JPH081893B2 - Dislocation reduction layer - Google Patents

Dislocation reduction layer

Info

Publication number
JPH081893B2
JPH081893B2 JP63110806A JP11080688A JPH081893B2 JP H081893 B2 JPH081893 B2 JP H081893B2 JP 63110806 A JP63110806 A JP 63110806A JP 11080688 A JP11080688 A JP 11080688A JP H081893 B2 JPH081893 B2 JP H081893B2
Authority
JP
Japan
Prior art keywords
layer
dislocation reduction
layers
compound semiconductor
dislocations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63110806A
Other languages
Japanese (ja)
Other versions
JPH01281719A (en
Inventor
隆司 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63110806A priority Critical patent/JPH081893B2/en
Publication of JPH01281719A publication Critical patent/JPH01281719A/en
Publication of JPH081893B2 publication Critical patent/JPH081893B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、異種基板上に成長した結晶の転位低減が
可能な転位低減層に関するものである。
TECHNICAL FIELD The present invention relates to a dislocation reduction layer capable of reducing dislocations in a crystal grown on a heterogeneous substrate.

〔従来の技術〕[Conventional technology]

第2図はJapanese Journal of Applied Physics VOL.
26,NO7,1987 p1141〜に示された従来の転位低減に用い
られたバッファ層の構造を示す図である。この図におい
て、1はSi基板、2は約2μmのGaAs層、4は100ÅのG
aAs層、5は最表面のGaAs層、6は100ÅのInxGa1-xAs層
である。
Figure 2 shows the Japanese Journal of Applied Physics VOL.
26, NO7, 1987 p1141 to FIG. 14 is a diagram showing a structure of a conventional buffer layer used for dislocation reduction. In this figure, 1 is a Si substrate, 2 is a GaAs layer of about 2 μm, and 4 is a 100 Å G.
The aAs layer, 5 is the outermost GaAs layer, and 6 is the 100 Å In x Ga 1-x As layer.

次に、その作用について説明する。 Next, the operation will be described.

Si基板1上に成長された約2μmのGaAs層2はアニー
ルによって107cm-2程度まで転位が低減されている。そ
して、この上にはGaAs層2よりも格子定数のわずかに大
きいInxGa1-xAs層6が100Å成長され、さらに、交互に1
00ÅのGaAs層4と100ÅのInxGa1-xAs層6が成長されて
いる。このため、転位はこの交互層間の張力によって曲
げられ、成長方向への転位の伝搬は減少している。この
場合、効果の大きいInの組成比xは0.06%以上であり、
その層数は10層であった。
The GaAs layer 2 of about 2 μm grown on the Si substrate 1 has the dislocations reduced to about 10 7 cm −2 by annealing. Then, an In x Ga 1-x As layer 6 having a lattice constant slightly larger than that of the GaAs layer 2 is grown on this by 100Å, and further, 1
A 00Å GaAs layer 4 and a 100Å In x Ga 1-x As layer 6 are grown. Therefore, the dislocations are bent by the tension between the alternating layers, and the propagation of the dislocations in the growth direction is reduced. In this case, the composition ratio x of In having a large effect is 0.06% or more,
The number of layers was 10.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上記のような従来の転位低減用のバッファ層は、InxG
a1-xAa層6とGaAs層4の総厚みは1000Åと厚く、臨界膜
厚を越えており、GaAs層2とSi基板1との界面からの転
位は低減するものの、GaAs層5とInxGa1-xAs層6との界
面で新たな転位が発生しているため十分な転位低減効果
が得られないという問題点があった。また、この場合、
クロスハッチモホロジとなるために、転位とは異なる点
欠陥の問題が生じていた。
The conventional buffer layer for dislocation reduction as described above is In x G
The total thickness of the a 1-x Aa layer 6 and the GaAs layer 4 is as thick as 1000Å, which exceeds the critical thickness, and although dislocations from the interface between the GaAs layer 2 and the Si substrate 1 are reduced, Since new dislocations are generated at the interface with the x Ga 1-x As layer 6, there is a problem that a sufficient dislocation reduction effect cannot be obtained. Also in this case,
Due to the crosshatch morphology, there was a problem of point defects different from dislocations.

この発明は、かかる課題を解決するためになされたも
ので、最表面層と転位低減層との間での新たな転位の発
生を防ぐとともに、クロスハッチの発生しない結晶が得
られる転位低減層を得ることを目的とする。
The present invention has been made in order to solve the above problems, and a dislocation reduction layer that prevents the generation of new dislocations between the outermost surface layer and the dislocation reduction layer and obtains a crystal without crosshatch The purpose is to get.

〔課題を解決するための手段〕[Means for solving the problem]

この発明に係る転位低減層は、基板上に異種の化合物
半導体層と、この化合物半導体層とわずかに格子定数の
異なる半導体層とを交互に成長させて構成される転位低
減層の化合物半導体層と半導体層間の格子定数差を最表
面層に向って次第に少なくしたものである。
A dislocation reduction layer according to the present invention is a compound semiconductor layer of a dislocation reduction layer formed by alternately growing different kinds of compound semiconductor layers on a substrate and semiconductor layers having a slightly different lattice constant from the compound semiconductor layer. The difference in lattice constant between the semiconductor layers is gradually reduced toward the outermost surface layer.

〔作用〕[Action]

この発明においては、最表面層と転位低減層との間で
新たな転位が発生しなくなり、また、クロスハッチも発
生しなくなる。
In the present invention, new dislocations do not occur between the outermost surface layer and the dislocation reduction layer, and crosshatch does not occur.

〔実施例〕〔Example〕

第1図はこの発明の転位低減層の一実施例を示す図で
ある。この図において、第2図と同一符号は同一のもの
を示し、3は100ÅのInxGa1-xAs層で、Inの組成比xが
下から最表面層に向って、例えば0.12〜0.01(12%〜1
%)としだいに小さくなっている。
FIG. 1 is a diagram showing an embodiment of the dislocation reduction layer of the present invention. In this figure, the same symbols as those in FIG. 2 indicate the same things, and 3 is a 100 Å In x Ga 1-x As layer, the composition ratio x of In is from the bottom to the outermost surface layer, for example, 0.12 to 0.01 (12% to 1
%) And become smaller gradually.

次に作用について説明する。 Next, the operation will be described.

この発明のものも従来のものと同様に、Si基板1上に
成長された約2μmのGaAs層2が、アニールによって10
7cm-2程度まで転位が低減されている。しかし、この発
明ではこの後この上にInの組成比xを次第に減じながら
InxGa1-xAs層3とGaAs層4を交互に成長させている。す
なわち、このようにGaAs層2とInxGa1-xAs層3との界面
でInの組成比xを0.12と充分大きくすれば、下からの伝
搬転位は充分曲げられ、また、最表面のGaAs層5とInxG
a1-xAs層3との界面でInの組成比xを0.01として格子の
ずれを小さくすれば、新たな転位の発生やクロスハッチ
ホモロジの発生もなくなり、良好なGaAs層5が得られ
る。
In the present invention as well as the conventional one, the GaAs layer 2 of about 2 μm grown on the Si substrate 1 is annealed by annealing.
Dislocations are reduced to about 7 cm -2 . However, in the present invention, after that, the In composition ratio x is gradually reduced on top of this.
In x Ga 1-x As layers 3 and GaAs layers 4 are grown alternately. That is, if the composition ratio x of In at the interface between the GaAs layer 2 and the In x Ga 1-x As layer 3 is made sufficiently large as 0.12 in this way, propagating dislocations from below can be sufficiently bent, and GaAs layer 5 and In x G
If the composition ratio x of In is set to 0.01 at the interface with the a 1-x As layer 3 to reduce the lattice shift, new dislocations and crosshatch homology are eliminated, and a good GaAs layer 5 is obtained. .

なお、上記実施例ではIII−V族の化合物半導体とし
てGaAaを用いたが、他のIII−V族化合物半導体とし
て、例えばInPを用いた場合でも、また、これらの混晶
を用いた場合でも同様である。また、転位低減層もInxG
a1-xAs-GaAsの交互の層のみでなく、格子定数差があれ
ば他の混晶交互層を用いることも可能である。
Although GaAa was used as the III-V group compound semiconductor in the above-described examples, the same applies when InP is used as another III-V group compound semiconductor, or when a mixed crystal thereof is used. Is. In addition, the dislocation reduction layer also has In x G
Not only alternating layers of a 1-x As-GaAs but other mixed crystal alternating layers can be used if there is a difference in lattice constant.

〔発明の効果〕〔The invention's effect〕

この発明は以上説明したとおり、基板上に異種の化合
物半導体層と、この化合物半導体層とわずかに格子定数
の異なる半導体層とを交互に成長させて構成される転位
低減層の化合物半導体層と半導体層間の格子定数差を最
表面層に向って次第に少なくしたので、新たな転位を発
生させることなく転位を充分低減でき、クロスハッチモ
ホロジのない良好な結晶を得ることが可能になるという
効果がある。
As described above, the present invention is directed to a compound semiconductor layer and a semiconductor of a dislocation reducing layer formed by alternately growing different kinds of compound semiconductor layers on a substrate and semiconductor layers having slightly different lattice constants from the compound semiconductor layer. Since the difference in lattice constant between the layers is gradually reduced toward the outermost surface layer, dislocations can be sufficiently reduced without generating new dislocations, and it is possible to obtain a good crystal without crosshatch morphology. is there.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の転位低減層の一実施例の構造を示す
図、第2図は従来の転位低減層の構造を示す図である。 図において、1はSi基板、2,4,5はGaAs層、3はこの発
明のInxGa1-xAs層である。 なお、各図中の同一符号は同一または相当部分を示す。
FIG. 1 is a diagram showing the structure of an embodiment of the dislocation reducing layer of the present invention, and FIG. 2 is a diagram showing the structure of a conventional dislocation reducing layer. In the figure, 1 is a Si substrate, 2, 4 and 5 are GaAs layers, and 3 is an In x Ga 1-x As layer of the present invention. The same reference numerals in each drawing indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】基板上に異種の化合物半導体層と、この化
合物半導体層とわずかに格子定数の異なる半導体層とを
交互に成長させて構成される転位低減層において、前記
化合物半導体層と前記半導体層間の格子定数差を最表面
層に向って次第に少なくしたことを特徴とする転位低減
層。
1. A dislocation reduction layer formed by alternately growing different kinds of compound semiconductor layers on a substrate and semiconductor layers having slightly different lattice constants from the compound semiconductor layers, wherein the compound semiconductor layer and the semiconductor A dislocation reduction layer characterized in that the difference in lattice constant between layers is gradually reduced toward the outermost surface layer.
JP63110806A 1988-05-07 1988-05-07 Dislocation reduction layer Expired - Lifetime JPH081893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63110806A JPH081893B2 (en) 1988-05-07 1988-05-07 Dislocation reduction layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63110806A JPH081893B2 (en) 1988-05-07 1988-05-07 Dislocation reduction layer

Publications (2)

Publication Number Publication Date
JPH01281719A JPH01281719A (en) 1989-11-13
JPH081893B2 true JPH081893B2 (en) 1996-01-10

Family

ID=14545129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63110806A Expired - Lifetime JPH081893B2 (en) 1988-05-07 1988-05-07 Dislocation reduction layer

Country Status (1)

Country Link
JP (1) JPH081893B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3616745B2 (en) * 1994-07-25 2005-02-02 株式会社ルネサステクノロジ Manufacturing method of semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104611A (en) * 1984-10-27 1986-05-22 Matsushita Electric Ind Co Ltd Si substrate with iii-v group compound single crystal thin film and manufacture thereof

Also Published As

Publication number Publication date
JPH01281719A (en) 1989-11-13

Similar Documents

Publication Publication Date Title
US4558336A (en) MBE Growth technique for matching superlattices grown on GaAs substrates
EP0353423A2 (en) Unstrained defect-free epitaxial mismatched heterostructures and method of fabrication
JP3114809B2 (en) Semiconductor device
US4927471A (en) Semiconductor substrate comprising wafer substrate and compound semiconductor layer
US4517047A (en) MBE growth technique for matching superlattices grown on GaAs substrates
JPH081893B2 (en) Dislocation reduction layer
JPH03136319A (en) Heteroepitaxial substrate and semiconductor device
JP2797425B2 (en) Semiconductor crystal growth method
JP2854302B2 (en) Semiconductor device including epitaxial layer on lattice-mismatched single crystal substrate
JPH06216037A (en) Hetero-epitaxial growth method
JPH0722312A (en) Method for manufacturing strain semiconductor film
JPH07107895B2 (en) Compound semiconductor substrate
JP2565908B2 (en) Compound semiconductor device
JPH05267175A (en) Compound semiconductor substrate
JPH0434920A (en) Hetero epitaxial growth method for group iii-v compound semiconductor on different type board
JP3255798B2 (en) Compound semiconductor device and method of manufacturing the same
JPH088376B2 (en) Semiconductor device and light emitting diode using the same
JPS63248121A (en) Epitaxial crystal growth method
JPH01227424A (en) Compound semiconductor substrate
JPH0417323A (en) Compound semiconductor substrate
JPH0393221A (en) Semiconductor substrate
JPH0654763B2 (en) Method for growing semiconductor thin film
JPH0461286A (en) Semiconductor device
JPS62291909A (en) Gaas epitaxial growth method
JPS6028292A (en) Semiconductor laser element