JPH08188465A - Electroconductive ceramic and its production - Google Patents

Electroconductive ceramic and its production

Info

Publication number
JPH08188465A
JPH08188465A JP7002023A JP202395A JPH08188465A JP H08188465 A JPH08188465 A JP H08188465A JP 7002023 A JP7002023 A JP 7002023A JP 202395 A JP202395 A JP 202395A JP H08188465 A JPH08188465 A JP H08188465A
Authority
JP
Japan
Prior art keywords
temperature
ionic conductivity
transition point
present
oxygen defects
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7002023A
Other languages
Japanese (ja)
Inventor
Toshihito Kuramochi
豪人 倉持
Toshiyuki Mori
利之 森
Hiroshi Yamamura
博 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP7002023A priority Critical patent/JPH08188465A/en
Publication of JPH08188465A publication Critical patent/JPH08188465A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE: To obtain an electroconductive ceramic improved an ionic conductivity in a temperature range in which conventional Ba2 In2 O5 has extremely low ionic conductivity. CONSTITUTION: This electroconductive ceramic is an oxide ceramic shown by Ba-In-Sn-O in the molecular ratio of Ba:In:Sn of 1:(1-x):x (0<(x)<=0.6).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はペロブスカイト関連構造
を有する導電性セラミックスに関するものである。
FIELD OF THE INVENTION The present invention relates to a conductive ceramic having a perovskite-related structure.

【0002】[0002]

【従来の技術】Ba2In25はブラウンミラーライト
型化合物(一般式A225)の一種であり、該化合物
は930℃程度に酸素欠陥の秩序−無秩序転移点があ
り、この温度より高い温度では酸素欠陥が無秩序配列し
て欠陥ペロブスカイト型の立方晶構造となり、イオン導
電率が該転移点より低い温度におけるそれに比べて数十
倍であることが知られている(J.B.Goodeno
ugh,J.E.Ruiz−Diag and Y.
S.Zhen,Solid State Ionic
s,44,21−31(1990))。
2. Description of the Related Art Ba 2 In 2 O 5 is one of Brown Millerite type compounds (general formula A 2 B 2 O 5 ), which has an order-disorder transition point of oxygen defects at about 930 ° C. It is known that, at a temperature higher than this temperature, oxygen defects are randomly arranged to form a defect perovskite type cubic crystal structure, and the ionic conductivity is several tens of times higher than that at a temperature lower than the transition point (J. B. Goodeno
Ugh, J. et al. E. FIG. Ruiz-Diag and Y.
S. Zhen, Solid State Ionic
s, 44, 21-31 (1990)).

【0003】[0003]

【発明が解決しようとする課題】上記したように、Ba
2In25は酸素欠陥の秩序−無秩序転移点以下の温度
では良好なイオン導電率が得られないという問題があっ
た。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention As mentioned above, Ba
2 In 2 O 5 has a problem that good ionic conductivity cannot be obtained at a temperature below the order-disorder transition point of oxygen defects.

【0004】本発明は上記の課題に鑑みてなされたもの
であり、その目的は、Ba2In25ではイオン導電率
が著しく低かった温度領域でのイオン導電率を改善した
導電性セラミックスを提供することである。
The present invention has been made in view of the above problems, and an object thereof is to provide a conductive ceramic having improved ionic conductivity in a temperature range where the ionic conductivity of Ba 2 In 2 O 5 was extremely low. Is to provide.

【0005】[0005]

【課題を解決するための手段】本発明者らは上記の課題
を解決するために鋭意検討を重ねた結果、Ba−In−
Sn−Oで表される酸化物セラミックスが、Ba2In2
5ではイオン導電率が著しく低かった温度領域でのイ
オン導電率を改善できることを見出だし本発明を完成し
た。
The inventors of the present invention have conducted extensive studies to solve the above problems, and as a result, Ba-In-
The oxide ceramics represented by Sn-O is Ba 2 In 2
The inventors have found that O 5 can improve the ionic conductivity in the temperature range where the ionic conductivity is extremely low, and completed the present invention.

【0006】すなわち本発明は、Ba−In−Sn−O
で表される酸化物セラミックであって、Ba、In、S
nのモル比が Ba:In:Sn=1:1−x:x(0<x≦0.6) であることを特徴とする導電性セラミックス、及びその
製造方法である。
That is, the present invention is based on Ba-In-Sn-O.
An oxide ceramic represented by: Ba, In, S
The conductive ceramics are characterized in that the molar ratio of n is Ba: In: Sn = 1: 1-x: x (0 <x ≦ 0.6), and a method for producing the same.

【0007】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0008】本発明の導電性セラミックスは、Snの割
合すなわちxの値を0から上げていくにつれ、酸素欠陥
の秩序−無秩序転移点が低下していき、ついには該転移
点は室温以下となり、xが0.1〜0.6の範囲で確実
に該転移点が室温以下が維持された立方晶系欠陥ペロブ
スカイト構造となる。
In the electroconductive ceramics of the present invention, as the Sn content, that is, the value of x is increased from 0, the order-disorder transition point of oxygen defects is lowered until the transition point becomes room temperature or lower. When x is in the range of 0.1 to 0.6, a cubic crystal defect perovskite structure in which the transition point is reliably maintained at room temperature or lower is obtained.

【0009】しかしながらxの値が0.1を超えると格
子体積が小さくなり、酸素欠陥が徐々に秩序配列化して
いき、イオン導電率も徐々に低下し始め、0.6を超え
るとイオン導電率の低下が無視しえないものとなる。し
たがって酸素欠陥の秩序−無秩序転移点をBa2In2
5よりも低くし、かつイオン導電率の高いものとするに
は、xは0より大きく0.6以下でなければならず、酸
素欠陥の秩序−無秩序転移点を室温以下にするには、x
は0.1〜0.6の範囲が好ましく、格子体積をBa2
In25よりも大きくするには、xは0.02〜0.2
5の範囲が好ましい。このためxは0.1〜0.25の
範囲が特に好ましい。
However, when the value of x exceeds 0.1, the lattice volume becomes small, oxygen defects gradually become ordered, and the ionic conductivity also begins to gradually decrease. The decrease in the value becomes non-negligible. Therefore, the order-disorder transition point of oxygen defects is set to Ba 2 In 2 O.
In order to make it lower than 5 and have high ionic conductivity, x must be larger than 0 and not more than 0.6, and in order to bring the order-disorder transition point of oxygen defects to room temperature or less, x
Is preferably in the range of 0.1 to 0.6, and the lattice volume is Ba 2
In order to make it larger than In 2 O 5 , x is 0.02 to 0.2.
A range of 5 is preferred. Therefore, x is particularly preferably in the range of 0.1 to 0.25.

【0010】本発明の導電性セラミックスを製造する方
法は特に限定するものではない。例えばBa、In及び
Snの化合物を、 Ba:In:Sn=1:1−x:x(0<x≦0.6) のモル比になるように混合した後、仮焼し、成形し、焼
成する方法、上記各構成金属元素の無機塩の溶液を混合
し、アンモニア等を添加することによって共沈物を得て
から、沈殿を分離し、洗浄し、乾燥した後、仮焼し、成
形し、焼成する方法等によって合成することができる。
また場合によってはBa化合物とIn化合物からBa2
In25を先に合成し、これに上記の組成となるように
Ba化合物及びSn化合物を添加して仮焼し、成形し、
焼成してもよい。
The method for producing the conductive ceramics of the present invention is not particularly limited. For example, compounds of Ba, In and Sn are mixed in a molar ratio of Ba: In: Sn = 1: 1-x: x (0 <x ≦ 0.6), then calcined and molded, Method of firing, mixing the solution of the inorganic salt of each of the above-mentioned constituent metal elements, to obtain a coprecipitate by adding ammonia or the like, the precipitate is separated, washed, dried, then calcined, molding Then, it can be synthesized by a method such as firing.
Depending on the case, it may be possible to convert Ba compound and In compound into Ba 2
In 2 O 5 was first synthesized, and the Ba compound and Sn compound were added to the composition so as to have the above composition, and the mixture was calcined and molded,
You may bake.

【0011】得られた原料混合粉末が全て酸化物となっ
ている場合にはそのまま成形した後に焼結してもよい
が、その他、例えば原料に構成金属元素の無機塩を用い
た場合等には、そのまま成形して焼結すると、同時に熱
分解反応を伴うため焼結が阻害され緻密な焼結体を得に
くくなるので、焼結前に一度仮焼することが好ましい。
When all the raw material mixed powders obtained are oxides, they may be molded as they are and then sintered, but otherwise, for example, when an inorganic salt of a constituent metal element is used as a raw material, etc. If molded and sintered as it is, it is accompanied by a thermal decomposition reaction, which hinders sintering and makes it difficult to obtain a dense sintered body. Therefore, it is preferable to calcine once before sintering.

【0012】仮焼温度は仮焼後に得られる粉末が全て酸
化物状態になっていればよく、特に限定するものではな
いが、溶融やIn成分の蒸発を防ぐため、1400℃以
下が好ましい。
The calcination temperature is not particularly limited as long as the powder obtained after calcination is all in the oxide state, but it is preferably 1400 ° C. or lower in order to prevent melting and evaporation of the In component.

【0013】得られた原料混合粉末又は仮焼粉末の焼結
温度は特に限定するものではないが、反応を十分に進行
させ、焼結体の緻密化を十分にし、かつ溶融やIn成分
の蒸発を防ぐため、1300℃〜1400℃の範囲が特
に好ましい。
The sintering temperature of the obtained raw material mixed powder or calcination powder is not particularly limited, but the reaction is sufficiently advanced, the sintered body is sufficiently densified, and melting and evaporation of the In component are performed. In order to prevent this, the range of 1300 ° C to 1400 ° C is particularly preferable.

【0014】酸素欠陥の秩序−無秩序転移点は、示差熱
重量分析により確認することができる。すなわち、測定
温度領域において、該転移点で、昇温時には重量変化を
伴わずに吸熱反応が起こり、降温時には重量変化を伴わ
ずに発熱反応が起こる。ただし、降温時の発熱反応が観
測される温度は、昇温時の吸熱反応が観測される温度よ
りも低温側へ移行することがある。したがって室温で酸
素欠陥が無秩序配列していて該転移点が室温以下である
ものにおいては、室温以上の温度領域での示差熱重量分
析では上記の発熱反応や吸熱反応は認められないことに
なる。
The order-disorder transition point of oxygen defects can be confirmed by differential thermogravimetric analysis. That is, in the measurement temperature region, at the transition point, an endothermic reaction occurs without a weight change when the temperature is raised, and an exothermic reaction occurs without a weight change when the temperature is lowered. However, the temperature at which the exothermic reaction at the time of temperature decrease is observed may shift to a temperature lower than the temperature at which the endothermic reaction at the time of temperature increase is observed. Therefore, in the case where oxygen defects are randomly arranged at room temperature and the transition point is below room temperature, the above exothermic reaction or endothermic reaction is not observed in the differential thermogravimetric analysis in the temperature range above room temperature.

【0015】本発明の効果発現の機構については、未だ
十分には解明されていないが、本発明の導電性セラミッ
クスでは、そのブラウンミラーライト型化合物A22
5のBサイトにSnが位置することにより結晶構造の対
称性が向上して酸素欠陥の無秩序配列が促進され比較的
低い温度から高い導電率が得られたものと考えられる。
しかしながら、このような推測はなんら本発明を拘束す
るものではない。
The mechanism of the effect of the present invention has not been sufficiently clarified, but in the conductive ceramics of the present invention, the brown mirror light type compound A 2 B 2 O thereof is used.
It is considered that, by locating Sn at the B site of 5 , the symmetry of the crystal structure was improved, the disordered arrangement of oxygen defects was promoted, and high conductivity was obtained from a relatively low temperature.
However, such an assumption does not bind the present invention.

【0016】本発明の導電性セラミックスは比較的低温
でも良好なイオン導電率を示すので、極めて有用であ
る。
The conductive ceramics of the present invention are very useful because they show good ionic conductivity even at relatively low temperatures.

【0017】[0017]

【実施例】以下、本発明を実施例を用いて更に詳細に説
明するが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be described below in more detail with reference to examples, but the present invention is not limited thereto.

【0018】実施例1 Ba(NO32(キシダ化学製)、In23(キシダ化
学製)及びSnO2(関東化学製)をBa:In:Sn
=1:0.95:0.05のモル比となるように混合し
た後、1000℃で6時間大気中で仮焼した。得られた
粉末を500kg/cm2の圧力で予備成形し、更に2
t/cm2の静水圧により成形した後、1400℃で1
0時間焼成して焼結体を作製した。
Example 1 Ba (NO 3 ) 2 (manufactured by Kishida Chemical), In 2 O 3 (manufactured by Kishida Chemical) and SnO 2 (manufactured by Kanto Chemical) were mixed with Ba: In: Sn.
After mixing so that the molar ratio was = 1: 0.95: 0.05, the mixture was calcined at 1000 ° C. for 6 hours in the atmosphere. The powder obtained is preformed at a pressure of 500 kg / cm 2 , and further 2
After molding by hydrostatic pressure of t / cm 2 , 1 at 1400 ° C
It was fired for 0 hour to produce a sintered body.

【0019】得られた焼結体はBa2(In0.95Sn
0.0525.05であり、X線回折試験(CuKα線)の
結果、この結晶相は斜方晶系ブラウンミラーライト型化
合物単一相であったが、従来のBa2In25に比べ
て、結晶構造の対称性は向上していた。
The obtained sintered body was Ba 2 (In 0.95 Sn)
0.05 ) 2 O 5.05 , and as a result of an X-ray diffraction test (CuKα ray), this crystal phase was an orthorhombic brown mirrorlite type compound single phase, but compared with conventional Ba 2 In 2 O 5 The symmetry of the crystal structure was improved.

【0020】また示差熱重量分析の結果から酸素欠陥の
秩序−無秩序転移点は約700℃であることを確認し
た。
From the results of differential thermogravimetric analysis, it was confirmed that the order-disorder transition point of oxygen defects was about 700 ° C.

【0021】得られた焼結体を厚さ2mmに研削し、白
金ペーストを塗布し、1000℃において電極焼き付け
処理を施した後、交流2端子法(印加交流電流20m
V、周波数10Hz〜1MHz、大気中)により複素イ
ンピーダンスを測定してイオン導電率を算出した。結果
を表1に示す。
The obtained sintered body was ground to a thickness of 2 mm, coated with a platinum paste, and subjected to electrode baking treatment at 1000 ° C., followed by an AC two-terminal method (applied AC current 20 m
V, frequency 10 Hz to 1 MHz, in air), the complex impedance was measured to calculate the ionic conductivity. The results are shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】実施例2、実施例3 Ba(NO32(キシダ化学製)、In23(キシダ化
学製)及びSnO2(関東化学製)をBa:In:Sn
=1:0.9:0.1(実施例2)、Ba:In:Sn
=1:0.5:0.5(実施例3)のモル比となるよう
に混合した後、1000℃で6時間大気中で仮焼した。
得られた粉末を500kg/cm2の圧力で予備成形
し、更に2t/cm2の静水圧により成形した後、14
00℃で10時間焼成して焼結体を作製した。
Examples 2 and 3 Ba (NO 3 ) 2 (manufactured by Kishida Chemical Co., Ltd.), In 2 O 3 (manufactured by Kishida Chemical Co., Ltd.) and SnO 2 (manufactured by Kanto Chemical Co., Ltd.) were mixed with Ba: In: Sn.
= 1: 0.9: 0.1 (Example 2), Ba: In: Sn
The mixture was mixed at a molar ratio of = 1: 0.5: 0.5 (Example 3) and then calcined in the atmosphere at 1000 ° C. for 6 hours.
The obtained powder was preformed at a pressure of 500 kg / cm 2 and further hydrostatically pressed at 2 t / cm 2 , and then 14
A sintered body was produced by firing at 00 ° C. for 10 hours.

【0024】得られた焼結体はBa2(In0.9
0.125.1(実施例2)、Ba2(In0.5Sn0.5
25.5(実施例3)であり、X線回折試験の結果、この
結晶相は立方晶系欠陥ペロブスカイト型化合物単一相で
あった。
The obtained sintered body was Ba 2 (In 0.9 S
n 0.1 ) 2 O 5.1 (Example 2), Ba 2 (In 0.5 Sn 0.5 ).
2 O 5.5 (Example 3), and as a result of an X-ray diffraction test, this crystal phase was a single phase of a cubic defect perovskite type compound.

【0025】また示差熱重量分析の結果では降温時の発
熱反応や昇温時の吸熱反応は認められなかった。
Further, the results of the differential thermogravimetric analysis did not show any exothermic reaction when the temperature was lowered or an endothermic reaction when the temperature was raised.

【0026】得られた焼結体を実施例1と同様の方法で
複素インピーダンスを測定してイオン導電率を算出し
た。結果を表1に合わせて示す。
The ionic conductivity of the obtained sintered body was calculated by measuring the complex impedance in the same manner as in Example 1. The results are also shown in Table 1.

【0027】比較例 Ba(NO32(キシダ化学製)及びIn23(キシダ
化学製)をBa2In25の組成となるように混合した
後、実施例1と同一の処理条件で焼結体を作製し、実施
例1と同様の方法でイオン導電率を測定した。その測定
結果を表1に示す。
Comparative Example Ba (NO 3 ) 2 (manufactured by Kishida Chemical Co., Ltd.) and In 2 O 3 (manufactured by Kishida Chemical Co., Ltd.) were mixed so as to have a composition of Ba 2 In 2 O 5 , and then the same treatment as in Example 1 was performed. A sintered body was produced under the conditions, and the ionic conductivity was measured by the same method as in Example 1. The measurement results are shown in Table 1.

【0028】X線回折試験の結果、得られた焼結体の結
晶相は斜方晶系ブラウンミラーライト型化合物単一相で
あった。また示差熱重量分析の結果から酸素欠陥の秩序
−無秩序転移点が約930℃であることが確認された。
As a result of the X-ray diffraction test, the crystal phase of the obtained sintered body was an orthorhombic brown mirrorlite type compound single phase. From the results of differential thermogravimetric analysis, it was confirmed that the order-disorder transition point of oxygen defects was about 930 ° C.

【0029】表1から明らかなように900℃以下では
実施例1〜3に比してイオン導電率が1桁程度低かっ
た。
As is apparent from Table 1, below 900 ° C., the ionic conductivity was about one digit lower than in Examples 1 to 3.

【0030】[0030]

【発明の効果】本発明の導電性セラミックスはBa2
25に比べて低い温度で良好なイオン導電率を示すの
で、電池、センサー等各種電子材料への応用が期待でき
る。
The conductive ceramics of the present invention are Ba 2 I
Since it exhibits good ionic conductivity at a lower temperature than n 2 O 5 , it can be expected to be applied to various electronic materials such as batteries and sensors.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Ba−In−Sn−Oで表される酸化物
セラミックスであって、Ba、In、Snのモル比が Ba:In:Sn=1:1−x:x(0<x≦0.6) であることを特徴とする導電性セラミックス。
1. An oxide ceramic represented by Ba-In-Sn-O, wherein the molar ratio of Ba, In, and Sn is Ba: In: Sn = 1: 1-x: x (0 <x≤. 0.6) which is a conductive ceramic.
【請求項2】 バリウム化合物、インジウム化合物及び
スズ化合物を Ba:In:Sn=1:1−x:x(0<x≦0.6) のモル比になるように混合し、この粉末をそのまま又は
仮焼して得られた粉末を成形し、続いて1300〜14
00℃で焼結することを特徴とする請求項1に記載の導
電性セラミックスの製造方法。
2. A barium compound, an indium compound and a tin compound are mixed in a molar ratio of Ba: In: Sn = 1: 1-x: x (0 <x ≦ 0.6), and the powder is used as it is. Alternatively, the powder obtained by calcination is molded, and subsequently 1300 to 14
The method for producing a conductive ceramic according to claim 1, wherein sintering is performed at 00 ° C.
JP7002023A 1995-01-10 1995-01-10 Electroconductive ceramic and its production Pending JPH08188465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7002023A JPH08188465A (en) 1995-01-10 1995-01-10 Electroconductive ceramic and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7002023A JPH08188465A (en) 1995-01-10 1995-01-10 Electroconductive ceramic and its production

Publications (1)

Publication Number Publication Date
JPH08188465A true JPH08188465A (en) 1996-07-23

Family

ID=11517742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7002023A Pending JPH08188465A (en) 1995-01-10 1995-01-10 Electroconductive ceramic and its production

Country Status (1)

Country Link
JP (1) JPH08188465A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114428A1 (en) * 2006-03-31 2007-10-11 Mitsui Mining & Smelting Co., Ltd. Sputtering target and method for manufacturing oxide sintered body
WO2007114429A1 (en) * 2006-03-31 2007-10-11 Mitsui Mining & Smelting Co., Ltd. Indium oxide transparent conductive film and method for manufacturing same
WO2009044897A1 (en) * 2007-10-03 2009-04-09 Mitsui Mining & Smelting Co., Ltd. Indium oxide transparent conductive film and method for producing the same
WO2009044898A1 (en) * 2007-10-03 2009-04-09 Mitsui Mining & Smelting Co., Ltd. Indium oxide transparent conductive film and method for producing the same
WO2010116980A1 (en) * 2009-04-08 2010-10-14 三井金属鉱業株式会社 Wiring board and connection structure

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114428A1 (en) * 2006-03-31 2007-10-11 Mitsui Mining & Smelting Co., Ltd. Sputtering target and method for manufacturing oxide sintered body
WO2007114429A1 (en) * 2006-03-31 2007-10-11 Mitsui Mining & Smelting Co., Ltd. Indium oxide transparent conductive film and method for manufacturing same
CN101316944A (en) * 2006-03-31 2008-12-03 三井金属矿业株式会社 Sputtering target and method for manufacturing oxide sintered body
KR100945196B1 (en) * 2006-03-31 2010-03-03 미츠이 긴조쿠 고교 가부시키가이샤 Sputtering target and method for producing sintered oxide
US7754110B2 (en) 2006-03-31 2010-07-13 Mitsui Mining & Smelting Co., Ltd. Indium-oxide-based transparent conductive film and method for producing the film
WO2009044897A1 (en) * 2007-10-03 2009-04-09 Mitsui Mining & Smelting Co., Ltd. Indium oxide transparent conductive film and method for producing the same
WO2009044898A1 (en) * 2007-10-03 2009-04-09 Mitsui Mining & Smelting Co., Ltd. Indium oxide transparent conductive film and method for producing the same
WO2010116980A1 (en) * 2009-04-08 2010-10-14 三井金属鉱業株式会社 Wiring board and connection structure

Similar Documents

Publication Publication Date Title
JPH08188465A (en) Electroconductive ceramic and its production
JPH0283256A (en) Dielectric material porcelain composition
JPS6051664A (en) Manufacture of lead zirconate titanate ceramic
JPH08188466A (en) Electroconductive ceramic and its production
JPH0193467A (en) Oxide ceramic
JPH06338221A (en) Dielectric ceramic composition for high frequency
JPH07215763A (en) Electrical conductive ceramics
JP2955293B2 (en) Manufacturing method of dielectric thin film
JPS61232217A (en) Production of low-temperature sinterable powdery raw material for producing dielectric ceramic
JP2546466B2 (en) High-purity dielectric thin film
JP3401834B2 (en) Dielectric material
JPH03223149A (en) Porcelain composition
JPH0283257A (en) Porcelain composition of high permittivity for temperature compensation and production thereof
JPH026366A (en) Oxide-based ceramic, substrate for producing superconducting ceramic film and production of superconducting ceramic film
JP3292490B2 (en) Dielectric porcelain composition
JPS61191519A (en) Production of low-temperature sinterable raw material powder for producing dielectric porcelain
JPH01122956A (en) Dielectric ceramics composition
JP2900687B2 (en) Semiconductor porcelain composition and method for producing the same
JPS63236796A (en) Production of oriented laminate film
JPH09110524A (en) Nonreducing dielectric porcelain composition
JPS61232218A (en) Production of powdery raw material for producing dielectric ceramic
JPH04237902A (en) Dielectric porcelain compound
JPH08310814A (en) Brownmillerite type solid electrolyte
JPH03285864A (en) Thin dielectric film
JPS61191518A (en) Production of low-temperature sinterable raw material powder for producing dielectric porcelain