making it possible to selectively collect dust with a high Zn concentration.

以下、小型焼結機による含ZnダストからのZn
回収除去に関する実験結果を示す。実験後の脱
Zn率は下記の計算式により算出した。
Below, Zn is extracted from Zn-containing dust using a small sintering machine.
Experimental results regarding recovery and removal are shown. After the experiment
The Zn rate was calculated using the following formula.

脱亜鉛率=Zn−T.Fe/T.Fe′×Zn′/Zn×100(%) Zn:脱Zn前のペレツト中のZn(%) Zn′:脱Zn後の 〃 (%) T.Fe:脱Zn前のペレツト中のT.Fe(%) T.Fe′:脱Zn後の 〃 (%) 原料ダストの団鉱にはデイスクタイプのφ600
造粒機を使用した。石灰石による被覆は厚さ1mm
以下にするのが好ましい。実験に用いた小型焼結
実験装置(第2図)は実機・焼結機の操業条件を
模擬するために、焼結層400mm、空塔速度
0.33Nm/sec.の実機条件下で運転を行なつた。
ただ実験後のペレツトサンプルの採取の容易さを
考えて、含Znペレツトを焼結原料上面に約100グ
ラム(焼結原料に対して約2%)装入し、燃料空
気を下方から装入した(第2図参照)。脱Zn率へ
の含有炭素量、含有Zn量、被覆の影響を第3図
に示した。この結果から含炭、含Zn量と脱Zn率
は強い関係を持つている。このため高炉装入原料
としての最適脱Zn率を得るためには含炭、含Zn
量の調整が必要であり、被覆処理が必要となるの
である。
Zinc removal rate = Zn - T.Fe / T.Fe' x Zn' / Zn x 100 (%) Zn: Zn in pellets before Zn removal (%) Zn': After Zn removal 〃 (%) T. Fe: T.Fe in pellets before Zn removal (%) T.Fe′: After Zn removal 〃 (%) Disk type φ600 for raw material dust briquette
A granulator was used. The limestone coating is 1mm thick.
It is preferable to do the following. The small sintering experimental equipment (Fig. 2) used in the experiment was designed to simulate the operating conditions of an actual sintering machine, with a sintered layer of 400 mm and a superficial velocity.
Operation was carried out under actual conditions of 0.33Nm/sec.
However, considering the ease of collecting pellet samples after the experiment, approximately 100 grams of Zn-containing pellets (approximately 2% of the sintered raw material) were charged on top of the sintered raw material, and fuel air was charged from below. (See Figure 2). Figure 3 shows the effects of carbon content, Zn content, and coating on the Zn removal rate. From this result, there is a strong relationship between carbon content, Zn content, and Zn removal rate. Therefore, in order to obtain the optimum Zn removal rate as a blast furnace charging raw material, carbon-containing and Zn-containing
The amount needs to be adjusted and a coating process is required.

上記実施例では製鉄所発生含Znダストの焼結
機による脱Zn処理とその回収方法について説明
をしているが、上記の実験結果から類推できるよ
うに、本発明でいう焼結装置としては、酸化ペレ
ツト焼成設備等もその範疇に入ると考えられ、そ
れら装置を使用した場合も本発明の技術的範囲に
属することは云うまでもない。
The above example describes the Zn removal treatment using a sintering machine for Zn-containing dust generated at a steelworks and its recovery method, but as can be inferred from the above experimental results, the sintering equipment referred to in the present invention Oxidized pellet firing equipment and the like are considered to fall under this category, and it goes without saying that the use of such equipment also falls within the technical scope of the present invention.

以上説明した如く本発明による含Znダストの
処理によつて、Zn濃度の低い焼結鉱を高炉へ供
給出来るばかりでなく、含Znダスト中のZnを安
価でかつ容易に回収出来る。
As explained above, by processing Zn-containing dust according to the present invention, not only can sintered ore with a low Zn concentration be supplied to a blast furnace, but also Zn in the Zn-containing dust can be easily recovered at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例を示す概略図、第2
図は実験に用いた小型焼結実験装置の概略図、第
3図は含炭、含Znペレツトを石灰石による被覆
した場合の脱Zn率への影響を示すグラフである。 A……混練・団鉱工程、B……脱亜鉛工程、1
……混練機、2……団鉱機、3……団鉱機、4…
…焼結原料ホツパー、5……焼結原料、6……床
敷鉱、7……含Znダスト団鉱物、8……焼結鉱、
9……装入空気、10……風箱、11……集塵
機、12……集塵機(プレダスター)、13……
集塵機、14……ブロワー、15……煙突、16
……点火炉。
FIG. 1 is a schematic diagram showing one embodiment of the present invention, and FIG.
The figure is a schematic diagram of the small sintering experimental equipment used in the experiment, and Figure 3 is a graph showing the effect on the Zn removal rate when carbon-containing and Zn-containing pellets are covered with limestone. A...Kneading/briquette process, B...Dezincification process, 1
...Kneading machine, 2...Bulking machine, 3...Bulking machine, 4...
...Sintered raw material hopper, 5...Sintered raw material, 6...Bed ore, 7...Zn dust-containing aggregate mineral, 8...Sintered ore,
9... Charge air, 10... Wind box, 11... Dust collector, 12... Dust collector (pre-duster), 13...
Dust collector, 14...Blower, 15...Chimney, 16
...Ignition furnace.

Claims (1)

【特許請求の範囲】[Claims] 1 炭素質物質および亜鉛化合物を含有する物質
を団鉱し、さらにその団鉱物をカルシユウム化合
物で被覆した後、DL型焼結装置内に供給し、該
物質の焼結温度帯域に於て極部的に強還元雰囲気
を生成することにより該物質中の亜鉛化合物を金
属化蒸発せしめ、該物質から分離した後強酸化性
雰囲気のもと蒸気状亜鉛の酸化により亜鉛酸化物
を生成させ、その状態で該焼結装置から排出する
ことを特徴とする亜鉛化合物を含有する物質から
亜鉛を回収する方法。
1. After briquetting a material containing a carbonaceous material and a zinc compound, and coating the briquette with a calcium compound, the material is fed into a DL type sintering device, and is The zinc compound in the substance is metallized and evaporated by generating a strongly reducing atmosphere, and after separation from the substance, zinc oxide is generated by oxidizing the vaporized zinc in a strongly oxidizing atmosphere. A method for recovering zinc from a substance containing a zinc compound, characterized in that the zinc compound is discharged from the sintering apparatus at
JP59011069A 1984-01-26 1984-01-26 Method for recovering zinc from material containing zinc compound Granted JPS60155631A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59011069A JPS60155631A (en) 1984-01-26 1984-01-26 Method for recovering zinc from material containing zinc compound
EP19850100674 EP0150805B1 (en) 1984-01-26 1985-01-23 A method for recovering zinc from substances containing a zinc compound
CA000472631A CA1239020A (en) 1984-01-26 1985-01-23 Method for recovering zinc from substances containing a zinc compound
DE8585100674T DE3564966D1 (en) 1984-01-26 1985-01-23 A method for recovering zinc from substances containing a zinc compound
US06/695,030 US4595574A (en) 1984-01-26 1985-01-25 Method for recovering zinc from substances containing a zinc compound
KR1019850000481A KR910001010B1 (en) 1984-01-26 1985-01-26 Method for recovering zinc from substances containing a zinc conpound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59011069A JPS60155631A (en) 1984-01-26 1984-01-26 Method for recovering zinc from material containing zinc compound

Publications (2)

Publication Number Publication Date
JPS60155631A JPS60155631A (en) 1985-08-15
JPH0477054B2 true JPH0477054B2 (en) 1992-12-07

Family

ID=11767688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59011069A Granted JPS60155631A (en) 1984-01-26 1984-01-26 Method for recovering zinc from material containing zinc compound

Country Status (2)

Country Link
JP (1) JPS60155631A (en)
KR (1) KR910001010B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021085069A (en) * 2019-11-28 2021-06-03 住友金属鉱山株式会社 Method for producing zinc oxide ore

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5167608B2 (en) * 2006-08-11 2013-03-21 Jfeスチール株式会社 Dust sintering method
KR102007703B1 (en) * 2017-11-27 2019-08-06 진성복 Candle for Buddhism rite
WO2019103432A1 (en) * 2017-11-27 2019-05-31 진성복 Candle for buddhist ceremony
JP7151404B2 (en) * 2018-11-20 2022-10-12 住友金属鉱山株式会社 Method for producing zinc oxide ore

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171631A (en) * 1981-04-16 1982-10-22 Nippon Steel Corp Spurious particle for sintering iron ore
JPS58185728A (en) * 1982-04-24 1983-10-29 Nisshin Steel Co Ltd Manufacture of sintered ore for raw material of blast furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57171631A (en) * 1981-04-16 1982-10-22 Nippon Steel Corp Spurious particle for sintering iron ore
JPS58185728A (en) * 1982-04-24 1983-10-29 Nisshin Steel Co Ltd Manufacture of sintered ore for raw material of blast furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021085069A (en) * 2019-11-28 2021-06-03 住友金属鉱山株式会社 Method for producing zinc oxide ore

Also Published As

Publication number Publication date
JPS60155631A (en) 1985-08-15
KR910001010B1 (en) 1991-02-19
KR850005508A (en) 1985-08-26

Similar Documents

Publication Publication Date Title
EP0453151B1 (en) Process for recovering valuable metals from a dust containing zinc
US6120577A (en) Treatment of steel mill waste metal oxides
US3262771A (en) Recovery of steel and zinc from waste materials
US3313617A (en) Iron-containing flux material for steel-making process
JP3679084B2 (en) Method for producing molten metal raw material and method for producing molten metal
CN111363875A (en) Device and method for reducing and recycling reduced iron and secondary zinc oxide by using zinc-containing and iron-containing solid waste
US4765829A (en) Treating lead- and zinc-containing steelmaking byproducts
US3311465A (en) Iron-containing flux material for steel making process
KR19990087253A (en) Processing method and apparatus of steel dust
JPH11504985A (en) Method for recovering metals from iron oxide containing materials
EP0150805B1 (en) A method for recovering zinc from substances containing a zinc compound
JP3727232B2 (en) Zinc recovery method
CA2032759C (en) Method of reprocessing zinc- and lead-containing residues from metallurgical plants
JP3304872B2 (en) Method and apparatus for rapid reduction of iron oxide in rotary hearth heating furnace
JP3779009B2 (en) Method for producing high-quality reduced iron from steelmaking dust
CN110616334B (en) Method for cooperatively treating semicoke and zinc-containing dust
JP3516854B2 (en) Steelmaking furnace dust treatment method and dust pellets
JPH0477054B2 (en)
JPH0770662A (en) Device for removing zinc in zinc-containing dust
JPH07216464A (en) Weltz reprocessing of material containing zinc, lead and iron oxide
US3403018A (en) Method of treating precipitator dust
RU2626371C1 (en) Method of processing metallurgical production waste
CN112080644B (en) Method for cooperatively treating zinc-containing dust and polycrystalline silicon cutting waste material in main channel of blast furnace
JPH06330198A (en) Method for recovering zinc in dust
JPS60155630A (en) Method for recovering zinc from material containing zinc compound