WO2010116980A1 - Wiring board and connection structure - Google Patents

Wiring board and connection structure Download PDF

Info

Publication number
WO2010116980A1
WO2010116980A1 PCT/JP2010/056194 JP2010056194W WO2010116980A1 WO 2010116980 A1 WO2010116980 A1 WO 2010116980A1 JP 2010056194 W JP2010056194 W JP 2010056194W WO 2010116980 A1 WO2010116980 A1 WO 2010116980A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring board
mol
indium
film
molar ratio
Prior art date
Application number
PCT/JP2010/056194
Other languages
French (fr)
Japanese (ja)
Inventor
誠一郎 高橋
誠治 森内
真 池田
徳彦 宮下
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Publication of WO2010116980A1 publication Critical patent/WO2010116980A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0326Inorganic, non-metallic conductor, e.g. indium-tin oxide [ITO]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads

Definitions

  • the present invention relates to a wiring board and a connection structure that are well connected to a member to be connected via an anisotropic conductive material and have excellent bonding strength.
  • ITO film An indium oxide-tin oxide (In 2 O 3 —SnO 2 composite oxide, hereinafter referred to as “ITO”) film has high visible light transmittance and high electrical conductivity, so that it can be used as a transparent conductive film such as a liquid crystal display device or glass.
  • ITO indium oxide-tin oxide
  • a TAB (Tape Automated Bonding) tape equipped with a driver circuit or the like is connected by TCP (Tape Carrier Package), or a COF (Chip On Film) tape is connected by FCB (Flip Chip Bonding).
  • TCP Transmission Carrier Package
  • COF Chip On Film
  • FCB Flip Chip Bonding
  • An ITO film is used for a terminal portion to be connected (hereinafter, these connections are referred to as connections to connected members), but miniaturization has progressed year by year and patterning is becoming difficult.
  • an indium oxide-zinc oxide (IZO) transparent conductive film is known as an amorphous film.
  • IZO indium oxide-zinc oxide
  • Patent Document 1 proposes an invention in which the composition range of the IZO film is limited and the surface of the connection portion has crystallinity.
  • TCP connection is performed using an anisotropic conductive material, connection is made. There is a problem that the strength is not sufficient.
  • the present applicant can obtain an amorphous film by adding barium to the ITO film as a transparent conductive film, and then anneal to obtain a low resistance and highly transparent film.
  • the technique which can improve the corrosion resistance in the post process, moisture resistance, and environmental resistance by this was proposed previously (refer patent document 3).
  • the present invention can be easily patterned by weak acid etching with an amorphous film, further has low resistance and high transmittance, can be crystallized more easily, and is bonded via an anisotropic conductive material. It is an object of the present invention to provide a wiring board and a connection structure that can perform the above-described process well.
  • a first aspect of the present invention that achieves the above object is to provide a wiring board having a wiring pattern formed on a transparent substrate, wherein the wiring pattern is connected to a connected member via an anisotropic conductive material.
  • a transparent conductive film comprising a terminal portion, wherein at least a surface layer of the connection terminal portion contains indium oxide and, if necessary, tin, and barium is contained in an amount of 0.00001 mol or more and less than 0.10 mol with respect to 1 mol of indium;
  • the wiring board is characterized by the following.
  • the surface of the connection terminal portion is made of a transparent conductive film containing indium oxide and tin as required and containing barium in an amount of 0.00001 mol or more and less than 0.10 mol with respect to 1 mol of indium. Therefore, the connection strength is sufficiently high and stable when connected to the connected member via the anisotropic conductive material.
  • the transparent conductive film is formed as an amorphous film and then crystallized by annealing. Located on the wiring board.
  • connection terminal portion is annealed and crystallized, the environment resistance is high.
  • the transparent conductive film is formed under a condition that the partial pressure of water is less than 1.0 ⁇ 10 ⁇ 4 Pa. It is in the wiring board characterized by being.
  • the film is formed in a state where water is not substantially present, the environmental resistance is further improved.
  • the molar ratio y of tin to 1 mol of indium is expressed by the molar ratio x of barium to 1 mol of indium. ( ⁇ 2.9 ⁇ 10 ⁇ 2 Ln (x) ⁇ 6.7 ⁇ 10 ⁇ 2 ) or more, and ( ⁇ 2.0 ⁇ 10 ⁇ 1 Ln (x) ⁇ 4.6 ⁇ 10 ⁇
  • connection terminal portion is made of a transparent conductive film having a predetermined composition range, it is advantageous for patterning, and a high-definition pattern is well patterned.
  • the molar ratio y of tin to 1 mol of indium is expressed by the molar ratio x of barium to 1 mol of indium. ( ⁇ 2.9 ⁇ 10 ⁇ 2 Ln (x) ⁇ 6.7 ⁇ 10 ⁇ 2 ) or more, and ( ⁇ 2.0 ⁇ 10 ⁇ 1 Ln (x) ⁇ 4.6 ⁇ 10 ⁇
  • connection terminal portion is made of a transparent conductive film having a predetermined composition range, it is advantageous for patterning, and a high-definition pattern is well patterned.
  • the molar ratio y of tin to 1 mol of indium is represented by the molar ratio x of barium to 1 mol of indium (5. 9 ⁇ 10 ⁇ 2 Ln (x) + 4.9 ⁇ 10 ⁇ 1 ) or less.
  • connection terminal portion is made of a transparent conductive film having a predetermined composition range, it is further advantageous for patterning, and a high-definition pattern is well patterned.
  • the molar ratio y of tin to 1 mol of indium is 0.08 or more, and the molar ratio x of barium to 1 mol of indium is The wiring board is characterized by being in a range of 0.025 or less.
  • the resistivity after annealing is very low, the resistivity is as low as 3.0 ⁇ 10 ⁇ 4 ⁇ cm or less, and the resistance after bonding is also low.
  • the wiring board according to any one of the first to seventh aspects, and a connected member that is thermocompression bonded to the connection terminal portion of the wiring board via an anisotropic conductive material. It is in the connection structure characterized by comprising.
  • connection terminal portion and the member to be connected via the anisotropic conductive material have good connection strength and high durability.
  • the wiring board is a substrate for display display, and the pixel group provided on the transparent substrate and the pixel group are drawn out from the pixel group. And a wiring group, wherein the connection terminal portion is connected to the wiring group.
  • a display device with high connection strength and high durability can be realized.
  • connection structure which concern on one Embodiment of this invention. It is a figure which shows the connection structure of the ACF connection test of the test example of this invention. It is a figure which shows the time-dependent change of ACF connection resistance of Example 1 of this invention. It is a figure which shows the time-dependent change of ACF connection resistance of the comparative example 1 of this invention. It is a figure which shows the time-dependent change of ACF connection resistance of the comparative example 2 of this invention. It is a figure which shows the state after the ACF connection test of Example 1 of this invention. It is a figure which shows the state after the ACF connection test of the comparative example 1 of this invention. It is a figure which shows the state after the ACF connection test of the comparative example 2 of this invention.
  • the wiring board of the present invention is not particularly limited as long as it includes a connection terminal portion connected to a connected member via an anisotropic conductive material. Moreover, as long as at least the surface layer of the connection terminal portion is made of a transparent conductive film having a predetermined composition, the material of the wiring other than the connection terminal portion is not particularly limited, and the entire connection terminal portion has a predetermined composition in the thickness direction.
  • the indium oxide-based transparent conductive film may be formed, or a transparent conductive film having a predetermined composition may be formed on a terminal portion made of a different material.
  • the conductive film of a predetermined composition is transparent, it is a transparent conductive film. However, it goes without saying that the characteristic of being transparent may not be used, for example, the substrate is not a transparent substrate. Is included.
  • a wiring board is not particularly limited as long as it is intended for connection with an anisotropic conductive material, but a wiring board for display display is particularly preferable.
  • the display display wiring board is a liquid crystal display wiring board, a plasma display wiring board, an organic or inorganic EL wiring board, and the like, and generally includes a transparent substrate provided with a pixel group. And a wiring group led out from the pixel group.
  • the surface layer of the connection terminal portion connected to the wiring group is made of an indium oxide-based transparent conductive film having a predetermined composition, and the material of the wiring group connected thereto is not particularly limited, It may be a film made of the same material, a film made of another transparent conductive material, or a film made of a conductive metal, and is not particularly limited.
  • connection structure of the present invention includes the above-described wiring board and a connected member that is thermocompression bonded to the connection terminal portion of the wiring board via an anisotropic conductive material, and the use thereof is as follows.
  • the wiring board is a display display wiring board.
  • connection structure provided with a display display wiring board
  • FIG. 1B is a schematic cross-sectional view.
  • the display display wiring substrate 10 includes a pixel group 12 formed on a transparent substrate 11.
  • the end portion of the wiring group 13 drawn out from the pixel group 12 becomes the connection terminal portion 14.
  • a carrier tape 30 of a TAB tape or a COF tape, which is an example of a member to be connected, is thermocompression bonded to the connection terminal portion 14 in which a plurality of terminals are arranged in parallel via an anisotropic conductive material 20.
  • the anisotropic conductive material 20 is an anisotropic conductive film (ACF) or an anisotropic conductive paste (ACP), and a known material can be used.
  • the connected member is not limited to a carrier tape such as a TAB tape or a COF tape.
  • Such a transparent conductive film having a predetermined composition contains indium oxide and tin as required and contains barium in an amount of 0.00001 mol or more and less than 0.10 mol with respect to 1 mol of indium. It has been done.
  • the transparent conductive film sputtering target used is mainly composed of indium oxide and contains tin as required, and oxide sintering containing barium.
  • the barium is not particularly limited as long as it is in the form of its oxide, as a composite oxide, or as a solid solution.
  • the barium content is preferably in a range formed by using a sputtering target containing 0.00001 mol or more and less than 0.10 mol with respect to 1 mol of indium. If it is less than this, the effect of addition is not remarkable, and if it is more than this, the resistance of the formed transparent conductive film tends to increase and the color tends to deteriorate.
  • barium content in the transparent conductive film formed with the sputtering target mentioned above turns into content same as content in the used sputtering target.
  • the content of tin is within a range in which a film is formed using a sputtering target containing 0 to 0.3 mol per 1 mol of indium.
  • a sputtering target contained in a range of 0.001 to 0.3 mol with respect to 1 mol of indium.
  • the density and mobility of carrier electrons in the sputtering target can be appropriately controlled to keep the conductivity in a good range.
  • addition beyond this range is not preferable because the mobility of carrier electrons of the sputtering target is lowered and the conductivity is deteriorated.
  • content of the tin in the transparent conductive film formed with the sputtering target mentioned above turns into content same as content in the used sputtering target.
  • Such a sputtering target has a resistance value that can be sputtered by DC magnetron sputtering, it can be sputtered by a relatively inexpensive DC magnetron sputtering.
  • a high-frequency magnetron sputtering apparatus may be used. .
  • an indium oxide-based transparent conductive film having the same composition By using such a transparent conductive film sputtering target, an indium oxide-based transparent conductive film having the same composition can be formed.
  • the entire amount of a single film may be dissolved and analyzed by ICP.
  • a cross section of the corresponding part is cut out by FIB or the like, and an element analyzer (EDS, WDS, Auger analysis, etc.) attached to the SEM, TEM, etc. ) Can also be specified.
  • the indium oxide-based transparent conductive film formed in this manner contains a predetermined amount of barium, and thus varies depending on the barium content.
  • the film is formed in an amorphous state by performing under a temperature condition lower than 150 ° C., preferably lower than 150 ° C., and more preferably lower than 100 ° C. Further, such an amorphous film has an advantage that it can be etched with a weakly acidic etchant.
  • the etching is included in the patterning step and is for obtaining a predetermined pattern.
  • the connection terminal part which has the obtained indium oxide type transparent conductive film in a surface layer has a favorable connection with a to-be-connected member via an anisotropic conductive material, sufficient connection strength is obtained, and durability It has the advantage of being excellent.
  • the resistivity of the transparent conductive film obtained varies depending on the barium content, but the resistivity is 1.0 ⁇ 10 ⁇ 4 to 1.0 ⁇ 10 ⁇ 3 ⁇ cm.
  • the crystallization temperature of the deposited film varies depending on the content of barium contained, and increases as the content increases, but it can be crystallized by annealing at a temperature of 100 ° C. to 400 ° C. it can. Since such a temperature region is used in a normal semiconductor manufacturing process, it can be crystallized in such a process. In this temperature range, those that crystallize at 100 ° C. to 300 ° C. are preferred, crystals that crystallize at 150 ° C. to 250 ° C. are more preferred, and those that crystallize at 200 ° C. to 250 ° C. are most preferred.
  • annealing refers to heating at a desired temperature for a certain period of time in air, atmosphere, or vacuum.
  • the fixed time is generally several minutes to several hours, but a short time is preferred industrially if the effect is the same.
  • the transparent conductive film after crystallization by annealing has improved transmittance on the short wavelength side, for example, the average transmittance at a wavelength of 400 to 500 nm is 85% or more. This also eliminates the problem of a yellowish film that is a problem with IZO. In general, a higher transmittance on the short wavelength side is preferred.
  • the crystallized transparent conductive film has improved etching resistance and cannot be etched with a weakly acidic etchant that can be etched with an amorphous film. This improves the corrosion resistance in the subsequent process and the environmental resistance of the device itself.
  • the transparent conductive film which comprises the surface layer of a connection terminal part is annealed before connecting through an anisotropic conductive material, and it is in this transparent crystallized conductive film By connecting to the member to be connected through the anisotropic conductive material, the connection strength is sufficiently high and the durability is excellent.
  • the crystallization temperature after film formation can be set to a desired temperature by changing the barium content.
  • the amorphous state may be maintained without being subjected to heat treatment at a temperature higher than the temperature, or after patterning after film formation, heat treatment is performed at a temperature equal to or higher than the temperature for crystallization, and crystallization is achieved. It may be changed.
  • the optimum oxygen partial pressure changes depending on the temperature depending on the composition range of the sputtering target, and an amorphous film is formed at a temperature oxygen partial pressure that becomes low resistance after annealing.
  • a low resistance transparent conductive film is formed by forming a film and then annealing and crystallizing the film.
  • the optimal oxygen partial pressure that is the lowest oxygen partial pressure, and the oxygen partial pressure that provides the lowest resistance of the crystallized film after annealing (or the optimal oxygen partial pressure when deposited at the annealing temperature) Is different.
  • the etching rate is particularly high. For example, as will be described in detail later, etching using an etchant in which a solution having an oxalic acid concentration of 50 g / L is heated to 30 ° C. is used.
  • the rate is 3 kg / sec or more. Further, among these, the range in which the molar ratio y of tin is not more than the value of (5.9 ⁇ 10 ⁇ 2 Ln (x) + 4.9 ⁇ 10 ⁇ 1 ) represented by the molar ratio x of barium to 1 mol of indium.
  • the etching rate is further increased, and the etching rate when an etchant obtained by heating a solution having an oxalic acid concentration of 50 g / L to 30 ° C. is 4 ⁇ / sec or more. In such an etching rate region, a good pattern can be obtained during patterning.
  • the upper limit of the etching rate is generally said to be about 30 liters / sec.
  • the etching rate in such a composition range where the etching rate is high, there is a range where the resistance is particularly low. That is, in the range where the etching rate is high, the molar ratio y of tin to 1 mol of indium is 0.08 or more, and in the range where the molar ratio x of barium to 1 mol of indium is 0.025 or less, the resistivity is A transparent conductive film of 3.0 ⁇ 10 ⁇ 4 ⁇ cm or less is preferable.
  • the film is crystallized after the film formation.
  • a transparent conductive film having excellent etching resistance and low resistance is obtained.
  • the manufacturing method of the sputtering target used in the present invention will be described. However, this is merely an example, and the manufacturing method is not particularly limited.
  • the starting material constituting the sputtering target of the present invention is generally a powder of In 2 O 3 , SnO 2 , or BaCO 3 , but In 2 O 3 and BaCO 3 are pre-calcined to BaIn 2. It is preferable to use O 4 in a mixture of In 2 O 3 and SnO 2 . This is to prevent generation of pores due to gas generation due to decomposition of BaCO 3 .
  • These simple substances, compounds, composite oxides, and the like may be used as raw materials. When using a simple substance or a compound, it is made to go through a process of making it oxide in advance.
  • the method of mixing and molding these raw material powders at a desired blending ratio is not particularly limited, and various conventionally known wet methods or dry methods can be used.
  • Examples of the dry method include a cold press method and a hot press method.
  • the mixed powder is filled in a mold to produce a molded body and fired.
  • the hot press method the mixed powder is fired and sintered in a mold.
  • a filtration molding method (see JP-A-11-286002) is preferably used.
  • This filtration molding method is a filtration molding die made of a water-insoluble material for obtaining a molded body by draining water from a ceramic raw material slurry under reduced pressure, and a lower molding die having one or more drain holes And a water-permeable filter placed on the molding lower mold, and a molding mold clamped from the upper surface side through a sealing material for sealing the filter, the molding lower mold, Forming mold, sealing material, and filter are assembled so that they can be disassembled respectively.
  • mixed powder, ion-exchanged water and organic Prepare a slurry consisting of additives, inject the slurry into a filtration mold, drain the water in the slurry only from the filter surface side, and produce a molded body. After drying degreasing, and firing.
  • the firing temperature of the one formed by the cold press method or the wet method is preferably 1300 to 1650 ° C., more preferably 1500 to 1650 ° C., and the atmosphere is an air atmosphere, an oxygen atmosphere, a non-oxidizing atmosphere, a vacuum atmosphere, or the like. It is.
  • the hot press method sintering is preferably performed at around 1200 ° C., and the atmosphere is a non-oxidizing atmosphere, a vacuum atmosphere, or the like.
  • molding and a process is given to a predetermined dimension, and it is set as a target.
  • Sputtering method DC magnetron sputtering
  • Exhaust device Rotary pump + cryopump Ultimate vacuum: 5.0 ⁇ 10 ⁇ 5 [Pa]
  • Ar pressure 4.0 ⁇ 10 ⁇ 1 [Pa]
  • Substrate used: Corning # 1737 (glass for liquid crystal display) t 0.8mm
  • ITO oxygen pressure
  • a film having a thickness of 6000 mm was obtained under the same conditions as in Example 1 except that water vapor gas was added during film formation (moisture pressure 1.0 ⁇ 10 ⁇ 2 [Pa]).
  • FIG. 2 shows a plan view and a side view of a test pattern for performing a connection test for ACF connection.
  • three strip-shaped patterns 102 formed on a glass substrate 101 with a size of 20 mm ⁇ 3 mm at intervals of 5 mm are obtained by applying each film sample formed in the above-described example and comparative example to an oxalic acid type.
  • Etching ITO-07N, manufactured by Kanto Chemical Co., Inc.
  • the Ba-added ITO and ITO films were annealed at 250 ° C. for 1 hour in the atmosphere to crystallize the films.
  • the strip pattern 102 of each film sample and the gold-deposited copper foil 103 were combined into an anisotropic conductive adhesive 104 (AC-4251FY, Hitachi, 1 mm thick ⁇ 30 mm long) as shown in FIG. Using Kasei). Further, a lead wire 105 is bonded to the opposite end of the connection surface between the strip pattern and the ACF as a resistance measurement terminal by solder 106, and test sample 1 (Example 1: Ba-added ITO film) and test sample 2 ( Comparative Example 1: IZO film) and test sample 3 (Comparative Example 2: ITO film) were prepared.
  • test sample 1 Example 1: Ba-added ITO film
  • test sample 2 Comparative Example 1: IZO film
  • test sample 3 Comparative Example 2: ITO film
  • test sample prepared was measured for 250 hours in the ACF connection resistance (3 locations) when a bias of ⁇ 5 V and 60 Hz was applied in a thermo-hygrostat set at a temperature of 60 ° C. and a humidity of 90%. The change with time was examined.
  • Figures 3 to 5 show the changes over time in the ACF connection resistance of each test sample.
  • the initial resistance and the resistance after 250 hours hardly changed at all three locations, and no change with time was observed.
  • the IZO film of Comparative Example 2 the resistance increased 20 to 30 hours after the start of the test. In particular, no. In No. 2, after about 70 hours, a large resistance fluctuation considered to be caused by peeling of the joint was confirmed. This is because the Ba-added ITO film or ITO film is crystallized by annealing, but the IZO film is kept in an amorphous state.
  • the amorphous state has more lattice defects, is structurally sparse, and has a lower density than the crystallized state. For this reason, in an IZO film that is in an amorphous state, moisture in the atmosphere is adsorbed during the test, and the moisture also enters the bonding interface, thereby causing a decrease in adhesion at the joint and peeling. It is thought that.
  • the IZO film used in this test is generally formed near room temperature and used in an amorphous state.
  • the crystallization temperature of the IZO film is 500 ° C. or higher, it is not crystallized by annealing (about 200 to 250 ° C.) in the liquid crystal panel manufacturing process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Disclosed are: a wiring board which is an amorphous film that can be easily patterned by weak acid etching and has low resistance and high transmittance, said amorphous film being able to be easily crystallized and capable of forming a good junction through an anisotropic material; and a connection structure. Specifically disclosed is a wiring board having a wiring pattern that is formed on a transparent substrate, wherein the wiring pattern comprises a connection terminal part that is connected to a member to be connected through an anisotropic conductive material, and at least the surface layer of the connection terminal part is composed of a transparent conductive film that contains indium oxide, and if necessary tin, while containing 0.00001 mole or greater but less than 0.10 mole of barium per 1 mole of indium.

Description

配線基板及び接続構造Wiring board and connection structure
 本発明は、異方性導電材料を介して被接続部材と良好に接続されて優れた接合強度を有する配線基板及び接続構造に関する。 The present invention relates to a wiring board and a connection structure that are well connected to a member to be connected via an anisotropic conductive material and have excellent bonding strength.
 酸化インジウム-酸化錫(In23-SnO2の複合酸化物、以下、「ITO」という)膜は、可視光透過性が高く、かつ導電性が高いので透明導電膜として液晶表示装置やガラスの結露防止用発熱膜、赤外線反射膜等に幅広く用いられているが、アモルファスな膜とするのが困難であるという問題がある。すなわち、成膜した後、エッチングによりパターニングする際に、強酸を使用する必要があり、微細加工が困難であるという問題がある。特に、液晶表示装置などのディスプレイ基板では、ドライバー回路などを搭載したTAB(Tape Automated Bonding)テープをTCP(Tape Carrier Package)接続させる、あるいはCOF(Chip On Film)テープをFCB(Flip Chip Bonding)接続させる端子部(以下、これらの接続を被接続部材との接続という)にITO膜が用いられているが、年々微細化が進み、パターニングが困難になりつつある。 An indium oxide-tin oxide (In 2 O 3 —SnO 2 composite oxide, hereinafter referred to as “ITO”) film has high visible light transmittance and high electrical conductivity, so that it can be used as a transparent conductive film such as a liquid crystal display device or glass. However, it is difficult to obtain an amorphous film. That is, when patterning is performed by etching after film formation, it is necessary to use a strong acid, and there is a problem that microfabrication is difficult. In particular, in a display substrate such as a liquid crystal display device, a TAB (Tape Automated Bonding) tape equipped with a driver circuit or the like is connected by TCP (Tape Carrier Package), or a COF (Chip On Film) tape is connected by FCB (Flip Chip Bonding). An ITO film is used for a terminal portion to be connected (hereinafter, these connections are referred to as connections to connected members), but miniaturization has progressed year by year and patterning is becoming difficult.
 一方、アモルファスな膜となるものとして、酸化インジウム-酸化亜鉛(IZO)透明導電膜が知られているが、かかるIZO膜を液晶表示装置用配線として用いた場合、TCP接続すると、接続抵抗が大きく、且つ経時的に接続抵抗が上昇するという問題があることが報告されている(特許文献1参照)。 On the other hand, an indium oxide-zinc oxide (IZO) transparent conductive film is known as an amorphous film. However, when such an IZO film is used as a wiring for a liquid crystal display device, connection resistance increases when TCP connection is used. In addition, it has been reported that there is a problem that the connection resistance increases with time (see Patent Document 1).
 また、かかる特許文献1には、IZO膜の組成範囲を限定して接続部分表面が結晶性を有するものとした発明を提案しているが、異方性導電材料を用いてTCP接続すると、接続強度的に十分ではないという問題がある。 Further, Patent Document 1 proposes an invention in which the composition range of the IZO film is limited and the surface of the connection portion has crystallinity. However, when TCP connection is performed using an anisotropic conductive material, connection is made. There is a problem that the strength is not sufficient.
 一方、本出願人は、透明導電膜としてITO膜に珪素を添加して所定の条件で成膜したアモルファスな透明導電膜を先に提案した(特許文献2参照)が、珪素を添加すると高抵抗化の傾向があるという問題があった。 On the other hand, the present applicant previously proposed an amorphous transparent conductive film formed by adding silicon to an ITO film under a predetermined condition as a transparent conductive film (see Patent Document 2). There was a problem that there was a tendency to change.
 また、本出願人は、透明導電膜としてITO膜にバリウムを添加することにより、アモルファスな膜を成膜し、その後、アニールすることにより、低抵抗で透明性の高い膜を得ることができる。また、これによって後工程での耐腐食性や耐湿性、耐環境性を向上させることができる技術を先に提案した(特許文献3参照)。 Further, the present applicant can obtain an amorphous film by adding barium to the ITO film as a transparent conductive film, and then anneal to obtain a low resistance and highly transparent film. Moreover, the technique which can improve the corrosion resistance in the post process, moisture resistance, and environmental resistance by this was proposed previously (refer patent document 3).
特許第3961172号公報(段落[0006]、特許請求の範囲など)Japanese Patent No. 3916172 (paragraph [0006], claims, etc.) 特開2005-135649号公報(特許請求の範囲など)JP 2005-135649 A (Claims etc.) 特開2007-294447号公報(特許請求の範囲など)JP 2007-294447 A (Claims etc.)
 本発明は、このような事情に鑑み、アモルファス膜で弱酸エッチングにより容易にパターニングでき、さらに低抵抗で且つ透過率が高く、またさらに容易に結晶化でき且つ異方性導電材料を介しての接合を良好に行うことができる配線基板及び接続構造を提供することを課題とする。 In view of such circumstances, the present invention can be easily patterned by weak acid etching with an amorphous film, further has low resistance and high transmittance, can be crystallized more easily, and is bonded via an anisotropic conductive material. It is an object of the present invention to provide a wiring board and a connection structure that can perform the above-described process well.
 前記目的を達成する本発明の第1の態様は、透明基板上に形成された配線パターンを有する配線基板において、前記配線パターンは、異方性導電材料を介して被接続部材と接続される接続端子部を具備し、この接続端子部の少なくとも表層が酸化インジウムと必要に応じて錫を含有すると共にバリウムをインジウム1モルに対して0.00001モル以上0.10モル未満含有する透明導電膜からなることを特徴とする配線基板にある。 A first aspect of the present invention that achieves the above object is to provide a wiring board having a wiring pattern formed on a transparent substrate, wherein the wiring pattern is connected to a connected member via an anisotropic conductive material. A transparent conductive film comprising a terminal portion, wherein at least a surface layer of the connection terminal portion contains indium oxide and, if necessary, tin, and barium is contained in an amount of 0.00001 mol or more and less than 0.10 mol with respect to 1 mol of indium; The wiring board is characterized by the following.
 かかる第1の態様では、接続端子部の表面が酸化インジウムと必要に応じて錫を含有すると共にバリウムをインジウム1モルに対して0.00001モル以上0.10モル未満含有する透明導電膜からなるので、異方性導電材料を介して被接続部材と接続された際に接続強度が十分に高く且つ安定したものとなる。 In the first aspect, the surface of the connection terminal portion is made of a transparent conductive film containing indium oxide and tin as required and containing barium in an amount of 0.00001 mol or more and less than 0.10 mol with respect to 1 mol of indium. Therefore, the connection strength is sufficiently high and stable when connected to the connected member via the anisotropic conductive material.
 本発明の第2の態様は、第1の態様に記載の配線基板において、前記透明導電膜が、アモルファスな膜として成膜された後、アニールによる結晶化されたものであることを特徴とする配線基板にある。 According to a second aspect of the present invention, in the wiring substrate according to the first aspect, the transparent conductive film is formed as an amorphous film and then crystallized by annealing. Located on the wiring board.
 かかる第2の態様では、接続端子部はアニールされて結晶化しているので、耐環境性が高いものである。 In the second aspect, since the connection terminal portion is annealed and crystallized, the environment resistance is high.
 本発明の第3の態様は、第1又は2の態様に記載の配線基板において、前記透明導電膜が水の分圧が1.0×10-4Pa未満の条件下で成膜されたものであることを特徴とする配線基板にある。 According to a third aspect of the present invention, in the wiring substrate according to the first or second aspect, the transparent conductive film is formed under a condition that the partial pressure of water is less than 1.0 × 10 −4 Pa. It is in the wiring board characterized by being.
 かかる第3の態様では、水が実質的に存在しない状態で成膜されたものであるので、耐環境性がさらに高いものとなる。 In the third aspect, since the film is formed in a state where water is not substantially present, the environmental resistance is further improved.
 本発明の第4の態様は、第1~3の何れかの態様に記載の配線基板において、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するバリウムのモル比xで表される(-2.9×10-2Ln(x)-6.7×10-2)の値以上であり、(-2.0×10-1Ln(x)-4.6×10-1)の値以下でy=0を除く範囲にあることを特徴とする配線基板にある。 According to a fourth aspect of the present invention, in the wiring substrate according to any one of the first to third aspects, the molar ratio y of tin to 1 mol of indium is expressed by the molar ratio x of barium to 1 mol of indium. (−2.9 × 10 −2 Ln (x) −6.7 × 10 −2 ) or more, and (−2.0 × 10 −1 Ln (x) −4.6 × 10 − The wiring board is characterized in that it is in the range excluding y = 0 below the value of 1 ).
 かかる第4の態様では、接続端子部の表面が所定の組成範囲の透明導電膜からなるので、パターニングに有利であり、さらに高精細なパターンが良好にパターニングされたものとなる。 In the fourth aspect, since the surface of the connection terminal portion is made of a transparent conductive film having a predetermined composition range, it is advantageous for patterning, and a high-definition pattern is well patterned.
 本発明の第5の態様は、第1~3の何れかの態様に記載の配線基板において、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するバリウムのモル比xで表される(-2.9×10-2Ln(x)-6.7×10-2)の値以上であり、(-2.0×10-1Ln(x)-4.6×10-1)の値以下でy=0を除く範囲であり、且つ0.22以下の範囲にあることを特徴とする配線基板にある。 According to a fifth aspect of the present invention, in the wiring substrate according to any one of the first to third aspects, the molar ratio y of tin to 1 mol of indium is expressed by the molar ratio x of barium to 1 mol of indium. (−2.9 × 10 −2 Ln (x) −6.7 × 10 −2 ) or more, and (−2.0 × 10 −1 Ln (x) −4.6 × 10 − The wiring board is characterized by being in the range of 1 ) or less and excluding y = 0, and in the range of 0.22 or less.
 かかる第5の態様では、接続端子部の表面が所定の組成範囲の透明導電膜からなるので、パターニングに有利であり、さらに高精細なパターンが良好にパターニングされたものとなる。 In the fifth aspect, since the surface of the connection terminal portion is made of a transparent conductive film having a predetermined composition range, it is advantageous for patterning, and a high-definition pattern is well patterned.
 本発明の第6の態様は、第5の態様に記載の配線基板において、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するバリウムのモル比xで表される(5.9×10-2Ln(x)+4.9×10-1)の値以下の範囲にあることを特徴とする配線基板にある。 According to a sixth aspect of the present invention, in the wiring substrate according to the fifth aspect, the molar ratio y of tin to 1 mol of indium is represented by the molar ratio x of barium to 1 mol of indium (5. 9 × 10 −2 Ln (x) + 4.9 × 10 −1 ) or less.
 かかる第6の態様では、接続端子部の表面が所定の組成範囲の透明導電膜からなるので、パターニングにさらに有利であり、さらに高精細なパターンが良好にパターニングされたものとなる。 In the sixth aspect, since the surface of the connection terminal portion is made of a transparent conductive film having a predetermined composition range, it is further advantageous for patterning, and a high-definition pattern is well patterned.
 本発明の第7の態様は、第6の態様に記載の配線基板において、インジウム1モルに対しての錫のモル比yが0.08以上であり、インジウム1モルに対するバリウムのモル比xが0.025以下の範囲にあることを特徴とする配線基板にある。 According to a seventh aspect of the present invention, in the wiring board according to the sixth aspect, the molar ratio y of tin to 1 mol of indium is 0.08 or more, and the molar ratio x of barium to 1 mol of indium is The wiring board is characterized by being in a range of 0.025 or less.
 かかる第7の態様では、アニール後の抵抗率が非常に低く、抵抗率が3.0×10-4Ωcm以下と低抵抗の膜となり、接合後の抵抗も低いものとなる。 In the seventh aspect, the resistivity after annealing is very low, the resistivity is as low as 3.0 × 10 −4 Ωcm or less, and the resistance after bonding is also low.
 本発明の第8の態様は、第1~7の何れかの態様に記載の配線基板と、この配線基板の接続端子部に異方性導電材料を介して熱圧着された被接続部材とを具備することを特徴とする接続構造にある。 According to an eighth aspect of the present invention, there is provided the wiring board according to any one of the first to seventh aspects, and a connected member that is thermocompression bonded to the connection terminal portion of the wiring board via an anisotropic conductive material. It is in the connection structure characterized by comprising.
 かかる第8の態様では、異方性導電材料を介しての接続端子部と被接続部材との接続強度が良好で耐久性の高いものである。 In the eighth aspect, the connection terminal portion and the member to be connected via the anisotropic conductive material have good connection strength and high durability.
 本発明の第9の態様は、第8の態様に記載の接続構造において、前記配線基板は、表示ディスプレイ用の基板であり、透明基板に設けられた画素群と、この画素群から引き出された配線群とを具備し、前記接続端子部が前記配線群に接続されていることを特徴とする接続構造にある。 According to a ninth aspect of the present invention, in the connection structure according to the eighth aspect, the wiring board is a substrate for display display, and the pixel group provided on the transparent substrate and the pixel group are drawn out from the pixel group. And a wiring group, wherein the connection terminal portion is connected to the wiring group.
 かかる第9の態様では、接続部の接続強度が高く耐久性の高いディスプレイ装置が実現できる。 In the ninth aspect, a display device with high connection strength and high durability can be realized.
本発明の一実施形態に係る接続構造の概略平面図及び断面図である。It is the schematic plan view and sectional drawing of the connection structure which concern on one Embodiment of this invention. 本発明の試験例のACF接続試験の接続構造を示す図である。It is a figure which shows the connection structure of the ACF connection test of the test example of this invention. 本発明の実施例1のACF接続抵抗の経時変化を示す図である。It is a figure which shows the time-dependent change of ACF connection resistance of Example 1 of this invention. 本発明の比較例1のACF接続抵抗の経時変化を示す図である。It is a figure which shows the time-dependent change of ACF connection resistance of the comparative example 1 of this invention. 本発明の比較例2のACF接続抵抗の経時変化を示す図である。It is a figure which shows the time-dependent change of ACF connection resistance of the comparative example 2 of this invention. 本発明の実施例1のACF接続試験後の状態を示す図である。It is a figure which shows the state after the ACF connection test of Example 1 of this invention. 本発明の比較例1のACF接続試験後の状態を示す図である。It is a figure which shows the state after the ACF connection test of the comparative example 1 of this invention. 本発明の比較例2のACF接続試験後の状態を示す図である。It is a figure which shows the state after the ACF connection test of the comparative example 2 of this invention.
 本発明の配線基板は、異方性導電材料を介して被接続部材と接続される接続端子部を具えるものであれば、特に限定されない。また、接続端子部の少なくとも表層が所定組成の透明導電膜からなるものであれば、接続端子部以外の配線の材質は特に限定されず、また、接続端子部は厚さ方向の全体が所定組成の酸化インジウム系透明導電膜からなってもよいし、異材質の端子部上に所定組成の透明導電膜が形成されていてもよい。なお、所定組成の導電膜が透明であるから透明導電膜としているが、透明である特性を使用目的としないものであってもよいことはいうまでもなく、例えば、基板が透明基板でないものも含むものである。 The wiring board of the present invention is not particularly limited as long as it includes a connection terminal portion connected to a connected member via an anisotropic conductive material. Moreover, as long as at least the surface layer of the connection terminal portion is made of a transparent conductive film having a predetermined composition, the material of the wiring other than the connection terminal portion is not particularly limited, and the entire connection terminal portion has a predetermined composition in the thickness direction. The indium oxide-based transparent conductive film may be formed, or a transparent conductive film having a predetermined composition may be formed on a terminal portion made of a different material. In addition, since the conductive film of a predetermined composition is transparent, it is a transparent conductive film. However, it goes without saying that the characteristic of being transparent may not be used, for example, the substrate is not a transparent substrate. Is included.
 かかる配線基板の用途は異方性導電材料での接続を目的とするものであれば、その用途は特に限定されないが、特に表示ディスプレイ用配線基板の場合が好ましい。 The use of such a wiring board is not particularly limited as long as it is intended for connection with an anisotropic conductive material, but a wiring board for display display is particularly preferable.
 ここで、表示ディスプレイ用配線基板とは、液晶ディスプレイ用配線基板、プラズマディスプレイ用配線基板、有機又は無機EL用配線基板などであり、一般的には、画素群が設けられた透明基板を具備し、画素群から引き出された配線群を有するものである。かかる表示ディスプレイ用配線基板においては、配線群に接続された接続端子部の少なくとも表層が所定組成の酸化インジウム系透明導電膜からなればよく、これに接続する配線群の材料は特に限定されず、同一の材料からなる膜であっても、他の透明導電材料からなる膜であっても、導電金属からなる膜であってもよく、特に限定されない。 Here, the display display wiring board is a liquid crystal display wiring board, a plasma display wiring board, an organic or inorganic EL wiring board, and the like, and generally includes a transparent substrate provided with a pixel group. And a wiring group led out from the pixel group. In such a display display wiring board, it is sufficient that at least the surface layer of the connection terminal portion connected to the wiring group is made of an indium oxide-based transparent conductive film having a predetermined composition, and the material of the wiring group connected thereto is not particularly limited, It may be a film made of the same material, a film made of another transparent conductive material, or a film made of a conductive metal, and is not particularly limited.
 また、本発明の接続構造は、上述した配線基板と、この配線基板の前記接続端子部に異方性導電材料を介して熱圧着された被接続部材とを具備するものであり、その用途は特に限定されるものではないが、特に、配線基板が表示ディスプレイ用配線基板の場合が好ましい。 Moreover, the connection structure of the present invention includes the above-described wiring board and a connected member that is thermocompression bonded to the connection terminal portion of the wiring board via an anisotropic conductive material, and the use thereof is as follows. Although not particularly limited, it is particularly preferable that the wiring board is a display display wiring board.
 ここで、表示ディスプレイ用配線基板を具備する接続構造の一例を図1を参照しながら説明する。図1(a)は接続構造の概略平面図、図1(b)は概略断面図であり、これらの図面に示すように、表示ディスプレイ用配線基板10は、透明基板11に画素群12が形成されたものであり、画素群12から引き出された配線群13の端部が接続端子部14となる。複数の端子が並設された接続端子部14には異方性導電材料20を介して被接続部材の一例であるTABテープ又はCOFテープのキャリアテープ30が熱圧着されている。 Here, an example of a connection structure provided with a display display wiring board will be described with reference to FIG. 1A is a schematic plan view of the connection structure, and FIG. 1B is a schematic cross-sectional view. As shown in these drawings, the display display wiring substrate 10 includes a pixel group 12 formed on a transparent substrate 11. Thus, the end portion of the wiring group 13 drawn out from the pixel group 12 becomes the connection terminal portion 14. A carrier tape 30 of a TAB tape or a COF tape, which is an example of a member to be connected, is thermocompression bonded to the connection terminal portion 14 in which a plurality of terminals are arranged in parallel via an anisotropic conductive material 20.
 ここで、異方性導電材料20は、異方性導電フィルム(ACF)又は異方性導電ペースト(ACP)であり、公知のものを用いることができる。また、被接続部材はTABテープ又はCOFテープなどのキャリアテープに限定されるものではない。 Here, the anisotropic conductive material 20 is an anisotropic conductive film (ACF) or an anisotropic conductive paste (ACP), and a known material can be used. Further, the connected member is not limited to a carrier tape such as a TAB tape or a COF tape.
 以下、上述した接続端子部の少なくとも表層を構成する所定組成の酸化インジウム系透明導電膜について説明する。かかる所定組成の透明導電膜は、酸化インジウムと必要に応じて錫を含有すると共にバリウムをインジウム1モルに対して0.00001モル以上0.10モル未満含有するものであり、例えば、スパッタリングにより形成されたものである。 Hereinafter, the indium oxide-based transparent conductive film having a predetermined composition constituting at least the surface layer of the connection terminal portion described above will be described. Such a transparent conductive film having a predetermined composition contains indium oxide and tin as required and contains barium in an amount of 0.00001 mol or more and less than 0.10 mol with respect to 1 mol of indium. It has been done.
 かかる酸化インジウム系透明導電膜をスパッタリングにより形成する場合、用いられる透明導電膜用スパッタリングターゲットは、酸化インジウムを主体とし、必要に応じて錫を含有するもので、且つバリウムを含有する酸化物焼結体であり、バリウムは、その酸化物のまま、あるいは複合酸化物として、あるいは固溶体として存在していればよく、特に限定されない。 When such an indium oxide-based transparent conductive film is formed by sputtering, the transparent conductive film sputtering target used is mainly composed of indium oxide and contains tin as required, and oxide sintering containing barium. The barium is not particularly limited as long as it is in the form of its oxide, as a composite oxide, or as a solid solution.
 バリウムの含有量は、インジウム1モルに対して0.00001モル以上0.10モル未満含有されているスパッタリングターゲットを用いて形成した範囲とするのが望ましい。これより少ないと添加の効果は顕著ではなく、また、これより多くなると、形成される透明導電膜の抵抗が高くなる傾向と色味が悪化する傾向になるからである。なお、上述したスパッタリングターゲットにより形成された透明導電膜中のバリウム含有量は、使用したスパッタリングターゲット中の含有量と同一の含有量となる。 The barium content is preferably in a range formed by using a sputtering target containing 0.00001 mol or more and less than 0.10 mol with respect to 1 mol of indium. If it is less than this, the effect of addition is not remarkable, and if it is more than this, the resistance of the formed transparent conductive film tends to increase and the color tends to deteriorate. In addition, barium content in the transparent conductive film formed with the sputtering target mentioned above turns into content same as content in the used sputtering target.
 また、錫の含有量は、インジウム1モルに対して0~0.3モル含有するスパッタリングターゲットを用いて成膜した範囲とする。錫が含有される場合には、インジウム1モルに対して0.001~0.3モルの範囲で含有されるスパッタリングターゲットを用いて成膜されるのが望ましい。この範囲内であれば、スパッタリングターゲットのキャリヤ電子の密度並びに移動度を適切にコントロールして導電性を良好な範囲に保つことができる。また、この範囲を越えて添加すると、スパッタリングターゲットのキャリヤ電子の移動度を低下させると共に導電性を劣化させる方向に働くので好ましくない。なお、上述したスパッタリングターゲットにより形成された透明導電膜中の錫の含有量は、使用したスパッタリングターゲット中の含有量と同一の含有量となる。 Further, the content of tin is within a range in which a film is formed using a sputtering target containing 0 to 0.3 mol per 1 mol of indium. When tin is contained, it is desirable to form a film using a sputtering target contained in a range of 0.001 to 0.3 mol with respect to 1 mol of indium. Within this range, the density and mobility of carrier electrons in the sputtering target can be appropriately controlled to keep the conductivity in a good range. Further, addition beyond this range is not preferable because the mobility of carrier electrons of the sputtering target is lowered and the conductivity is deteriorated. In addition, content of the tin in the transparent conductive film formed with the sputtering target mentioned above turns into content same as content in the used sputtering target.
 このようなスパッタリングターゲットは、DCマグネトロンスパッタリングでスパッタリング可能な程度の抵抗値を有しているので、比較的安価なDCマグネトロンスパッタリングでスパッタリング可能であるが、勿論、高周波マグネトロンスパッタリング装置を用いてもよい。 Since such a sputtering target has a resistance value that can be sputtered by DC magnetron sputtering, it can be sputtered by a relatively inexpensive DC magnetron sputtering. Of course, a high-frequency magnetron sputtering apparatus may be used. .
 このような透明導電膜用スパッタリングターゲットを用いることにより、同一組成の酸化インジウム系透明導電膜が形成できる。このような酸化インジウム系透明導電膜の組成分析は、単膜を全量溶解しICPで分析してもよい。また、膜自体が素子構成をなしている場合などは、必要に応じてFIB等により該当する部分の断面を切り出し、SEMやTEM等に付属している元素分析装置(EDSやWDS、オージェ分析など)を用いても特定することが可能である。 By using such a transparent conductive film sputtering target, an indium oxide-based transparent conductive film having the same composition can be formed. For the composition analysis of such an indium oxide-based transparent conductive film, the entire amount of a single film may be dissolved and analyzed by ICP. In addition, when the film itself has an element configuration, if necessary, a cross section of the corresponding part is cut out by FIB or the like, and an element analyzer (EDS, WDS, Auger analysis, etc.) attached to the SEM, TEM, etc. ) Can also be specified.
 このように形成される酸化インジウム系透明導電膜は、バリウムが所定量含有されているので、バリウムの含有量によっても異なるが、成膜を室温以上で結晶化温度より低い温度条件、例えば、200℃より低い温度条件、好ましくは150℃より低い条件、さらに好ましくは100℃より低い温度条件で行うことにより、アモルファス状の状態で成膜される。また、このようなアモルファスな膜は、弱酸性のエッチャントでのエッチングを行うことができるという利点がある。ここで、本件明細書では、エッチングは、パターニング工程に含まれるもので、所定のパターンを得るためのものである。そして、得られた酸化インジウム系透明導電膜を表層に有する接続端子部は、異方性導電材料を介しての被接続部材との接続が良好であり、十分な接続強度が得られ且つ耐久性に優れたものとなるという利点を有する。 The indium oxide-based transparent conductive film formed in this manner contains a predetermined amount of barium, and thus varies depending on the barium content. The film is formed in an amorphous state by performing under a temperature condition lower than 150 ° C., preferably lower than 150 ° C., and more preferably lower than 100 ° C. Further, such an amorphous film has an advantage that it can be etched with a weakly acidic etchant. Here, in the present specification, the etching is included in the patterning step and is for obtaining a predetermined pattern. And the connection terminal part which has the obtained indium oxide type transparent conductive film in a surface layer has a favorable connection with a to-be-connected member via an anisotropic conductive material, sufficient connection strength is obtained, and durability It has the advantage of being excellent.
 また、得られる透明導電膜の抵抗率はバリウムの含有量によっても異なるが、抵抗率が1.0×10-4~1.0×10-3Ωcmである。 Further, the resistivity of the transparent conductive film obtained varies depending on the barium content, but the resistivity is 1.0 × 10 −4 to 1.0 × 10 −3 Ωcm.
 さらに、成膜した膜の結晶化温度は含有されるバリウムの含有量によって異なり、含有量が上昇するほど上昇するが、100℃~400℃の温度条件でアニールすることにより、結晶化させることができる。このような温度領域は通常の半導体製造プロセスで使用されているので、このようなプロセスの中で結晶化させることもできる。なお、この温度範囲の中で、100℃~300℃で結晶化するものが好ましく、150℃~250℃で結晶化するのがさらに好ましく、200℃~250℃で結晶化するものが最も好ましい。 Furthermore, the crystallization temperature of the deposited film varies depending on the content of barium contained, and increases as the content increases, but it can be crystallized by annealing at a temperature of 100 ° C. to 400 ° C. it can. Since such a temperature region is used in a normal semiconductor manufacturing process, it can be crystallized in such a process. In this temperature range, those that crystallize at 100 ° C. to 300 ° C. are preferred, crystals that crystallize at 150 ° C. to 250 ° C. are more preferred, and those that crystallize at 200 ° C. to 250 ° C. are most preferred.
 ここで、アニールとは、大気中、雰囲気中、真空中などにおいて、所望の温度にて一定時間加熱することをさす。その一定時間とは、一般に数分から数時間程度であるが、工業的には効果が同じであれば短い時間が好まれる。 Here, annealing refers to heating at a desired temperature for a certain period of time in air, atmosphere, or vacuum. The fixed time is generally several minutes to several hours, but a short time is preferred industrially if the effect is the same.
 このようにアニールによる結晶化された後の透明導電膜は、短波長側の透過率が向上し、例えば、波長400~500nmの平均透過率が85%以上となる。また、これによって、IZOで問題となっているような黄色みがかる膜となるという問題もない。なお、一般に短波長側の透過率は、高ければ高い方が好まれる。 Thus, the transparent conductive film after crystallization by annealing has improved transmittance on the short wavelength side, for example, the average transmittance at a wavelength of 400 to 500 nm is 85% or more. This also eliminates the problem of a yellowish film that is a problem with IZO. In general, a higher transmittance on the short wavelength side is preferred.
 一方、結晶化された透明導電膜は、エッチング耐性が向上し、アモルファスな膜ではエッチングが可能な弱酸性のエッチャントではエッチングできなくなる。これによって後工程での耐腐食性や、デバイス自体の耐環境性が向上する。 On the other hand, the crystallized transparent conductive film has improved etching resistance and cannot be etched with a weakly acidic etchant that can be etched with an amorphous film. This improves the corrosion resistance in the subsequent process and the environmental resistance of the device itself.
 そして、本発明では、接続端子部の表層を構成する透明導電膜は、異方性導電材料を介し接続される前にアニールされているのが好ましく、このように結晶化された透明導電膜に異方性導電材料を介して被接続部材と接続することによって、接続強度が十分に高く耐久性の優れたものとなる。 And in this invention, it is preferable that the transparent conductive film which comprises the surface layer of a connection terminal part is annealed before connecting through an anisotropic conductive material, and it is in this transparent crystallized conductive film By connecting to the member to be connected through the anisotropic conductive material, the connection strength is sufficiently high and the durability is excellent.
 このように本発明で用いる所定組成の酸化インジウム系透明導電膜では、バリウムの含有量を変化させることにより、成膜後の結晶化温度を所望の温度に設定できるので、成膜後、結晶化温度以上の温度の熱処理を受けないようにして、アモルファス状態を維持するようにしてもよいし、成膜後パターニングした後、結晶化する温度以上の温度で熱処理して結晶化し、耐エッチング特性を変化させるようにしてもよい。 Thus, in the indium oxide transparent conductive film having a predetermined composition used in the present invention, the crystallization temperature after film formation can be set to a desired temperature by changing the barium content. The amorphous state may be maintained without being subjected to heat treatment at a temperature higher than the temperature, or after patterning after film formation, heat treatment is performed at a temperature equal to or higher than the temperature for crystallization, and crystallization is achieved. It may be changed.
 さらに、バリウムを含有した酸化インジウム系透明導電膜を成膜するに際し、スパッタリングターゲットの組成範囲によって、温度によって最適酸素分圧が変化し、アニール後に低抵抗となる温度酸素分圧でアモルファスな膜を成膜し、その後、アニールして結晶化することにより、低抵抗の透明導電膜となる。 Furthermore, when forming an indium oxide-based transparent conductive film containing barium, the optimum oxygen partial pressure changes depending on the temperature depending on the composition range of the sputtering target, and an amorphous film is formed at a temperature oxygen partial pressure that becomes low resistance after annealing. A low resistance transparent conductive film is formed by forming a film and then annealing and crystallizing the film.
 すなわち、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するバリウムのモル比xで表される(-2.9×10-2Ln(x)-6.7×10-2)の値以上であり、(-2.0×10-1Ln(x)-4.6×10-1)の値以下でy=0を除く範囲にあると、成膜したアモルファス膜の抵抗率が最も低くなる酸素分圧である最適酸素分圧と、アニール後の結晶化膜の抵抗率が最も低抵抗となる酸素分圧(又はアニール温度で成膜した際の最適酸素分圧)とが異なる。したがって、この範囲では、アニール後に低抵抗となる酸素分圧で成膜した方が、低抵抗の透明導電膜が得られるか、又は抵抗は同じであっても低酸素濃度での成膜が可能となるかの利益を得ることができる。 That is, the molar ratio y of tin to 1 mol of indium is represented by the molar ratio x of barium to 1 mol of indium (−2.9 × 10 −2 Ln (x) −6.7 × 10 −2 ) Or more and less than (−2.0 × 10 −1 Ln (x) −4.6 × 10 −1 ) and in a range excluding y = 0, the resistance of the deposited amorphous film The optimal oxygen partial pressure that is the lowest oxygen partial pressure, and the oxygen partial pressure that provides the lowest resistance of the crystallized film after annealing (or the optimal oxygen partial pressure when deposited at the annealing temperature) Is different. Therefore, in this range, it is possible to obtain a transparent conductive film having a low resistance if the film is formed at an oxygen partial pressure that has a low resistance after annealing, or a film can be formed at a low oxygen concentration even if the resistance is the same. You can get a profit.
 また、組成によって、エッチングレートが異なり、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するバリウムのモル比xで表される(-2.9×10-2Ln(x)-6.7×10-2)の値以上であり、(-2.0×10-1Ln(x)-4.6×10-1)の値以下でy=0を除く範囲であり、且つ0.22以下の範囲にある場合には、エッチングレートが特に高く、例えば、詳細は後述するが、シュウ酸濃度が50g/Lの溶液を30℃に加温したエッチャントを用いた場合のエッチングレートが3Å/sec以上となる。さらに、この中でも、錫のモル比yが、インジウム1モルに対するバリウムのモル比xで表される(5.9×10-2Ln(x)+4.9×10-1)の値以下の範囲がさらにエッチングレートが高くなり、シュウ酸濃度が50g/Lの溶液を30℃に加温したエッチャントを用いた場合のエッチングレートが4Å/sec以上となる。このようなエッチングレートの領域では、パターニングの際に良好なパターンが得られる。なお、エッチングレートの上限値は一般的には30Å/sec程度といわれている。 Further, the etching rate varies depending on the composition, and the molar ratio y of tin to 1 mol of indium is represented by the molar ratio x of barium to 1 mol of indium (−2.9 × 10 −2 Ln (x) −6.7 × 10 −2 ) or more, (−2.0 × 10 −1 Ln (x) −4.6 × 10 −1 ) or less and excluding y = 0, When the etching rate is in the range of 0.22 or less, the etching rate is particularly high. For example, as will be described in detail later, etching using an etchant in which a solution having an oxalic acid concentration of 50 g / L is heated to 30 ° C. is used. The rate is 3 kg / sec or more. Further, among these, the range in which the molar ratio y of tin is not more than the value of (5.9 × 10 −2 Ln (x) + 4.9 × 10 −1 ) represented by the molar ratio x of barium to 1 mol of indium. However, the etching rate is further increased, and the etching rate when an etchant obtained by heating a solution having an oxalic acid concentration of 50 g / L to 30 ° C. is 4 Å / sec or more. In such an etching rate region, a good pattern can be obtained during patterning. The upper limit of the etching rate is generally said to be about 30 liters / sec.
 また、このようなエッチングレートが高い組成範囲において、特に低抵抗となる範囲がある。すなわち、エッチングレートが高い範囲において、インジウム1モルに対しての錫のモル比yが0.08以上であり、インジウム1モルに対するバリウムのモル比xが0.025以下の範囲では、抵抗率が3.0×10-4Ωcm以下の透明導電膜となり、好ましい。 Further, in such a composition range where the etching rate is high, there is a range where the resistance is particularly low. That is, in the range where the etching rate is high, the molar ratio y of tin to 1 mol of indium is 0.08 or more, and in the range where the molar ratio x of barium to 1 mol of indium is 0.025 or less, the resistivity is A transparent conductive film of 3.0 × 10 −4 Ωcm or less is preferable.
 よって、このような組成範囲のスパッタリングターゲットを用い、また、このような組成範囲の透明導電膜を成膜することにより、成膜時はアモルファス状態でエッチングレートが高く、成膜後は結晶化して耐エッチング性に優れ且つ低抵抗である透明導電膜となる。 Therefore, by using a sputtering target having such a composition range and forming a transparent conductive film having such a composition range, the film is crystallized after the film formation. A transparent conductive film having excellent etching resistance and low resistance is obtained.
 次に、本発明で用いるスパッタリングターゲットの製造方法について説明するが、これは単に例示したものであり、製造方法は特に限定されるものではない。 Next, the manufacturing method of the sputtering target used in the present invention will be described. However, this is merely an example, and the manufacturing method is not particularly limited.
 まず、本発明のスパッタリングターゲットを構成する出発原料としては、一般的にIn23、SnO2、BaCO3の粉末であるが、In23とBaCO3とを予め仮焼してBaIn24とし、これにIn23およびSnO2を混合して用いるのが好ましい。BaCO3の分解によるガス発生に起因した気孔の発生を防止するためである。なお、これらの単体、化合物、複合酸化物等を原料としてもよい。単体、化合物を使う場合はあらかじめ酸化物にするようなプロセスを通すようにする。 First, the starting material constituting the sputtering target of the present invention is generally a powder of In 2 O 3 , SnO 2 , or BaCO 3 , but In 2 O 3 and BaCO 3 are pre-calcined to BaIn 2. It is preferable to use O 4 in a mixture of In 2 O 3 and SnO 2 . This is to prevent generation of pores due to gas generation due to decomposition of BaCO 3 . These simple substances, compounds, composite oxides, and the like may be used as raw materials. When using a simple substance or a compound, it is made to go through a process of making it oxide in advance.
 これらの原料粉を、所望の配合率で混合し、成形する方法は特に限定されず、従来から公知の各種湿式法又は乾式法を用いることができる。 The method of mixing and molding these raw material powders at a desired blending ratio is not particularly limited, and various conventionally known wet methods or dry methods can be used.
 乾式法としては、コールドプレス(Cold Press)法やホットプレス(Hot Press)法等を挙げることができる。コールドプレス法では、混合粉を成形型に充填して成形体を作製し、焼成させる。ホットプレス法では、混合粉を成形型内で焼成、焼結させる。 Examples of the dry method include a cold press method and a hot press method. In the cold press method, the mixed powder is filled in a mold to produce a molded body and fired. In the hot press method, the mixed powder is fired and sintered in a mold.
 湿式法としては、例えば、濾過式成形法(特開平11-286002号公報参照)を用いるのが好ましい。この濾過式成形法は、セラミックス原料スラリーから水分を減圧排水して成形体を得るための非水溶性材料からなる濾過式成形型であって、1個以上の水抜き孔を有する成形用下型と、この成形用下型の上に載置した通水性を有するフィルターと、このフィルターをシールするためのシール材を介して上面側から挟持する成形用型枠からなり、前記成形用下型、成形用型枠、シール材、およびフィルターが各々分解できるように組立てられており、該フィルター面側からのみスラリー中の水分を減圧排水する濾過式成形型を用い、混合粉、イオン交換水と有機添加剤からなるスラリーを調製し、このスラリーを濾過式成形型に注入し、該フィルター面側からのみスラリー中の水分を減圧排水して成形体を製作し、得られたセラミックス成形体を乾燥脱脂後、焼成する。 As the wet method, for example, a filtration molding method (see JP-A-11-286002) is preferably used. This filtration molding method is a filtration molding die made of a water-insoluble material for obtaining a molded body by draining water from a ceramic raw material slurry under reduced pressure, and a lower molding die having one or more drain holes And a water-permeable filter placed on the molding lower mold, and a molding mold clamped from the upper surface side through a sealing material for sealing the filter, the molding lower mold, Forming mold, sealing material, and filter are assembled so that they can be disassembled respectively. Using a filtration mold that drains water in the slurry under reduced pressure only from the filter surface side, mixed powder, ion-exchanged water and organic Prepare a slurry consisting of additives, inject the slurry into a filtration mold, drain the water in the slurry only from the filter surface side, and produce a molded body. After drying degreasing, and firing.
 コールドプレス法や湿式法で成形したものの焼成温度は、1300~1650℃が好ましく、さらに好ましくは、1500~1650℃であり、その雰囲気は大気雰囲気、酸素雰囲気、非酸化性雰囲気、または真空雰囲気などである。一方、ホットプレス法の場合は、1200℃付近で焼結させることが好ましく、その雰囲気は、非酸化性雰囲気や真空雰囲気などである。なお、各方法において焼成した後には、所定寸法に成形・加工のための機械加工を施しターゲットとする。 The firing temperature of the one formed by the cold press method or the wet method is preferably 1300 to 1650 ° C., more preferably 1500 to 1650 ° C., and the atmosphere is an air atmosphere, an oxygen atmosphere, a non-oxidizing atmosphere, a vacuum atmosphere, or the like. It is. On the other hand, in the case of the hot press method, sintering is preferably performed at around 1200 ° C., and the atmosphere is a non-oxidizing atmosphere, a vacuum atmosphere, or the like. In addition, after baking in each method, the machining for shaping | molding and a process is given to a predetermined dimension, and it is set as a target.
 (実施例1)
 4インチのDCマグネトロンスパッタ装置にBa添加ITO(In:Sn:Ba=86.2at%:12.9at%:0.86at%)のスパッタリングターゲットを装着し、以下に示す条件で、厚さ6000Åの膜を得た。
Example 1
A sputtering target of Ba-added ITO (In: Sn: Ba = 86.2 at%: 12.9 at%: 0.86 at%) was mounted on a 4-inch DC magnetron sputtering apparatus, and the thickness was 6000 mm under the following conditions. A membrane was obtained.
 ターゲット寸法 :φ=4in. t=6mm
 スパッタ方式  :DCマグネトロンスパッタ
 排気装置    :ロータリーポンプ+クライオポンプ
 到達真空度   :5.0×10-5[Pa]
 Ar圧力    :4.0×10-1[Pa]
 酸素圧力    :2.1×10-3[Pa]
 水圧力     :5.0×10-5[Pa]
 基板温度    :室温
 スパッタ電力  :130W (電力密度1.6W / cm
 使用基板    :コーニング♯1737(液晶ディスプレイ用ガラス)
          t=0.8mm
Target dimension: φ = 4 in. t = 6mm
Sputtering method: DC magnetron sputtering Exhaust device: Rotary pump + cryopump Ultimate vacuum: 5.0 × 10 −5 [Pa]
Ar pressure: 4.0 × 10 −1 [Pa]
Oxygen pressure: 2.1 × 10 −3 [Pa]
Water pressure: 5.0 × 10 −5 [Pa]
Substrate temperature: Room temperature Sputtering power: 130 W (Power density 1.6 W / cm 2 )
Substrate used: Corning # 1737 (glass for liquid crystal display)
t = 0.8mm
 (比較例1)
 4インチのDCマグネトロンスパッタ装置にIZO(In:Zn:Sn=83.1at%:16.9at%:0.86at%)のスパッタリングターゲットをそれぞれ装着し、酸素圧力5.2×10-3[Pa]とした以外は実施例1と同じ条件で、厚さ6000Åの膜を得た。
(Comparative Example 1)
Sputtering targets of IZO (In: Zn: Sn = 83.1 at%: 16.9 at%: 0.86 at%) were respectively mounted on a 4-inch DC magnetron sputtering apparatus, and an oxygen pressure of 5.2 × 10 −3 [Pa ] A film having a thickness of 6000 mm was obtained under the same conditions as in Example 1 except that.
 (比較例2)
 4インチのDCマグネトロンスパッタ装置にITO(In:Sn=90.8at%:9.2at%)のスパッタリングターゲットをそれぞれ装着し、酸素圧力0(ITO)[Pa]とし、弱酸エッチングが可能なアモルファス膜を得るために水蒸気ガスを成膜時に添加した(水分圧1.0×10-2[Pa])以外は、実施例1と同じ条件で、厚さ6000Åの膜を得た。
(Comparative Example 2)
A 4 inch DC magnetron sputtering system with an ITO (In: Sn = 90.8 at%: 9.2 at%) sputtering target, an oxygen pressure of 0 (ITO) [Pa], and an amorphous film capable of weak acid etching Thus, a film having a thickness of 6000 mm was obtained under the same conditions as in Example 1 except that water vapor gas was added during film formation (moisture pressure 1.0 × 10 −2 [Pa]).
 (試験例)
 図2には、ACF接続の接続試験を行うための試験パターンの平面図及び側面図を示す。図2に示すように、ガラス基板101上に、20mm×3mmの寸法、5mm間隔で3本形成された帯状パターン102は、上述した実施例及び比較例で成膜した各膜試料をシュウ酸系のエッチャント(ITO-07N、関東化学製)によりエッチングして形成したものであり、その後Ba添加ITO及びITO膜については大気中250℃で1時間アニール処理を行って膜を結晶化させた。
(Test example)
FIG. 2 shows a plan view and a side view of a test pattern for performing a connection test for ACF connection. As shown in FIG. 2, three strip-shaped patterns 102 formed on a glass substrate 101 with a size of 20 mm × 3 mm at intervals of 5 mm are obtained by applying each film sample formed in the above-described example and comparative example to an oxalic acid type. Etching (ITO-07N, manufactured by Kanto Chemical Co., Inc.) was used, and the Ba-added ITO and ITO films were annealed at 250 ° C. for 1 hour in the atmosphere to crystallize the films.
 次に各膜試料の帯状パターン102と金蒸着した銅箔103(厚み50μm)とを、図2に示すように厚さ1mm×長さ30mmの異方性導電接着剤104(AC-4251FY、日立化成製)を用いて接続した。更に、帯状パターンとACFとの接続面の反対側端部に抵抗測定用端子として、リード線105をハンダ106で接合させて試験試料1(実施例1:Ba添加ITO膜)、試験試料2(比較例1:IZO膜)、及び試験試料3(比較例2:ITO膜)を作製した。 Next, the strip pattern 102 of each film sample and the gold-deposited copper foil 103 (thickness 50 μm) were combined into an anisotropic conductive adhesive 104 (AC-4251FY, Hitachi, 1 mm thick × 30 mm long) as shown in FIG. Using Kasei). Further, a lead wire 105 is bonded to the opposite end of the connection surface between the strip pattern and the ACF as a resistance measurement terminal by solder 106, and test sample 1 (Example 1: Ba-added ITO film) and test sample 2 ( Comparative Example 1: IZO film) and test sample 3 (Comparative Example 2: ITO film) were prepared.
 作製した各試験試料は、温度60℃、湿度90%に設定した恒温恒湿器内で、±5V、60Hzのバイアスを印加した際のACF接続抵抗(3ヶ所)を250時間測定し、抵抗の経時変化を調べた。 Each test sample prepared was measured for 250 hours in the ACF connection resistance (3 locations) when a bias of ± 5 V and 60 Hz was applied in a thermo-hygrostat set at a temperature of 60 ° C. and a humidity of 90%. The change with time was examined.
 図3~図5には各試験試料のACF接続抵抗の経時変化を示す。実施例1のBa添加ITO膜及び比較例2のITO膜では、3ヶ所全てにおいて初期抵抗と250時間後の抵抗はほとんど変化せず、経時変化は認められなかった。一方、比較例2のIZO膜では、試験開始後20~30時間で抵抗が増大した。特にNo.2では、約70時間後以降、接合部の剥離に起因すると考えられる大きな抵抗変動が確認された。この原因としては、Ba添加ITO膜やITO膜ではアニール処理によって結晶化状態となるが、IZO膜ではアモルファス状態が保たれている。一般的にアモルファス状態は結晶化状態と比較すると、格子欠陥が多く、構造的に疎であり、緻密性が低いことが知られている。そのため、アモルファス状態であるIZO膜では、試験時に雰囲気内の水分を吸着しながら膜内に取り込まれ、接合界面にも水分が侵入してしまうことにより、接合部の密着性低下及び剥離を引き起こすのではないかと考えられる。なお本試験で用いたIZO膜は、室温近傍で成膜し、アモルファス状態のままで使用するのが一般的である。またIZO膜の結晶化温度は500℃以上であることから、液晶パネル作製工程のプロセスおいて、アニール処理(200~250℃程度)されることでは結晶化することはない。 Figures 3 to 5 show the changes over time in the ACF connection resistance of each test sample. In the Ba-added ITO film of Example 1 and the ITO film of Comparative Example 2, the initial resistance and the resistance after 250 hours hardly changed at all three locations, and no change with time was observed. On the other hand, in the IZO film of Comparative Example 2, the resistance increased 20 to 30 hours after the start of the test. In particular, no. In No. 2, after about 70 hours, a large resistance fluctuation considered to be caused by peeling of the joint was confirmed. This is because the Ba-added ITO film or ITO film is crystallized by annealing, but the IZO film is kept in an amorphous state. In general, it is known that the amorphous state has more lattice defects, is structurally sparse, and has a lower density than the crystallized state. For this reason, in an IZO film that is in an amorphous state, moisture in the atmosphere is adsorbed during the test, and the moisture also enters the bonding interface, thereby causing a decrease in adhesion at the joint and peeling. It is thought that. The IZO film used in this test is generally formed near room temperature and used in an amorphous state. In addition, since the crystallization temperature of the IZO film is 500 ° C. or higher, it is not crystallized by annealing (about 200 to 250 ° C.) in the liquid crystal panel manufacturing process.
 また、図6~図8にはACF接続抵抗測定250時間後のACF接続部の概観を示す。実施例1のBa添加ITO及び比較例2のITOでは、ACFと透明導電膜がしっかりと接続されており、概観上は試験前と比較して変化が見られなかった。一方、比較例1のIZOでは、丸で囲んで示した部分において、ACFと透明導電膜との接合部において剥がれが確認された。更にACFは、変質して溶解しているのも確認できた。これは上述したように、試験時に膜が雰囲気内の水分を吸着しながら膜内に取り込まれ、膜とACFとの接合部に水分が侵入、更に水分がACFにも浸漬してACFが変質して溶解し、ACFと透明導電膜との接合部の密着性低下を引き起こしたのではないかと考えられる。 6 to 8 show an overview of the ACF connection part after 250 hours of ACF connection resistance measurement. In the Ba-added ITO of Example 1 and the ITO of Comparative Example 2, the ACF and the transparent conductive film were firmly connected, and no change was observed on the overview compared to before the test. On the other hand, in the IZO of Comparative Example 1, peeling was confirmed at the joint between the ACF and the transparent conductive film in the portion surrounded by a circle. Furthermore, it was confirmed that ACF was altered and dissolved. As described above, the film is taken into the film while adsorbing moisture in the atmosphere at the time of the test, moisture enters the junction between the film and the ACF, and further, the water is immersed in the ACF, so that the ACF is altered. It is thought that it melted and caused a decrease in adhesion at the joint between the ACF and the transparent conductive film.
 (その他の実施例)
 (In:Sn:Ba=89.3at%:8.9at%:1.78at%)、(In:Sn:Ba=86.6at%:13.0at%:0.43at%)の組成の透明導電膜を用いて実施例1と同様にACF接続試験を実施したところ、実施例1と同様にACF接続抵抗に経時変化がなく、接続状態が維持されて密着性低下がなかったことが確認された。
(Other examples)
Transparent conductivity having a composition of (In: Sn: Ba = 89.3 at%: 8.9 at%: 1.78 at%), (In: Sn: Ba = 86.6 at%: 13.0 at%: 0.43 at%) When the ACF connection test was conducted using the film in the same manner as in Example 1, it was confirmed that there was no change with time in the ACF connection resistance as in Example 1, the connection state was maintained and there was no decrease in adhesion. .
 10 表示ディスプレイ用配線基板
 11 透明基板
 12 画素群
 13 配線群
 14 接続端子部
 20 異方性導電材料
 30 キャリアテープ(被接続部材)
 101 ガラス基板
 102 帯状パターン(透明導電膜)
 103 金蒸着銅箔
 104 異方性導電接着剤
 105 リード線
 106 ハンダ
DESCRIPTION OF SYMBOLS 10 Display display wiring board 11 Transparent substrate 12 Pixel group 13 Wiring group 14 Connection terminal part 20 Anisotropic conductive material 30 Carrier tape (member to be connected)
101 Glass substrate 102 Strip pattern (transparent conductive film)
103 Gold-deposited copper foil 104 Anisotropic conductive adhesive 105 Lead wire 106 Solder

Claims (9)

  1. 透明基板上に形成された配線パターンを有する配線基板において、前記配線パターンは、異方性導電材料を介して被接続部材と接続される接続端子部を具備し、この接続端子部の少なくとも表層が酸化インジウムと必要に応じて錫を含有すると共にバリウムをインジウム1モルに対して0.00001モル以上0.10モル未満含有する透明導電膜からなることを特徴とする配線基板。 In a wiring board having a wiring pattern formed on a transparent substrate, the wiring pattern includes a connection terminal part connected to a connected member via an anisotropic conductive material, and at least a surface layer of the connection terminal part is A wiring substrate comprising a transparent conductive film containing indium oxide and tin as required and containing barium in an amount of 0.00001 mol or more and less than 0.10 mol with respect to 1 mol of indium.
  2. 請求項1に記載の配線基板において、前記透明導電膜が、アモルファスな膜として成膜された後、アニールによる結晶化されたものであることを特徴とする配線基板。 2. The wiring board according to claim 1, wherein the transparent conductive film is formed as an amorphous film and then crystallized by annealing.
  3. 請求項1又は2に記載の配線基板において、前記透明導電膜が水の分圧が1.0×10-4Pa未満の条件下で成膜されたものであることを特徴とする配線基板。 3. The wiring board according to claim 1, wherein the transparent conductive film is formed under a condition that a partial pressure of water is less than 1.0 × 10 −4 Pa. 4 .
  4. 請求項1~3の何れか1項に記載の配線基板において、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するバリウムのモル比xで表される(-2.9×10-2Ln(x)-6.7×10-2)の値以上であり、(-2.0×10-1Ln(x)-4.6×10-1)の値以下でy=0を除く範囲にあることを特徴とする配線基板。 4. The wiring board according to claim 1, wherein a molar ratio y of tin to 1 mol of indium is represented by a molar ratio x of barium to 1 mol of indium (−2.9 × 10 −2 Ln (x) −6.7 × 10 −2 ) or more, and (−2.0 × 10 −1 Ln (x) −4.6 × 10 −1 ) or less and y = A wiring board having a range excluding 0.
  5. 請求項1~3の何れか1項に記載の配線基板において、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するバリウムのモル比xで表される(-2.9×10-2Ln(x)-6.7×10-2)の値以上であり、(-2.0×10-1Ln(x)-4.6×10-1)の値以下でy=0を除く範囲であり、且つ0.22以下の範囲にあることを特徴とする配線基板。 4. The wiring board according to claim 1, wherein a molar ratio y of tin to 1 mol of indium is represented by a molar ratio x of barium to 1 mol of indium (−2.9 × 10 −2 Ln (x) −6.7 × 10 −2 ) or more, and (−2.0 × 10 −1 Ln (x) −4.6 × 10 −1 ) or less and y = A wiring board having a range excluding 0 and a range of 0.22 or less.
  6. 請求項5に記載の配線基板において、インジウム1モルに対しての錫のモル比yが、インジウム1モルに対するバリウムのモル比xで表される(5.9×10-2Ln(x)+4.9×10-1)の値以下の範囲にあることを特徴とする配線基板。 6. The wiring board according to claim 5, wherein a molar ratio y of tin to 1 mol of indium is represented by a molar ratio x of barium to 1 mol of indium (5.9 × 10 −2 Ln (x) +4). .. A wiring board having a value of 9 × 10 −1 ) or less.
  7. 請求項6に記載の配線基板において、インジウム1モルに対しての錫のモル比yが0.08以上であり、インジウム1モルに対するバリウムのモル比xが0.025以下の範囲にあることを特徴とする配線基板。 The wiring board according to claim 6, wherein the molar ratio y of tin to 1 mol of indium is 0.08 or more, and the molar ratio x of barium to 1 mol of indium is in the range of 0.025 or less. A characteristic wiring board.
  8. 請求項1~7の何れか1項に記載の配線基板と、この配線基板の接続端子部に異方性導電材料を介して熱圧着された被接続部材とを具備することを特徴とする接続構造。 8. A connection comprising: the wiring board according to claim 1; and a connected member thermocompression bonded to the connection terminal portion of the wiring board via an anisotropic conductive material. Construction.
  9. 請求項8に記載の接続構造において、前記配線基板は、表示ディスプレイ用の基板であり、透明基板に設けられた画素群と、この画素群から引き出された配線群とを具備し、前記接続端子部が前記配線群に接続されていることを特徴とする接続構造。 9. The connection structure according to claim 8, wherein the wiring board is a display display substrate, and includes a pixel group provided on a transparent substrate and a wiring group drawn from the pixel group, and the connection terminal. A connection structure characterized in that a portion is connected to the wiring group.
PCT/JP2010/056194 2009-04-08 2010-04-06 Wiring board and connection structure WO2010116980A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-094443 2009-04-08
JP2009094443 2009-04-08

Publications (1)

Publication Number Publication Date
WO2010116980A1 true WO2010116980A1 (en) 2010-10-14

Family

ID=42936263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056194 WO2010116980A1 (en) 2009-04-08 2010-04-06 Wiring board and connection structure

Country Status (1)

Country Link
WO (1) WO2010116980A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05191008A (en) * 1992-01-13 1993-07-30 Sharp Corp Anisotropic conductor film connection terminals
JPH086059A (en) * 1994-06-23 1996-01-12 Nec Corp Active matrix substrate
JPH08188465A (en) * 1995-01-10 1996-07-23 Tosoh Corp Electroconductive ceramic and its production
JPH1034795A (en) * 1996-07-19 1998-02-10 Teijin Ltd Thermocompression bonding method of transparent conductive film
JP2004149883A (en) * 2002-10-31 2004-05-27 Mitsui Mining & Smelting Co Ltd Sputtering target for high resistance transparent conductive film, and manufacturing method of high resistance transparent conductive film
JP2007294447A (en) * 2006-03-31 2007-11-08 Mitsui Mining & Smelting Co Ltd Indium oxide based transparent conductive membrane and its manufacturing method
JP2007291521A (en) * 2006-03-31 2007-11-08 Mitsui Mining & Smelting Co Ltd Sputtering target and method for manufacturing oxide sintered body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05191008A (en) * 1992-01-13 1993-07-30 Sharp Corp Anisotropic conductor film connection terminals
JPH086059A (en) * 1994-06-23 1996-01-12 Nec Corp Active matrix substrate
JPH08188465A (en) * 1995-01-10 1996-07-23 Tosoh Corp Electroconductive ceramic and its production
JPH1034795A (en) * 1996-07-19 1998-02-10 Teijin Ltd Thermocompression bonding method of transparent conductive film
JP2004149883A (en) * 2002-10-31 2004-05-27 Mitsui Mining & Smelting Co Ltd Sputtering target for high resistance transparent conductive film, and manufacturing method of high resistance transparent conductive film
JP2007294447A (en) * 2006-03-31 2007-11-08 Mitsui Mining & Smelting Co Ltd Indium oxide based transparent conductive membrane and its manufacturing method
JP2007291521A (en) * 2006-03-31 2007-11-08 Mitsui Mining & Smelting Co Ltd Sputtering target and method for manufacturing oxide sintered body

Similar Documents

Publication Publication Date Title
JP3961172B2 (en) Oxide transparent conductive film, oxide transparent conductive film forming target, substrate manufacturing method, electronic apparatus, and liquid crystal display device provided with previous oxide transparent conductive film
US9959975B2 (en) Ceramic electronic component
JP5464319B2 (en) Indium oxide target
KR100961418B1 (en) Multilayer body, base with wiring, organic el display device, connection terminal of organic el display device, and methods for manufacturing these
KR101276966B1 (en) Transparent conductive film, and substrate, electronic device and liquid crystal display using same
JP2010157497A (en) Substrate with transparent conductive film and method of manufacturing the same
JP4043044B2 (en) Indium oxide-based transparent conductive film and method for producing the same
TW200811891A (en) Thin film dielectrics with co-fired electrodes for capacitors and methods of making thereof
US20110011731A1 (en) Process for producing indium oxide-type transparent electroconductive film
JP4024290B2 (en) Sputtering target and method for producing oxide sintered body
WO2010116980A1 (en) Wiring board and connection structure
JPWO2009044898A1 (en) Indium oxide-based transparent conductive film and method for producing the same
JPWO2009044896A1 (en) Method for producing indium oxide-based transparent conductive film
JP2008218592A (en) Thin-film varistor and its manufacturing method
JPWO2009044897A1 (en) Indium oxide-based transparent conductive film and method for producing the same
JP3857219B2 (en) Wiring board and manufacturing method thereof
JP2003347158A (en) Thin film capacitor and its manufacturing method
WO2010116981A1 (en) Indium oxide-based electrically conductive transparent film, and process for production thereof
JP2012216699A (en) Chip ptc thermistor
JP2007189164A (en) Stacked piezoelectric element, process for fabrication thereof, and conductor paste
JP2003045743A (en) Thin film capacitor
JP2002204051A (en) Method for manufacturing circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP