JPH08188411A - Synthetic quartz powder and glass molding - Google Patents

Synthetic quartz powder and glass molding

Info

Publication number
JPH08188411A
JPH08188411A JP340495A JP340495A JPH08188411A JP H08188411 A JPH08188411 A JP H08188411A JP 340495 A JP340495 A JP 340495A JP 340495 A JP340495 A JP 340495A JP H08188411 A JPH08188411 A JP H08188411A
Authority
JP
Japan
Prior art keywords
synthetic quartz
quartz powder
particles
powder
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP340495A
Other languages
Japanese (ja)
Inventor
Hozumi Endo
穂積 遠藤
Yoshio Suguro
芳雄 勝呂
Akira Utsunomiya
明 宇都宮
Masaru Shimoyama
勝 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP340495A priority Critical patent/JPH08188411A/en
Priority to PCT/JP1996/000043 priority patent/WO1996021617A1/en
Priority to DE69634895T priority patent/DE69634895T2/en
Priority to EP96900441A priority patent/EP0803469B1/en
Priority to US08/860,716 priority patent/US6071838A/en
Priority to KR1019970704764A priority patent/KR19980701375A/en
Publication of JPH08188411A publication Critical patent/JPH08188411A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE: To obtain a synthetic quartz powder of high quality with bubble formation reduced on fusing and glass formed products therefrom by reducing the number of the particles including black points in the powdery bodies lower than a specific level in the production of synthetic quartz by the sol-gel process. CONSTITUTION: This synthetic quartz powder is produced by the sol-gel process and includes five particles having black points/50 grams among the powder particles. When this synthetic quartz powder is melt-formed, a glass formed product including extremely reduced bubbles is given. In order to produce such synthetic quartz powder, the thickness of scales stuck on the inner walls of the producer composed of silica precursor is controlled within a limited value and the concentration of the oxygen gas is controlled so that the scales may be sufficiently fired on the firing process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高純度且つ高品質合成石
英の粉体及び本粉体を溶融してなる泡が極めて少ないガ
ラス成形体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-purity and high-quality synthetic quartz powder, and a glass molded body formed by melting the powder having extremely few bubbles.

【0002】[0002]

【従来の技術】近年、光通信分野、半導体産業等に使用
されるガラス製品についてはその純度に関し非常に厳し
い管理が行われている。このような高純度のガラスは主
に、天然石英を粉砕して得た砂状の天然石英粉(いわ
ゆるsandと称される)を原料とする方法、また更
に高純度とする場合は四塩化硅素の酸水素炎中での分解
で発生したヒュームを基体に付着・成長させて得られた
ヒュームの固まりを用いる酸水素炎法、金属アルコキ
シド等の有機金属化合物を原料として得られたゲルを用
いる、いわゆるゾルゲル法等によって製造される。しか
しながら、これら何らの製造法もそれぞれ一長一短があ
った。
2. Description of the Related Art In recent years, glass products used in the optical communication field, semiconductor industry, etc. have been subjected to extremely strict control regarding the purity thereof. Such high-purity glass is mainly produced by using sand-like natural quartz powder (so-called so-called sand) obtained by crushing natural quartz as a raw material, and in the case of higher purity, silicon tetrachloride. The oxyhydrogen flame method using a mass of fumes obtained by adhering and growing fumes generated by decomposition in oxyhydrogen flame on a substrate, using a gel obtained from an organometallic compound such as a metal alkoxide as a raw material, It is manufactured by the so-called sol-gel method or the like. However, each of these manufacturing methods has advantages and disadvantages.

【0003】天然石英を原料とする場合は本質的には
アルミ、鉄等の金属元素は石英粒子内部に含有されてお
り、酸洗浄等精製を繰り返しても10ppb以下に高純
度化することは困難である。又、四塩化硅素の酸水素
炎法では高純度化は計れるものの、工業的に見合うコス
トに難があり、量産化に至っていない。一方ゾルゲル
法は量産化が計れるものの、原料、中間体、製品は製造
装置に接触するという宿命があり、装置接触による不純
物の混入という不具合があった。特に、原料である有機
金属化合物、アルコキシドと水の反応による生成粒子
(ゾル、ゲル)やウエットゲルは装置内壁に接触し付
着、剥離、脱落を繰り返し、製品中に混入するという不
具合があり、製品から分離、除去することが極めて困難
であった。このようなスケーリング物は、焼成後カーボ
ンが凝集した黒点異物となり、製品の品質を著しく悪化
させる。
When natural quartz is used as a raw material, metallic elements such as aluminum and iron are essentially contained inside the quartz particles, and it is difficult to highly purify it to 10 ppb or less even if purification such as acid washing is repeated. Is. Further, although high purity can be achieved by the oxyhydrogen flame method of silicon tetrachloride, it is not mass-produced because it is difficult to cost industrially. On the other hand, although the sol-gel method can be mass-produced, there is a fate that raw materials, intermediates, and products come into contact with the manufacturing apparatus, and there is a problem that impurities are mixed due to contact with the apparatus. In particular, organometallic compounds, which are raw materials, and particles (sols, gels) and wet gels produced by the reaction of alkoxide and water come into contact with the inner wall of the device and repeatedly adhere, peel, and fall off, and are mixed in the product. It was extremely difficult to separate and remove it. Such a scaled product becomes a black spot foreign substance in which carbon aggregates after firing, which significantly deteriorates the quality of the product.

【0004】[0004]

【発明が解決しようとする課題】装置内壁に付着したス
ケーリング物は硬い、緻密なシリカ前駆体であり、正常
な反応生成ゲルと異なり、乾燥、焼成においても、容易
に脱カーボンが起こらず黒点として製品中に残る。これ
らの黒点粒子は、合成石英粉を溶融加工する際、黒点カ
ーボンが燃焼しガスを発生させる為、ガラス成形体は泡
を含有することになる。
The scaling material adhered to the inner wall of the apparatus is a hard and dense silica precursor, and unlike normal reaction product gel, decarbonization does not occur easily even during drying and firing, and it appears as a black dot. It remains in the product. These black-spotted particles contain bubbles because the black-spotted carbon burns to generate gas when the synthetic quartz powder is melt-processed.

【0005】[0005]

【課題を解決するための手段】本発明者等は、上記の課
題に鑑み鋭意検討を重ねた結果、装置付着物の製品への
混入量を低減すること、及び混入した装置付着物は適切
な熱処理を施すことにより、目的とする高品質の合成石
英粉が得られること次いで黒点粒子の含有量が少ない本
発明の合成石英粉を溶融することにより泡が極めて少な
いガラス成形体が得られることを見いだし本発明に到達
した。すなわち本発明の目的は、合成石英の粉粒体の純
度及び品質を極めて高く維持し、泡がほとんど無いガラ
ス成形体を得ることである。しかしてかかる目的は、本
発明の要旨である、ゾルゲル反応により製造される合成
石英粉であり、粉体中の黒点粒子の個数が5個/50g
以下である合成石英粉、及び本石英粉を溶融して得られ
るガラス成形体により達成される。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies in view of the above-mentioned problems, and as a result, reduce the amount of the device deposits mixed in the product and ensure that the mixed device deposits are appropriate. By subjecting it to heat treatment, it is possible to obtain the desired high-quality synthetic quartz powder, and then by melting the synthetic quartz powder of the present invention having a low content of black spot particles, it is possible to obtain a glass molded body with very few bubbles. The present invention has been found. That is, an object of the present invention is to maintain the purity and quality of the synthetic quartz powder and granules to a very high level, and obtain a glass molded body having almost no bubbles. Therefore, the object is the synthetic quartz powder produced by the sol-gel reaction, which is the gist of the present invention, and the number of black spot particles in the powder is 5/50 g.
This is achieved by the following synthetic quartz powder and a glass molded body obtained by melting the present quartz powder.

【0006】合成石英中の黒点粒子の主要な源はゾルゲ
ル反応で生成するヒドロキシ・アルコキシ・シロキサン
等のシリカ前駆体が装置内壁に付着し、付着したスケー
リング物が製造過程で剥離、脱落し、製品ゲル中に混入
した物である。このような装置としては反応機、粉砕
機、乾燥機、配管部等の少なくとも、液又はウエットゲ
ル、ドライゲルに接触する部分を擁する合成石英製造の
一連の装置又は、これらの個別装置が対象となる。この
スケーリング物(異常粒子)が剥離、脱落した一部が構
成過程で充分燃焼されず、未燃カーボンとして石英粉中
に残留し、黒点粒子となる。本発明は黒点粒子数が5個
/50g以下になるよう、スケーリング限界厚み内に管
理することと、混入したスケーリング物が焼成過程で充
分燃焼するように、酸素ガス濃度を管理すること等の手
段により達成される。
The main source of black spot particles in synthetic quartz is silica precursor such as hydroxyalkoxy siloxane produced by sol-gel reaction, which adheres to the inner wall of the apparatus, and the adhered scaling material peels off and falls off during the manufacturing process. It is a substance mixed in the gel. As such an apparatus, at least a reactor, a crusher, a dryer, a pipe section, and the like, a series of apparatuses for producing synthetic quartz having a portion in contact with a liquid or a wet gel, a dry gel, or these individual apparatuses are targeted. . A part of the scaling substance (abnormal particles) separated and dropped is not sufficiently combusted during the constitution process and remains as unburned carbon in the quartz powder to become black spot particles. The present invention is a means for controlling the number of sunspot particles to be 5/50 g or less within the scaling limit thickness, and controlling the oxygen gas concentration so that the mixed scaling material is sufficiently burned in the firing process. Achieved by

【0007】以下、本発明を詳細に説明する。まず、本
発明の合成石英粉は、いわゆるゾルゲル法で得られるも
のである。例えば、反応機にアルコキシシランと高純水
を当量から10倍当量仕込み、ゾルゲル反応を行なった
後、粉砕、乾燥してシリカ前駆体であるドライゲルを得
ることが出来る。アルコキシシランは一般には、テトラ
メトキシシランやテトラエトキシシランが用いられる
が、加水分解反応がアルコキシシランであれば、この限
りでない。反応を促進する方法としては、酸やアルカリ
触媒を用いても良い。この場合、金属を含まない触媒が
好ましく、一般には有機酸やアンモニア水等が使われ
る。得られるウエットゲルは粉砕により、任意の粒度に
調整される。特に、ここでの粉砕の粒度分布が最終製品
の粒度分布を支配する。目的とする製品の粒度分布を見
込、乾燥、焼成による粒子の収縮分を考慮して、ウエッ
トゲルの最適粒度を決めれば良い。
Hereinafter, the present invention will be described in detail. First, the synthetic quartz powder of the present invention is obtained by a so-called sol-gel method. For example, alkoxysilane and high-purity water are charged into a reactor in an amount of 10 to 10 equivalents, and after performing a sol-gel reaction, the silica gel precursor can be obtained by pulverizing and drying. As the alkoxysilane, tetramethoxysilane or tetraethoxysilane is generally used, but it is not limited to this as long as the hydrolysis reaction is an alkoxysilane. As a method of promoting the reaction, an acid or alkali catalyst may be used. In this case, a metal-free catalyst is preferable, and organic acids, aqueous ammonia, etc. are generally used. The obtained wet gel is adjusted to an arbitrary particle size by pulverization. In particular, the particle size distribution of the milling here governs the particle size distribution of the final product. The optimum particle size of the wet gel may be determined in consideration of the particle size distribution of the target product and the shrinkage of the particles due to drying and firing.

【0008】例えば、ウエットゲルを脱メタノール、・
脱水、乾燥し100ミクロン〜500ミクロンの粒度分
布を持ったドライゲルとした後、焼成し残基のカーボン
及びシラノールを除去する。正常な製品シリカゲルガラ
ス粉は、例えば、75〜400ミクロンの粒度分布を示
し、カーボン5ppm未満、シラノール50ppm以下
となる。しかるに従来技術では、装置内壁に付着したス
ケーリング物は僅かでも製品に混入すると、除去が困難
な為、製品の品質を著しく悪化させる。本発明において
は、ドライゲルの段階で製品ゲルに混入した場合、いち
早く検知し、装置からのこれ以上の混入を防止するか、
あるいは、混入した場合、未燃カーボンが残留しないよ
う焼成過程で空気の供給を充分行ない、製品中の黒点粒
子を5個/50g以下に管理することで目的を達成出来
る。
For example, a wet gel is demethanol,
After dehydration and drying to give a dry gel having a particle size distribution of 100 to 500 microns, it is calcined to remove carbon and silanol as residues. Normal product silica gel glass powder, for example, exhibits a particle size distribution of 75-400 microns with less than 5 ppm carbon and less than 50 ppm silanol. However, in the prior art, even if a small amount of the scaling material adhering to the inner wall of the apparatus is mixed in the product, it is difficult to remove it, so that the quality of the product is significantly deteriorated. In the present invention, when mixed in the product gel at the stage of dry gel, it is quickly detected to prevent further mixing from the device,
Alternatively, when mixed, air can be sufficiently supplied in the firing process so that unburned carbon does not remain, and the object can be achieved by controlling the number of black spot particles in the product to be 5 particles / 50 g or less.

【0009】ドライゲル中の正常でないスケーリング物
(異常粒子)を検出する方法は、例えば、カーボンを異
常に含有している為、低酸素下、高温下、熱処理するこ
とにより、黒点として異常粒子を検出出来る。又、混入
したスケーリング物でも、焼成過程で空気を充分供給す
ることでカーボンを除去出来る。この際、未燃カーボン
として残留する緻密なスケーリング物を低減し、製品中
の黒点粒子の数を5個/50g以下とすることが重要で
ある。尚、黒点粒子は肉眼で容易に確認することができ
るので、製品50gを例えばシャーレ、バット等の容器
に、黒点の個数を確認できる程度に薄く(具体的には数
mm程度、好ましくは1mm程度以下)、一様に敷きつ
めた状態等にすれば、黒点粒子の数を数えるのが容易と
なる。さらに本発明においては、常法により、例えば酸
水素炎による溶融法、いわゆる、ベルヌーイ法により黒
点粒子の含有量が少ない合成石英粉を溶融し、ガラス成
形体が製造されるが、このガラス成形体は溶融時に発泡
が少なく、高品質のものが得られる。
A method for detecting abnormal scaling substances (abnormal particles) in dry gel is, for example, that carbon is abnormally contained, and therefore abnormal particles are detected as black spots by heat treatment under low oxygen and high temperature. I can. Further, even with the mixed scaling material, carbon can be removed by sufficiently supplying air during the firing process. At this time, it is important to reduce the dense scaling material remaining as unburned carbon so that the number of black spot particles in the product is 5 particles / 50 g or less. Since the black spot particles can be easily confirmed with the naked eye, 50 g of the product is thin in a container such as a petri dish and a bat so that the number of black spots can be confirmed (specifically, about several mm, preferably about 1 mm. The following) makes it easy to count the number of sunspot particles if they are uniformly spread. Further, in the present invention, a glass molded body is manufactured by a conventional method, for example, a melting method using an oxyhydrogen flame, that is, a so-called Bernoulli method is used to melt synthetic quartz powder having a small content of black spot particles to produce a glass molded body. Produces a high quality product with less foaming when melted.

【0010】[0010]

【実施例】次に、本発明を実施例により更に詳細に説明
するが、本発明はその要旨を越えない限り、以下の実施
例に限定されるものではない。
EXAMPLES Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples unless it exceeds the gist thereof.

【0011】実施例1 ジャケット加熱型SUS304製反応機にテトラメトキ
シシランと、これに対して5倍当量の水を仕込み、65
℃で30分間反応させ、シリカ前駆体であるウエットゲ
ルを得た。次いでSUS304製コーンミル型粉砕機で
ウエットゲルを粉砕し、得られた粉砕ウエットゲルをS
US304製コニカルドライヤーに仕込み、転動させな
がら、140℃で3時間乾燥した後、引続きコニカルド
ライヤー内でこのゲルを4時間水洗・乾燥した。このド
ライゲルを分級し75〜400ミクロンの粒度分布を得
た。
Example 1 A jacket-heated SUS304 reactor was charged with tetramethoxysilane and water in an amount of 5 times the equivalent amount of the tetramethoxysilane.
The mixture was reacted at 30 ° C. for 30 minutes to obtain a wet gel as a silica precursor. Then, the wet gel was crushed with a SUS304 cone mill type crusher, and the crushed wet gel thus obtained was subjected to S
The gel was placed in a US304 conical dryer and, while rolling, dried at 140 ° C. for 3 hours, and subsequently this gel was washed with water and dried in a conical dryer for 4 hours. The dry gel was classified to obtain a particle size distribution of 75 to 400 microns.

【0012】以上の操作(反応・粉砕・乾燥・水洗・乾
燥・分級)を1〜50回繰り返したところ、装置内壁に
シリカ前駆体よりなるスケーリング物の付着が観察され
た。これら1〜50回繰り返した中の10回目、20回
目、30回目、40回目、50回目のそれぞれの分級ド
ライゲル10gを精秤し、電気炉中、窒素ガス流通下、
800℃で15分間熱処理した後、電気炉から取りだ
し、全黒点粒子、すなわち異常粒子の数を調べた所、分
級ドライゲル中の異常粒子(黒点)の数はそれぞれ、1
0回目は50個、20回目は45個、30回目は55
個、40回目は60個、50回目は70個であった。次
いで、10回目、20回目、30回目、40回目、50
回目の分級ドライゲルを回転型石英内筒電気炉中(炉芯
径200mm;粉体層高60mm;回転数4rpm;)
空気45リットル/分流通下、室温から1000℃まで
2時間で昇温して、合成石英ガラス粉体を得た。これら
それぞれの粉体50gを精秤し、黒点粒子の数を調べた
ところ、10回目は2個、20回目は1個、30回目は
4個、40回目は2個、50回目は3個であった。又、
それぞれの粉体をベルヌーイ溶融法を用い、1700℃
で溶融し10gのガラス成形体を得た。これらの成形体
はいずれも、泡の含有量が極めて少なく1個未満であ
り、実用に値するものであった。
When the above-mentioned operations (reaction, crushing, drying, washing with water, drying, and classification) were repeated 1 to 50 times, adhesion of a scaling material composed of a silica precursor was observed on the inner wall of the apparatus. The 10th, 20th, 30th, 40th, and 50th classification dry gels 10 g among these 1 to 50 times were precisely weighed, and were placed in an electric furnace under a nitrogen gas flow,
After heat-treating at 800 ° C for 15 minutes, it was taken out from the electric furnace and the number of all black spot particles, that is, abnormal particles was examined. The number of abnormal particles (black dots) in the classified dry gel was 1 each.
50 at 0th, 45 at 20th, 55 at 30th
The number was 60 at the 40th time and 70 at the 50th time. Then, 10th, 20th, 30th, 40th, 50
The second classification dry gel was placed in a rotary quartz inner cylinder electric furnace (core diameter 200 mm; powder bed height 60 mm; rotation speed 4 rpm).
The temperature was raised from room temperature to 1000 ° C. in 2 hours under a flow of 45 liters / minute of air to obtain a synthetic quartz glass powder. When 50 g of each of these powders was precisely weighed and the number of black spot particles was examined, it was 2 at the 10th time, 1 at the 20th time, 4 at the 30th time, 2 at the 40th time, and 3 at the 50th time. there were. or,
Bernoulli melting method was applied to each powder at 1700 ℃
And was melted at 10 g to obtain a glass molded body of 10 g. The foam content of each of these molded products was extremely small and less than one, which was a practical value.

【0013】比較例1 実施例1と同様な操作(反応・粉砕・乾燥・水洗・乾燥
・分級)を100回繰り返した。分級ドライゲル10g
を精秤し、電気炉中、窒素ガス流通下、800℃で15
分間熱処理した後、電気炉から取りだし、全黒点粒子、
すなわち異常粒子の数を調べた所、分級ドライゲル中の
異常粒子(黒点)の数は255個であった。次いで、1
00回目の分級ドライゲルを回転型石英内筒電気炉中、
実施例1と同様に空気流通下焼成し、粉体50gを精秤
後、黒点粒子の数を調べたところ、21個であった。
又、この粉体をベルヌーイ溶融法を用い、1700℃で
溶融し10gのガラス成形体を得た。本成形体は泡の含
有量が極めて多い(該成形体当り泡が約100個)実用
に供しないものであった。
Comparative Example 1 The same operations as in Example 1 (reaction, pulverization, drying, washing with water, drying, classification) were repeated 100 times. Classification dry gel 10g
Was weighed accurately, and at 15 ° C in an electric furnace under nitrogen gas flow at 15 ° C.
After heat treatment for a minute, remove it from the electric furnace and
That is, when the number of abnormal particles was examined, the number of abnormal particles (black dots) in the classified dry gel was 255. Then 1
The 00th classification dry gel was placed in a rotary quartz inner cylinder electric furnace,
It was calcined under air flow in the same manner as in Example 1, 50 g of the powder was precisely weighed, and the number of black spot particles was examined. As a result, it was 21.
Further, this powder was melted at 1700 ° C. using a Bernoulli melting method to obtain 10 g of a glass molded body. This molded product had a very large amount of bubbles (about 100 bubbles per molded product) and was not put to practical use.

【0014】[0014]

【発明の効果】本発明により、溶融時、泡の発生が少な
い高品質な合成石英粉及びガラス成形体を得ることが出
来る。
EFFECTS OF THE INVENTION According to the present invention, it is possible to obtain a high-quality synthetic quartz powder and a glass molded product which are less likely to generate bubbles during melting.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下山 勝 北九州市八幡西区黒崎城石1番1号 三菱 化学株式会社黒崎開発研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaru Shimoyama 1-1 Kurosaki Shiroishi, Hachimannishi-ku, Kitakyushu City Mitsubishi Chemical Corporation Kurosaki Development Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ゾルゲル反応により製造される合成石英
粉であり、粉体中の黒点粒子の個数が5個/50g以下
であることを特徴とする合成石英粉。
1. A synthetic quartz powder produced by a sol-gel reaction, wherein the number of black spot particles in the powder is 5/50 g or less.
【請求項2】 請求項1記載の合成石英粉を溶融して得
られることを特徴とするガラス成形体。
2. A glass molded body, which is obtained by melting the synthetic quartz powder according to claim 1.
JP340495A 1995-01-12 1995-01-12 Synthetic quartz powder and glass molding Pending JPH08188411A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP340495A JPH08188411A (en) 1995-01-12 1995-01-12 Synthetic quartz powder and glass molding
PCT/JP1996/000043 WO1996021617A1 (en) 1995-01-12 1996-01-12 Silica gel, synthetic quartz glass powder, quartz glass molding, and processes for producing these
DE69634895T DE69634895T2 (en) 1995-01-12 1996-01-12 SILICONE ACID GEL, SYNTHETIC QUARTZ GLASS POWDER, SHAPED QUARTZ GLASS, AND METHOD FOR THE PRODUCTION THEREOF
EP96900441A EP0803469B1 (en) 1995-01-12 1996-01-12 Silica gel, synthetic quartz glass powder, quartz glass molding, and processes for producing these
US08/860,716 US6071838A (en) 1995-01-12 1996-01-12 Silica gel, synthetic quartz glass powder, quartz glass shaped product molding, and processes for producing these
KR1019970704764A KR19980701375A (en) 1995-01-12 1996-01-12 Silica gel, synthetic quartz glass powder, quartz glass molded body, and production method thereof (SILICA GEL, SYNTHETIC QUARTZ GLASS POWDER, QUARTZ GLASSMOLDING, AND PROCESSES FOR PRODUCING THESE)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP340495A JPH08188411A (en) 1995-01-12 1995-01-12 Synthetic quartz powder and glass molding

Publications (1)

Publication Number Publication Date
JPH08188411A true JPH08188411A (en) 1996-07-23

Family

ID=11556452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP340495A Pending JPH08188411A (en) 1995-01-12 1995-01-12 Synthetic quartz powder and glass molding

Country Status (1)

Country Link
JP (1) JPH08188411A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016540852A (en) * 2013-11-19 2016-12-28 キユーデイー・ビジヨン・インコーポレーテツド Luminescent particles, materials and products containing the same, and methods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016540852A (en) * 2013-11-19 2016-12-28 キユーデイー・ビジヨン・インコーポレーテツド Luminescent particles, materials and products containing the same, and methods
US10221354B2 (en) 2013-11-19 2019-03-05 Samsung Electronics Co., Ltd. Luminescent particle, materials and products including same, and methods

Similar Documents

Publication Publication Date Title
EP1088789A2 (en) Porous silica granule, its method of production and its use in a method for producing quartz glass
JPH072513A (en) Production of synthetic quartz glass powder
JPH02500972A (en) Improvements in and related to vitreous silica
JPH10287416A (en) Production of synthetic quartz powder
JP2006188412A (en) Process for treating synthetic silica powder and synthetic silica powder treated by the same
WO1996033950A1 (en) Processes for producing synthetic quartz powder and producing shaped quartz glass
KR20020024576A (en) Method and apparatus for production of amorphous silica from silicon and silicon-containing materials
KR19980701375A (en) Silica gel, synthetic quartz glass powder, quartz glass molded body, and production method thereof (SILICA GEL, SYNTHETIC QUARTZ GLASS POWDER, QUARTZ GLASSMOLDING, AND PROCESSES FOR PRODUCING THESE)
JPH04219310A (en) Production of non-sintered cristobalite particle
JPH08188411A (en) Synthetic quartz powder and glass molding
JP3617153B2 (en) Method for producing synthetic quartz powder
JPH08208217A (en) Production of synthetic quartz glass powder and molded material of quartz glass
JP3342536B2 (en) MgO.SiO2 porcelain powder and method for producing the same
JP3318946B2 (en) Powdery dry gel, silica glass powder, and method for producing silica glass melt molded article
KR102622058B1 (en) Manufacturing method of high purity quartz powder
JPH08208214A (en) Silica gel and its production, and production of synthetic silica glass powder
JP3735886B2 (en) Method for producing synthetic quartz powder and method for producing quartz glass molded body
JP3859303B2 (en) Method for producing synthetic quartz glass powder and quartz glass molded body
JP3884783B2 (en) Method for producing synthetic quartz powder
JP3875735B2 (en) Method for producing synthetic quartz powder
JPH05201718A (en) Production of silica glass powder and silica glass molten molding
JPH07157308A (en) Production of synthetic quartz glass powder
JPH10212115A (en) Production of high purity quartz glass powder and production of quartz glass molding
JP3806953B2 (en) Method for producing synthetic quartz powder
JPH0563416B2 (en)

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20050712

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20051108

Free format text: JAPANESE INTERMEDIATE CODE: A02