JPH08192192A - Method for treating flue gas desulfurization drain - Google Patents

Method for treating flue gas desulfurization drain

Info

Publication number
JPH08192192A
JPH08192192A JP7019840A JP1984095A JPH08192192A JP H08192192 A JPH08192192 A JP H08192192A JP 7019840 A JP7019840 A JP 7019840A JP 1984095 A JP1984095 A JP 1984095A JP H08192192 A JPH08192192 A JP H08192192A
Authority
JP
Japan
Prior art keywords
catalyst
flue gas
added
gas desulfurization
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7019840A
Other languages
Japanese (ja)
Other versions
JP3425000B2 (en
Inventor
Yoshiro Yuasa
芳郎 湯浅
Susumu Izumitani
進 泉谷
Tomoyuki Asada
智之 淺田
Hiroshi Kimoto
博 木本
Toshiji Nakahara
敏次 中原
Yasuhiko Takabayashi
泰彦 高林
Hiroko Kitami
裕子 北見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Kurita Water Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Kurita Water Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP01984095A priority Critical patent/JP3425000B2/en
Publication of JPH08192192A publication Critical patent/JPH08192192A/en
Application granted granted Critical
Publication of JP3425000B2 publication Critical patent/JP3425000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treating Waste Gases (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE: To remove nitrogen compounds in the drain of flue gas desulfurization by catalytic decomposition without causing a lowering of catalyst performance due to the generation of scale of gypsum or metal by a method wherein the flue gas desulfurization drain is softened to provide softened treated water, which is treated in the presence of catalyst to reduce nitric acid, and ammonia is oxidized in the presence of catalyst. CONSTITUTION: Alkali is added to flue gas desulfurization drain in a softening treatment tank 1, while the drain is being agitated, thereby to adjust pH to, for example, 11 or more, and carbonate is added thereto and further flocculant is added. The treated water, in which metal hydroxide and calcium carbonate are deposited and coagulated, is sent to a concentration device 2, where supernatant liquid is sent to a filter 4 by a pump 3, and then pH of the water is adjusted to, for example, 6-8 at a pH adjusting tank 5. Thereafter, water is sent to a catalyst packed tower 9A via a heat exchanger 7 and a heater 8, in which reducing agent is added to water to reduce nitric acid ion. The treated water which leaves the tower A9 and to which an oxidizing agent is added on piping way is sent to a catalyst packed tower B10, where ammonium ion is oxidized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排煙脱硫排水の処理方
法に関する。さらに詳しくは、本発明は、重油、石炭な
どの燃料を燃焼したときに発生する排ガスを吸収または
分解するときに生ずる排水中の窒素除去処理方法に関
し、触媒の処理性能の低下および配管などのつまりがな
く、効率よく、触媒分解法による窒素除去を可能にした
排煙脱硫排水の処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating flue gas desulfurization wastewater. More specifically, the present invention relates to a method for removing nitrogen in wastewater that occurs when absorbing or decomposing exhaust gas generated when fuel such as heavy oil and coal is burned. The present invention relates to a flue gas desulfurization effluent treatment method capable of removing nitrogen efficiently by a catalytic decomposition method without any problem.

【0002】[0002]

【従来の技術】排煙脱硫の対象は、各種化石燃料を使用
するボイラーの排ガス、各種の炉、焼結機排ガス、硫黄
回収設備排ガスなど、多方面に及んでいる。例えば、ボ
イラーの排ガスは、脱硝工程、電気集塵工程、脱硫工程
を経て処理される。脱硝工程ではNOxが触媒存在下ア
ンモニアで還元処理され、また、集塵工程では煤塵が静
電気的に分離されるが、その際、集塵機保護のために中
和剤としてアンモニアが供給される。そして脱硫工程、
例えば、石灰石膏法では、SOxが炭酸カルシウムスラ
リーと接触して石膏として分離されるとともに、排煙脱
硫排水が排出される。このような工程から排出される排
水中には、通常、アンモニウム塩が200〜1500pp
m、硝酸塩が10〜50ppm、カルシウム塩および硫酸塩
が硫酸カルシウムとして飽和状態、その他、鉄塩、銅
塩、マンガン塩、マグネシウム塩などの金属塩が含まれ
ている。排煙脱硫排水中の窒素除去には、従来、生物処
理方法が一般に採用されているが、生物処理方法には、
(1)排煙脱硫排水は負荷変動が大きく、変動に適合し
た条件を維持するための制御が必要であり、維持管理が
困難である、(2)余剰汚泥が発生する、(3)起動期
間すなわち馴養期間が長い、という問題点がある。これ
らの問題点を解決する方法として、触媒を用い、窒素化
合物を分解除去する方法が試みられている。触媒分解法
によれば、生物処理方法の有する上記問題点は解決され
るが、一方、脱硫排水は石膏飽和溶液であり、かつ、金
属類を多く含んでいるため、加熱ラインでスケール化が
発生したり、あるいは触媒性能の低下を招きやすく、実
用的ではない。このために、十分実用に耐える排煙脱硫
排水の窒素除去のための触媒分解法の開発が求められて
いる。
2. Description of the Related Art Exhaust gas desulfurization is applied to various fields such as exhaust gas from boilers using various fossil fuels, various furnaces, exhaust gas from sintering machines, and exhaust gas from sulfur recovery equipment. For example, boiler exhaust gas is processed through a denitration step, an electrostatic precipitating step, and a desulfurization step. In the denitration process, NO x is reduced with ammonia in the presence of a catalyst, and in the dust collection process, soot is electrostatically separated. At that time, ammonia is supplied as a neutralizing agent to protect the dust collector. And the desulfurization process,
For example, in the lime gypsum method, SO x comes into contact with calcium carbonate slurry to be separated as gypsum, and flue gas desulfurization wastewater is discharged. In the wastewater discharged from such a process, ammonium salt is usually contained in an amount of 200 to 1500 pp.
m, nitrate is 10 to 50 ppm, calcium salt and sulfate are saturated as calcium sulfate, and other metal salts such as iron salt, copper salt, manganese salt and magnesium salt are contained. Conventionally, biological treatment methods have been generally adopted for removing nitrogen in flue gas desulfurization wastewater.
(1) Flue gas desulfurization wastewater has large load fluctuations, control is required to maintain conditions that match the fluctuations, and maintenance is difficult. (2) Excess sludge occurs, (3) Startup period That is, there is a problem that the acclimatization period is long. As a method for solving these problems, a method of decomposing and removing a nitrogen compound using a catalyst has been attempted. According to the catalytic decomposition method, the above problems of the biological treatment method are solved, but on the other hand, the desulfurization wastewater is a gypsum saturated solution and contains a large amount of metals, so that scale formation occurs in the heating line. It is not practical because it tends to cause deterioration of catalyst performance. For this reason, it is required to develop a catalytic decomposition method for removing nitrogen from flue gas desulfurization wastewater, which is sufficiently practical.

【0003】[0003]

【発明が解決しようとする課題】本発明は、石膏による
スケールの発生および金属による触媒性能の低下を生ず
ることなく、排煙脱硫排水中の窒素化合物を触媒分解に
より除去し得る方法を提供することを目的としてなされ
たものである。
DISCLOSURE OF THE INVENTION The present invention provides a method for removing nitrogen compounds in flue gas desulfurization wastewater by catalytic decomposition without causing scale generation by gypsum and deterioration of catalytic performance by metals. It was made for the purpose.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記のよ
うな工程上の問題を生ずることなく、排煙脱硫排水を触
媒分解処理し得る方法を開発すべく鋭意研究を重ねた結
果、排煙脱硫排水を軟化処理したのち、硝酸の還元、次
いでアンモニアの酸化を触媒存在下で行うことにより、
窒素化合物の除去を容易に、かつ効率的に行うことが可
能になることを見いだし、この知見に基づいて本発明を
完成するに至った。すなわち、本発明は、(1)排煙脱
硫排水を軟化処理する第1工程、軟化処理水を触媒存在
下で硝酸を還元する第2工程、および第2工程の処理水
を触媒存在下でアンモニアを酸化する第3工程からなる
排煙脱硫排水の処理方法、を提供するものである。さら
に、本発明の好ましい態様として、(2)第1工程にお
いて、排煙脱硫排水のpHを11以上としたのち、炭酸塩
および凝集剤を添加する第(1)項記載の排煙脱硫排水の
処理方法、(3)第2工程において、還元剤として、ヒ
ドラジン、ヒドロキシルアミンまたは水素ガスを使用す
る第(1)〜(2)項記載の排煙脱硫排水の処理方法、およ
び、(4)第3工程において、酸化剤として亜硝酸若し
くはその誘導体または過酸化水素を使用する第(1)〜
(3)項記載の排煙脱硫排水の処理方法、を挙げることが
できる。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to develop a method capable of catalytically decomposing flue gas desulfurization wastewater without causing the above-mentioned problems in the process. After softening the flue gas desulfurization wastewater, reduction of nitric acid and then oxidation of ammonia are carried out in the presence of a catalyst.
It has been found that removal of nitrogen compounds can be easily and efficiently performed, and the present invention has been completed based on this finding. That is, the present invention includes (1) a first step of softening flue gas desulfurization wastewater, a second step of reducing nitric acid in the softened water in the presence of a catalyst, and a second step of treating water in the presence of a catalyst in ammonia. The present invention provides a method for treating flue gas desulfurization wastewater, which comprises a third step of oxidizing. Further, as a preferred embodiment of the present invention, (2) in the first step, after the pH of the flue gas desulfurization wastewater is set to 11 or more, a carbonate and a coagulant are added to the flue gas desulfurization wastewater. Treatment method, (3) In the second step, the flue gas desulfurization wastewater treatment method according to (1) to (2), wherein hydrazine, hydroxylamine or hydrogen gas is used as a reducing agent, and (4) In the 3 steps, nitrous acid or its derivative or hydrogen peroxide is used as an oxidant.
The method for treating flue gas desulfurization wastewater described in (3) can be mentioned.

【0005】本発明方法の第1工程においては、排煙脱
硫排水のpHを11以上に調節して金属を水酸化物とし
て、次いで炭酸塩を添加してカルシウムを炭酸カルシウ
ムとして析出する。pHの調節は、例えば、水酸化ナトリ
ウム、水酸化カリウムなどのアルカリを、水溶液または
固体状で添加することによって行うことができる。排煙
脱硫排水のpHを11以上にすることにより、排水中に含
まれる鉄塩、銅塩、マンガン塩、マグネシウム塩などの
金属塩は水酸化物となって析出する。次いで、排水に水
溶性の炭酸塩を添加し、排水中に含まれるカルシウムを
炭酸カルシウムとして析出させる。使用する水溶性の炭
酸塩としては、例えば、炭酸ナトリウム、炭酸水素ナト
リウム、炭酸カリウム、炭酸水素カリウムなどを挙げる
ことができる。これらの水溶性の炭酸塩は、水溶液とし
て添加することができ、あるいは固体状で添加すること
ができる。これらの水溶性の炭酸塩の添加量は、排水中
に存在するカルシウムに対し1〜2当量倍であることが
好ましい。排水中に存在するカルシウムの量は、原子吸
光分析法などによって定量することができる。第1工程
において、アルカリ性として金属水酸化物を析出し、炭
酸塩を添加することによりカルシウムを炭酸カルシウム
として析出した排水に、次いで凝集剤を添加して、金属
水酸化物および炭酸カルシウムを凝集し、沈降を促進す
る。使用する凝集剤には特に制限はなく、ポリ塩化アル
ミニウム、硫酸第二鉄などの無機凝集剤、ポリアクリル
酸ナトリウム、ポリアクリルアミド部分加水分解物など
のアニオン性高分子凝集剤、ポリアミノアルキルメタク
リレート、ポリエチレンイミンなどのカチオン性高分子
凝集剤、ポリアクリルアミド、ポリエチレンオキシドな
どのノニオン性高分子凝集剤などを挙げることができ
る。析出物を凝集沈降せしめたのち、上澄み液をそのま
ま、あるいは必要に応じて、ろ過より沈降分離しなかっ
た微細な懸濁物質を除去して、pH調整槽へ移送する。使
用するろ過器には特に制限はなく、例えば、砂やアンス
ラサイトなどを充填したろ過器、カートリッジフィルタ
ー、膜分離装置などを使用することができる。析出物を
分離除去した上澄み液またはろ液は、次いで、pH調整槽
において、pHを6〜8に調整する。pH調整に使用する酸
には特に制限はなく、例えば、硫酸、塩酸などを使用す
ることができる。
In the first step of the method of the present invention, the pH of the flue gas desulfurization effluent is adjusted to 11 or more to add metal as hydroxide, and then carbonate is added to precipitate calcium as calcium carbonate. The pH can be adjusted, for example, by adding an alkali such as sodium hydroxide or potassium hydroxide in the form of an aqueous solution or a solid. By adjusting the pH of the flue gas desulfurization wastewater to 11 or more, metal salts such as iron salts, copper salts, manganese salts and magnesium salts contained in the wastewater are precipitated as hydroxides. Next, a water-soluble carbonate is added to the wastewater to precipitate calcium contained in the wastewater as calcium carbonate. Examples of the water-soluble carbonate used include sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate and the like. These water-soluble carbonates can be added as an aqueous solution or can be added in solid form. The amount of these water-soluble carbonates added is preferably 1 to 2 equivalent times the amount of calcium present in the wastewater. The amount of calcium present in the wastewater can be quantified by atomic absorption spectrometry or the like. In the first step, a metal hydroxide is precipitated as alkaline, and a coagulant is added to the wastewater in which calcium is precipitated as calcium carbonate by adding a carbonate, and then a metal hydroxide and calcium carbonate are aggregated. , Promote sedimentation. The aggregating agent used is not particularly limited, and inorganic aggregating agents such as polyaluminum chloride and ferric sulfate, sodium polyacrylate, anionic polymer aggregating agents such as polyacrylamide partial hydrolysates, polyaminoalkyl methacrylate, polyethylene Examples thereof include cationic polymer flocculants such as imines, and nonionic polymer flocculants such as polyacrylamide and polyethylene oxide. After the precipitate is aggregated and settled, the supernatant is left as it is, or if necessary, fine suspended substances not separated by settling are removed by filtration and transferred to a pH adjusting tank. The filter to be used is not particularly limited, and for example, a filter filled with sand or anthracite, a cartridge filter, a membrane separation device or the like can be used. The supernatant or filtrate from which the precipitate has been separated and removed is then adjusted to pH 6-8 in a pH adjusting tank. The acid used for pH adjustment is not particularly limited and, for example, sulfuric acid, hydrochloric acid, etc. can be used.

【0006】本発明方法の第2工程においては、処理水
に還元剤を添加して、硝酸イオンを還元する。還元は、
触媒の存在下に加熱して行うことが好ましい。使用する
還元剤には特に制限はなく、ヒドラジン、ヒドロキシル
アミン、水素ガスなどを好適に使用することができる。
還元剤の使用量は、還元剤がヒドラジンまたはヒドロキ
シルアミンの場合は、処理水中に存在する硝酸イオンの
0.5〜2モル倍であることが好ましい。また、還元剤
が水素ガスである場合は、処理水に対する溶解度を超え
る量の水素ガスを添加することが好ましい。第2工程に
おいて用いられる触媒としては、触媒有効成分として、
白金、パラジウム、ルテニウム、ロジウム、インジウ
ム、イリジウム、銀、金、コバルト、ニッケルおよびタ
ングステン、並びにこれらの金属の水不溶性または水難
溶性の化合物、例えば、一酸化コバルト、一酸化ニッケ
ル、二酸化ルテニウム、三二酸化ロジウム、一酸化パラ
ジウム、二酸化イリジウム、二酸化タングステンなどの
酸化物、さらには二塩化ルテニウム、二塩化白金などの
塩化物、硫化ルテニウム、硫化ロジウムなどの硫化物な
どよりなる群から選ばれた1種または2種以上を、α−
アルミナ、γ−アルミナ、活性炭、チタニア、ジルコニ
ア、ゼオライト、ガラス、シリカ、シリカアルミナ、イ
オン交換樹脂などの担体に担持したものが挙げられる。
このような担持触媒の金属またはその化合物の担持量
は、通常、担体重量の0.05〜25重量%、好ましく
は0.5〜3重量%であることが望ましい。このような
担持触媒は、球状、ペレット状、円柱状、破砕片状、ハ
ニカム状、粉末状などの種々の形態で使用可能である。
特に、白金をチタニア、γ−アルミナなどの粒状担体に
担持させた触媒が好ましい。これらの触媒はカラムに充
填し、加温下に還元剤を添加した硝酸イオン含有排水を
通液して反応を行うのが好ましく、かつ、この場合は上
向流通液が望ましい。第2工程における反応条件は、分
解処理温度70〜300℃、好ましくは80〜250℃
であり、さらに好ましくは140〜180℃である。ま
た、SVは0.1〜5hr-1、より好ましくは0.5〜3hr
-1であることが望ましい。この還元処理によって、硝酸
イオンは下記の式にしたがって大部分が窒素ガスとな
る。 2NH4 ++2NO3 -+N24 → 3N2+6H2O NH4 ++NO3 -+H2 → N2+3H2
In the second step of the method of the present invention, a reducing agent is added to the treated water to reduce nitrate ions. Reduction is
It is preferable to carry out heating in the presence of a catalyst. The reducing agent used is not particularly limited, and hydrazine, hydroxylamine, hydrogen gas and the like can be preferably used.
When the reducing agent is hydrazine or hydroxylamine, the amount of the reducing agent used is preferably 0.5 to 2 mol times the nitrate ion present in the treated water. When the reducing agent is hydrogen gas, it is preferable to add hydrogen gas in an amount exceeding the solubility in treated water. As the catalyst used in the second step, as a catalyst effective component,
Platinum, palladium, ruthenium, rhodium, indium, iridium, silver, gold, cobalt, nickel and tungsten, and water-insoluble or sparingly water-soluble compounds of these metals, such as cobalt monoxide, nickel monoxide, ruthenium dioxide, and trioxide. One selected from the group consisting of oxides such as rhodium, palladium monoxide, iridium dioxide, and tungsten dioxide, and further chlorides such as ruthenium dichloride and platinum dichloride; ruthenium sulfide; sulfides such as rhodium sulfide; Α-
Examples thereof include those supported on a carrier such as alumina, γ-alumina, activated carbon, titania, zirconia, zeolite, glass, silica, silica-alumina and ion exchange resin.
The supported amount of the metal or the compound thereof in such a supported catalyst is usually 0.05 to 25% by weight, preferably 0.5 to 3% by weight based on the weight of the carrier. Such a supported catalyst can be used in various forms such as a sphere, a pellet, a column, a crushed piece, a honeycomb, and a powder.
In particular, a catalyst in which platinum is supported on a granular carrier such as titania or γ-alumina is preferable. These catalysts are preferably packed in a column and the reaction is carried out by passing the nitrate ion-containing waste water containing a reducing agent under heating, and in this case, an upward flowing liquid is desirable. The reaction condition in the second step is a decomposition treatment temperature of 70 to 300 ° C, preferably 80 to 250 ° C.
And more preferably 140 to 180 ° C. The SV is 0.1-5 hr -1 , more preferably 0.5-3 hr.
-1 is desirable. By this reduction treatment, most of nitrate ions become nitrogen gas according to the following formula. 2NH 4 + + 2NO 3 - + N 2 H 4 → 3N 2 + 6H 2 O NH 4 + + NO 3 - + H 2 → N 2 + 3H 2 O

【0007】本発明方法の第3工程においては、処理水
に酸化剤を添加して、アンモニウムイオンを酸化する。
酸化は、触媒の存在下に加熱して行うことが好ましい。
使用する酸化剤には特に制限はなく、亜硝酸塩、過酸化
水素などを好適に使用することができる。第2工程で亜
硝酸イオンが生成しても、本工程において酸化剤として
はたらき、消費しつくされる。酸化剤が亜硝酸塩の場合
は、亜硝酸塩の使用量は、処理水中に存在するアンモニ
ウムイオンの0.8〜1.0モル倍であることが好まし
い。亜硝酸塩の使用量がアンモニウムイオンの0.8モ
ル倍未満であると、亜硝酸塩によって分解されずに残る
アンモニウムイオンの量が多くなる。亜硝酸塩の使用量
がアンモニウムイオンの1.0モル倍を超えると、過剰
の亜硝酸塩が排水中に残存する。酸化剤が過酸化水素の
場合は、過酸化水素の使用量は、処理水中に存在するア
ンモニウムイオンの1.0〜3.0モル倍であることが好
ましい。過酸化水素の使用量がアンモニウムイオンの
1.0モル倍未満であると、アンモニウムイオンが過酸
化水素によって完全に分解されず、排水中に残存するお
それがある。過酸化水素の使用量がアンモニウムイオン
の3.0モル倍を超えても、残存するアンモニウムイオ
ンの除去効率は過酸化水素の添加量の増加に見合っては
向上しない。本発明方法においては、酸化剤として亜硝
酸塩と過酸化水素を併用し、最初に亜硝酸塩を用いてア
ンモニウムイオンを分解したのち、過酸化水素を添加し
て残るアンモニウムイオンを分解することも可能であ
る。第3工程において用いられる触媒としては、触媒有
効成分として、白金、パラジウム、ルテニウム、ロジウ
ム、インジウム、イリジウム、銀、金、コバルト、ニッ
ケルおよびタングステン、並びにこれらの金属の水不溶
性または水難溶性の化合物、例えば、一酸化コバルト、
一酸化ニッケル、二酸化ルテニウム、三二酸化ロジウ
ム、一酸化パラジウム、二酸化イリジウム、二酸化タン
グステンなどの酸化物、さらには二塩化ルテニウム、二
塩化白金などの塩化物、硫化ルテニウム、硫化ロジウム
などの硫化物などよりなる群から選ばれた1種または2
種以上を、α−アルミナ、γ−アルミナ、活性炭、チタ
ニア、ジルコニア、ゼオライト、ガラス、シリカ、シリ
カアルミナ、イオン交換樹脂などの担体に担持したもの
が挙げられる。このような担持触媒の金属またはその化
合物の担持量は、通常、担体重量の0.05〜25重量
%、好ましくは0.5〜3重量%であることが望まし
い。このような担持触媒は、球状、ペレット状、円柱
状、破砕片状、ハニカム状、粉末状などの種々の形態で
使用可能である。特に、白金をチタニア、γ−アルミナ
などの粒状担体に担持させた触媒が好ましい。これらの
触媒はカラムに充填し、加温下に酸化剤を添加したアン
モニウムイオン含有排水を通液して反応を行うのが好ま
しく、かつ、この場合は上向流通液が望ましい。第3工
程においては、第2工程を終えた処理水のpHが5〜8、
好ましくは6〜7であることが望ましい。第2工程を終
えた処理水のpHがこの範囲より外れている場合は、硫
酸、塩酸などの酸、あるいは、水酸化ナトリウム、水酸
化カリウム、炭酸ナトリウムなどのアルカリを用いてpH
の再調整を行う。処理水のpHが5未満であると、亜硝酸
イオンの一部が再び硝酸イオンに変化するおそれがあ
る。処理水のpHが8を超えると、アンモニウムイオンと
酸化剤の反応速度が低下するおそれがある。分解処理温
度は70〜300℃、好ましくは80〜250℃であ
り、さらに好ましくは140〜180℃である。また、
SVは0.5〜20hr-1、好ましくは2〜5hr-1である
ことが望ましい。この酸化処理によって、アンモニウム
イオンは下記の式にしたがって窒素ガスとなる。 NH4 ++NO2 - → N2+2H2O 2NH4 ++3H22 → N2+2H++6H2
In the third step of the method of the present invention, an oxidant is added to the treated water to oxidize ammonium ions.
The oxidation is preferably carried out by heating in the presence of a catalyst.
The oxidizing agent used is not particularly limited, and nitrite, hydrogen peroxide and the like can be preferably used. Even if nitrite ions are generated in the second step, they act as an oxidant and are consumed up in this step. When the oxidant is nitrite, the amount of nitrite used is preferably 0.8 to 1.0 mol times the ammonium ion present in the treated water. When the amount of nitrite used is less than 0.8 times the molar amount of ammonium ions, the amount of ammonium ions remaining without being decomposed by nitrite increases. When the amount of nitrite used exceeds 1.0 mol times that of ammonium ions, excess nitrite remains in the waste water. When the oxidizing agent is hydrogen peroxide, the amount of hydrogen peroxide used is preferably 1.0 to 3.0 times the molar amount of ammonium ions present in the treated water. When the amount of hydrogen peroxide used is less than 1.0 mol times that of ammonium ions, the ammonium ions may not be completely decomposed by hydrogen peroxide and may remain in the waste water. Even when the amount of hydrogen peroxide used exceeds 3.0 mol times that of ammonium ions, the removal efficiency of the remaining ammonium ions does not improve in proportion to the increase in the amount of hydrogen peroxide added. In the method of the present invention, it is also possible to use nitrite and hydrogen peroxide together as an oxidizing agent, first to decompose ammonium ions using nitrite, and then to add hydrogen peroxide to decompose the remaining ammonium ions. is there. As the catalyst used in the third step, platinum, palladium, ruthenium, rhodium, indium, iridium, silver, gold, cobalt, nickel and tungsten, and a water-insoluble or sparingly water-soluble compound of these metals, as a catalyst active ingredient, For example, cobalt monoxide,
From oxides such as nickel monoxide, ruthenium dioxide, rhodium trioxide, palladium monoxide, iridium dioxide, and tungsten dioxide, as well as chlorides such as ruthenium dichloride and platinum dichloride, and sulfides such as ruthenium sulfide and rhodium sulfide. 1 or 2 selected from the group
Examples thereof include those in which the above-described species are supported on a carrier such as α-alumina, γ-alumina, activated carbon, titania, zirconia, zeolite, glass, silica, silica-alumina, and ion exchange resin. The supported amount of the metal or the compound thereof in such a supported catalyst is usually 0.05 to 25% by weight, preferably 0.5 to 3% by weight based on the weight of the carrier. Such a supported catalyst can be used in various forms such as a sphere, a pellet, a column, a crushed piece, a honeycomb, and a powder. In particular, a catalyst in which platinum is supported on a granular carrier such as titania or γ-alumina is preferable. It is preferable that these catalysts are packed in a column and the reaction is carried out by passing ammonium ion-containing wastewater containing an oxidizing agent under heating, and in this case, an upward flowing liquid is desirable. In the third step, the pH of the treated water after the second step is 5 to 8,
It is preferably 6 to 7. If the pH of the treated water after the second step is out of this range, use an acid such as sulfuric acid or hydrochloric acid or an alkali such as sodium hydroxide, potassium hydroxide or sodium carbonate.
Readjust. If the pH of the treated water is less than 5, a part of the nitrite ion may be changed to the nitrate ion again. If the pH of the treated water exceeds 8, the reaction rate of ammonium ion and the oxidant may decrease. The decomposition treatment temperature is 70 to 300 ° C, preferably 80 to 250 ° C, and more preferably 140 to 180 ° C. Also,
The SV is 0.5 to 20 hr -1 , preferably 2 to 5 hr -1 . By this oxidation treatment, ammonium ions become nitrogen gas according to the following formula. NH 4 + + NO 2 - → N 2 + 2H 2 O 2NH 4 + + 3H 2 O 2 → N 2 + 2H + + 6H 2 O

【0008】以下、図面により本発明方法を説明する。
図1は、本発明方法を実施するための装置の一例の概略
図である。まず、排煙脱硫排水を、軟化処理調整槽1へ
導き、この槽において撹拌下にアルカリを添加すること
によりpHを11以上とし、次いで炭酸塩を添加し、さら
に凝集剤を添加する。金属水酸化物と炭酸カルシウムが
析出し凝集した処理水は、濃縮装置2へ送り、凝集物を
沈降させる。上澄み液はポンプ3によりろ過器4へ送
り、微細な懸濁物質をろ別除去する。ろ過器を通過した
ろ液はpH調整槽5へ導き、この槽でpHを6〜8に調整す
る。pH調整を終えた処理水は、次いでポンプ6により、
熱交換器7およびヒーター8を経由し、配管途中で還元
剤を添加して触媒充填塔A9へ送り、硝酸イオンの還元
処理を行う。触媒充填塔Aを出た処理水は、配管途中で
酸化剤を添加し、触媒充填塔B10へ導き、アンモニウ
ムイオンの酸化処理を行う。触媒充填塔Bを出た処理水
は、熱交換器で余熱を利用したのち、調圧バルブ11を
経由して気液分離塔12へ送り、窒素ガスと処理水に分
離する。本発明方法により、化石燃料を燃焼したときに
発生する排ガスを吸収または分解するときに生ずる排水
中の窒素を、触媒の処理性能の低下および配管などのつ
まりを生ずることなく、効率よく除去することが可能と
なる。
The method of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic view of an example of an apparatus for carrying out the method of the present invention. First, the flue gas desulfurization wastewater is introduced into the softening treatment adjusting tank 1, and the pH is adjusted to 11 or more by adding an alkali under stirring in this tank, and then a carbonate is added and a coagulant is further added. The treated water in which the metal hydroxide and calcium carbonate are deposited and aggregated is sent to the concentrating device 2 to settle the aggregate. The supernatant liquid is sent to the filter 4 by the pump 3 and the fine suspended substance is removed by filtration. The filtrate that has passed through the filter is guided to the pH adjusting tank 5, and the pH is adjusted to 6 to 8 in this tank. The treated water after the pH adjustment is then pumped by the pump 6.
A reducing agent is added in the middle of the piping via the heat exchanger 7 and the heater 8 and sent to the catalyst packed column A9 to carry out a reduction treatment of nitrate ions. The treated water discharged from the catalyst-packed tower A is added with an oxidant in the middle of the pipe, and is introduced into the catalyst-packed tower B10 to oxidize ammonium ions. The treated water that has left the catalyst-filled tower B uses residual heat in a heat exchanger, and then is sent to a gas-liquid separation tower 12 via a pressure regulating valve 11 and separated into nitrogen gas and treated water. According to the method of the present invention, nitrogen in wastewater generated when absorbing or decomposing exhaust gas generated when burning fossil fuel is efficiently removed without deteriorating the treatment performance of the catalyst and clogging of piping and the like. Is possible.

【0009】[0009]

【実施例】以下に、実施例を挙げて本発明をさらに詳細
に説明するが、本発明はこれらの実施例によりなんら限
定されるものではない。 実施例1 アンモニア性窒素514mg/リットル、硝酸性窒素52
mg/リットル、カルシウム320mg/リットル、マグネ
シウム450mg/リットル、鉄3mg/リットルを含有
し、pHが5.4である排煙脱硫排水に、水酸化ナトリウ
ム3,400mg/リットルを添加しpH11.5とした。次
いで、強撹拌下に炭酸ナトリウム850mg/リットルを
添加した。30分後、アニオン性凝集剤(ポリアクリル
アミド部分加水分解物)2mg/リットルを添加し、3分
間ゆるやかに撹拌したのち、1時間静置した。上澄み液
をNo.5Aろ紙を用いてろ過し、ろ液に硫酸を加えてp
Hを6.5に調整した。この処理水中の金属は、カルシウ
ム3mg/リットル、マグネシウム1mg/リットル以下、
鉄1mg/リットル以下であった。この処理水をポンプを
用い、連続的にヒーターで160℃に加熱したのち、白
金0.5重量%を担持した直径1.5mmのチタニア球を充
填した触媒充填塔Aに、処理水1リットル当たり水素ガ
ス3.7×10-2モルを添加しつつSV=0.8hr-1で通
液し、160℃で還元処理を行った。さらに触媒とし
て、白金0.5重量%を担持した直径1.5mmのチタニア
球を充填した触媒充填塔Bに、触媒充填塔Aより流出す
る処理水に、亜硝酸ナトリウム水溶液を亜硝酸性窒素と
して470mg/リットルとなるよう添加しつつ、SV=
2hr-1で通液し、160℃で酸化処理を行った。触媒充
填塔Bより流出する処理水中の窒素含有量は、アンモニ
ア性窒素2mg/リットル、硝酸性窒素3mg/リットルお
よび亜硝酸性窒素1mg/リットル以下であり、排煙脱硫
排水中の窒素は十分に除去されていた。また、加熱部な
どにおけるスケールの発生はなく、安定して運転を継続
することが可能であった。 比較例1 実施例1に用いたのと同じ排煙脱硫排水を用い、水酸化
ナトリウム、炭酸ナトリウムおよびアニオン性凝集剤の
添加による軟化処理を行わないこと以外は、実施例1と
全く同じ処理を行うことを試みた。しかし、安定した処
理水質が得られる前に、加熱部にスケールが発生して通
液できなくなり、試験を中止せざるを得なかった。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples. Example 1 Ammoniacal nitrogen 514 mg / liter, Nitrate nitrogen 52
To the flue gas desulfurization wastewater containing mg / l, calcium 320 mg / l, magnesium 450 mg / l, iron 3 mg / l and having a pH of 5.4, sodium hydroxide 3,400 mg / l was added to obtain a pH of 11.5. did. Then, 850 mg / liter of sodium carbonate was added with vigorous stirring. After 30 minutes, 2 mg / liter of an anionic flocculant (polyacrylamide partial hydrolyzate) was added, and the mixture was gently stirred for 3 minutes and then allowed to stand for 1 hour. The supernatant is filtered using No.5A filter paper, sulfuric acid is added to the filtrate, and
The H was adjusted to 6.5. The metals in this treated water are calcium 3 mg / liter, magnesium 1 mg / liter or less,
The iron content was 1 mg / liter or less. This treated water was continuously heated to 160 ° C. by a heater using a pump, and then, in a catalyst packed tower A filled with titania spheres having a diameter of 1.5 mm and carrying 0.5% by weight of platinum, per 1 liter of treated water While adding 3.7 × 10 -2 mol of hydrogen gas, the solution was passed through at SV = 0.8 hr -1 and reduction treatment was performed at 160 ° C. Further, as a catalyst, in a catalyst packed tower B packed with titania spheres having a diameter of 1.5 mm supporting 0.5% by weight of platinum, treated water flowing out from the catalyst packed tower A was treated with an aqueous sodium nitrite solution as nitrite nitrogen. While adding so that 470 mg / liter, SV =
The solution was passed at 2 hr -1 , and an oxidation treatment was performed at 160 ° C. The nitrogen content in the treated water flowing out from the catalyst packed column B is 2 mg / liter of ammonia nitrogen, 3 mg / liter of nitrate nitrogen and 1 mg / liter of nitrite nitrogen or less, and the nitrogen in the flue gas desulfurization wastewater is sufficient. Had been removed. Further, no scale was generated in the heating part and the like, and the operation could be continued stably. Comparative Example 1 The same treatment as in Example 1 was performed except that the same flue gas desulfurization wastewater as that used in Example 1 was used and the softening treatment was not performed by adding sodium hydroxide, sodium carbonate and an anionic flocculant. Tried to do. However, before a stable quality of treated water was obtained, scales were generated in the heating part and liquid could not be passed through, and the test had to be stopped.

【0010】[0010]

【発明の効果】本発明方法によれば、排煙脱硫排水の窒
素除去処理に軟化処理工程を組み込むことにより、排煙
脱硫排水のように共存物質が多い排水に対しても、工程
中でスケールの発生や、触媒性能の低下がなく、触媒分
解法による窒素の除去が可能となる。
According to the method of the present invention, by incorporating the softening treatment step into the nitrogen removal treatment of the flue gas desulfurization wastewater, the scale of the wastewater desulfurization wastewater containing many coexisting substances can be reduced during the process. It is possible to remove nitrogen by the catalytic decomposition method without the generation of hydrogen and the deterioration of catalyst performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明方法を実施するための装置の一
例の概略図である。
FIG. 1 is a schematic view of an example of an apparatus for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

1 軟化処理調整槽 2 濃縮装置 3 ポンプ 4 ろ過器 5 pH調整槽 6 ポンプ 7 熱交換器 8 ヒーター 9 触媒充填塔A 10 触媒充填塔B 11 調圧バルブ 12 気液分離塔 1 Softening Treatment Control Tank 2 Concentrator 3 Pump 4 Filter 5 pH Control Tank 6 Pump 7 Heat Exchanger 8 Heater 9 Catalyst Packing Tower A 10 Catalyst Packing Tower B 11 Pressure Control Valve 12 Gas-Liquid Separation Tower

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 9/00 504 B E B01D 53/50 53/77 C02F 1/58 ZAB H (72)発明者 淺田 智之 大阪市北区中之島3丁目3番22号 関西電 力株式会社内 (72)発明者 木本 博 大阪市北区中之島3丁目3番22号 関西電 力株式会社内 (72)発明者 中原 敏次 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 (72)発明者 高林 泰彦 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内 (72)発明者 北見 裕子 東京都新宿区西新宿3丁目4番7号 栗田 工業株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location C02F 9/00 504 BE E01D 53/50 53/77 C02F 1/58 ZAB H (72) Inventor Tomoyuki Asada, 3-3-22 Nakanoshima, Kita-ku, Osaka City, Kansai Electric Power Co., Inc. (72) Inventor, Hiroshi Kimoto 3-32-22, Nakanoshima, Kita-ku, Osaka City, Kansai Electric Power Co., Ltd. (72) Inventor, Nakahara Toshiji, 3-4-7 Nishishinjuku, Shinjuku-ku, Tokyo Kurita Industry Co., Ltd. (72) Inventor Yasuhiko Takabayashi 3-4-7 Nishishinjuku, Shinjuku-ku, Tokyo Kurita Industry Co., Ltd. (72) Yuko Kitami 3-4-7 Nishi-Shinjuku, Shinjuku-ku, Tokyo Kurita Industry Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】排煙脱硫排水を軟化処理する第1工程、軟
化処理水を触媒存在下で硝酸を還元する第2工程、およ
び第2工程の処理水を触媒存在下でアンモニアを酸化す
る第3工程からなる排煙脱硫排水の処理方法。
1. A first step of softening flue gas desulfurization wastewater, a second step of reducing nitric acid from softened water in the presence of a catalyst, and a second step of oxidizing ammonia in the treated water of the second step in the presence of a catalyst. A flue gas desulfurization wastewater treatment method consisting of three steps.
JP01984095A 1995-01-12 1995-01-12 Treatment of flue gas desulfurization wastewater Expired - Fee Related JP3425000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01984095A JP3425000B2 (en) 1995-01-12 1995-01-12 Treatment of flue gas desulfurization wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01984095A JP3425000B2 (en) 1995-01-12 1995-01-12 Treatment of flue gas desulfurization wastewater

Publications (2)

Publication Number Publication Date
JPH08192192A true JPH08192192A (en) 1996-07-30
JP3425000B2 JP3425000B2 (en) 2003-07-07

Family

ID=12010476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01984095A Expired - Fee Related JP3425000B2 (en) 1995-01-12 1995-01-12 Treatment of flue gas desulfurization wastewater

Country Status (1)

Country Link
JP (1) JP3425000B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128347A (en) * 1996-11-05 1998-05-19 Kansai Electric Power Co Inc:The Method for treating water containing nitrite nitrogen
JP2002066573A (en) * 2000-08-25 2002-03-05 Mitsubishi Heavy Ind Ltd Method for removing manganese ion in wastewater
CN102815808A (en) * 2011-06-09 2012-12-12 中国石油化工股份有限公司 Catalytic cracking fume desulfuration wastewater treatment process
JP2015039651A (en) * 2013-08-20 2015-03-02 栗田工業株式会社 Method and apparatus for treating selenium-containing water
CN104418447A (en) * 2013-09-09 2015-03-18 中国石油化工股份有限公司 Process for treating waste liquid from catalytic cracking flue gas desulfurization
JP2016016341A (en) * 2014-07-07 2016-02-01 太平洋セメント株式会社 Method for treating calcium-containing waste water
CN109502830A (en) * 2018-12-29 2019-03-22 宋宇航 A kind of environment-friendly and energy-efficient sewage disposal device
CN109851140A (en) * 2019-01-18 2019-06-07 中国石油工程建设有限公司 A kind of oil gas field brine waste efficiently catalyzing and oxidizing coupling hard-removal system and technique

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10128347A (en) * 1996-11-05 1998-05-19 Kansai Electric Power Co Inc:The Method for treating water containing nitrite nitrogen
JP2002066573A (en) * 2000-08-25 2002-03-05 Mitsubishi Heavy Ind Ltd Method for removing manganese ion in wastewater
CN102815808A (en) * 2011-06-09 2012-12-12 中国石油化工股份有限公司 Catalytic cracking fume desulfuration wastewater treatment process
CN102815808B (en) * 2011-06-09 2015-08-19 中国石油化工股份有限公司 Catalytic cracking flue gas desulfuration waste water treatment process
JP2015039651A (en) * 2013-08-20 2015-03-02 栗田工業株式会社 Method and apparatus for treating selenium-containing water
CN104418447A (en) * 2013-09-09 2015-03-18 中国石油化工股份有限公司 Process for treating waste liquid from catalytic cracking flue gas desulfurization
JP2016016341A (en) * 2014-07-07 2016-02-01 太平洋セメント株式会社 Method for treating calcium-containing waste water
CN109502830A (en) * 2018-12-29 2019-03-22 宋宇航 A kind of environment-friendly and energy-efficient sewage disposal device
CN109851140A (en) * 2019-01-18 2019-06-07 中国石油工程建设有限公司 A kind of oil gas field brine waste efficiently catalyzing and oxidizing coupling hard-removal system and technique

Also Published As

Publication number Publication date
JP3425000B2 (en) 2003-07-07

Similar Documents

Publication Publication Date Title
JP5417927B2 (en) Coal gasification wastewater treatment method
Zhang et al. Oxygen vacancies enhancing performance of Mg-Co-Ce oxide composite for the selective catalytic ozonation of ammonia in water
JP4611928B2 (en) Coal gasification wastewater treatment method and treatment equipment
JP3425000B2 (en) Treatment of flue gas desulfurization wastewater
JP5047715B2 (en) Coal gasification wastewater treatment method and treatment equipment
JP3385137B2 (en) Treatment of flue gas desulfurization wastewater
JP3425001B2 (en) Treatment of unsteady wastewater from thermal power plants
JP3358905B2 (en) Method for treating wastewater containing nitrate nitrogen and ammonia nitrogen
JP2001062486A (en) Biological treatment of heavy metal in desulfurization waste water
JP4831799B2 (en) Method for removing manganese ions in waste water
JP4177521B2 (en) Method for treating wastewater containing metal and ammonia
JP3507553B2 (en) Treatment method for ammoniacal nitrogen-containing water
JPH11267668A (en) Treatment of waste water
JP3414513B2 (en) Treatment method of reclaimed wastewater from condensate desalination equipment
JP3226565B2 (en) Wastewater treatment method
JPH0691992B2 (en) Treatment method of wastewater containing high concentration ammonium nitrate
JPH07265870A (en) Treatment of dithionate ion-containing water
JPH0975915A (en) Treating system of ammonia nitrogen
JP3492413B2 (en) Wastewater treatment method
JPH08299970A (en) Treatment of waste water including nitrogen-containing compound
JP3272714B2 (en) Wastewater treatment method
JPS59109225A (en) Stack gas treatment
JP2003275747A (en) Method and device for treating waste water containing ammonium fluoride
JPH0459094A (en) Treatment of waste water containing ammonium nitrate
JPH047086A (en) Treatment of waste water containing sulfur compound

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090502

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100502

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees