JPH08186332A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPH08186332A
JPH08186332A JP70495A JP70495A JPH08186332A JP H08186332 A JPH08186332 A JP H08186332A JP 70495 A JP70495 A JP 70495A JP 70495 A JP70495 A JP 70495A JP H08186332 A JPH08186332 A JP H08186332A
Authority
JP
Japan
Prior art keywords
layer
cap layer
gan
compound semiconductor
acceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP70495A
Other languages
Japanese (ja)
Other versions
JP3244980B2 (en
Inventor
Gokou Hatano
吾紅 波多野
Yasuo Oba
康夫 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP70495A priority Critical patent/JP3244980B2/en
Priority to US08/400,865 priority patent/US5656832A/en
Publication of JPH08186332A publication Critical patent/JPH08186332A/en
Priority to US08/866,056 priority patent/US5909040A/en
Priority to US08/874,299 priority patent/US5929466A/en
Priority to US09/915,710 priority patent/USRE38805E1/en
Application granted granted Critical
Publication of JP3244980B2 publication Critical patent/JP3244980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE: To provide the manufacturing method, of a semiconductor element, which can form a high-quality p-type layer by increasing the electric activation rate of Mg impurities in a GaN-based compound semiconductor layer and which realizes a high-performance and short-wavelength semiconductor laser or the like. CONSTITUTION: In a method which enables manufacture of a semiconductor element by laminating a compound semiconductor layer on a substrate, Mg doped an AlN cap layer 17 is formed on Mg doped GaN-based compound semiconductor layers 15, 16, a heat treatment is then executed to the GaN-based compound semiconductor layers 15, 16, and the AlN cap layer 17 is then removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子の製造方法
に係わり、特にアクセプタ不純物の添加方法を改良した
半導体素子の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device with an improved method of adding acceptor impurities.

【0002】[0002]

【従来の技術】窒素を含むIII-V族化合物半導体の一つ
であるGaNは、バンドギャップが3.4eVと大き
く、また直接遷移型であることから、短波長発光素子用
材料として期待されている。この材料は低抵抗のp型層
の成長が困難であったが、最近、アクセプタとしてMg
を添加したGaN層を電子ビーム照射又は窒素ガス雰囲
気中で加熱することにより抵抗の低下が可能となってい
る。この抵抗低下は、結晶中に混入した水素の脱離の効
果によると考えられている。
2. Description of the Related Art GaN, which is one of III-V group compound semiconductors containing nitrogen, has a large bandgap of 3.4 eV and is a direct transition type. Therefore, it is expected as a material for a short wavelength light emitting device. There is. It was difficult to grow a low resistance p-type layer with this material, but recently Mg
It is possible to reduce the resistance by irradiating the GaN layer to which is added with an electron beam or heating it in a nitrogen gas atmosphere. It is considered that this decrease in resistance is due to the effect of desorption of hydrogen mixed in the crystal.

【0003】しかし、本発明者らの研究によれば、未だ
GaN層中のMgの電気的活性化率は低く、半導体レー
ザ等の高性能素子作成に必要な1Ωcm以下の低抵抗p
型層作成のためには、Mgを1019cm-3以上1020
-3程度の非常な高濃度に添加する必要があることが判
明した。このような高濃度Mg添加では、結晶欠陥増大
と共に表面平坦性が悪化するために、高性能・短波長の
半導体レーザ等を実現することは不可能である。
However, according to the research conducted by the present inventors, the electrical activation rate of Mg in the GaN layer is still low, and the low resistance p of 1 Ωcm or less necessary for producing a high performance device such as a semiconductor laser is obtained.
For forming the mold layer, Mg is 10 19 cm -3 or more and 10 20 c
It was found that it was necessary to add it at a very high concentration of about m -3 . With such high-concentration Mg addition, the surface flatness deteriorates as the crystal defects increase, so that it is impossible to realize a high-performance, short-wavelength semiconductor laser or the like.

【0004】一方、Mgを添加したGaN層の上にAl
N層をキャップ層として形成した後にアニールすること
により、低抵抗なp型GaN層を形成する方法が提案さ
れている(特開平5−183189号公報)。しかしな
がら、この種の方法においても、Mgの十分な電気的活
性化は達成できていないのが現状である。
On the other hand, Al is formed on the GaN layer containing Mg.
A method of forming a low-resistance p-type GaN layer by forming an N layer as a cap layer and then annealing it has been proposed (JP-A-5-183189). However, even in this kind of method, the current situation is that sufficient electrical activation of Mg has not been achieved.

【0005】[0005]

【発明が解決しようとする課題】このように従来、Ga
N系の化合物半導体層(窒化物系III-V族化合物半導体
層)を成長するに際しては、低抵抗のp型を得るために
過剰にMg(アクセプタ不純物)を添加する必要があ
り、結晶欠陥増大と共に表面平坦性が悪化するという問
題があった。
As described above, the conventional Ga
When growing an N-based compound semiconductor layer (nitride-based III-V group compound semiconductor layer), it is necessary to add excessive Mg (acceptor impurities) in order to obtain p-type with low resistance. At the same time, there was a problem that the surface flatness deteriorates.

【0006】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、窒化物系III-V族化合
物半導体層中におけるアクセプタ不純物の電気的活性化
率を上げて高品質のp型層を形成することができ、高性
能・短波長の半導体レーザ等の実現を可能とした半導体
素子の製造方法を提供することにある。
The present invention has been made in consideration of the above circumstances, and an object thereof is to raise the electrical activation rate of acceptor impurities in a nitride-based III-V group compound semiconductor layer to obtain high quality. Another object of the present invention is to provide a method for manufacturing a semiconductor element capable of forming a p-type layer, and realizing a high-performance, short-wavelength semiconductor laser or the like.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明は、次のような構成を採用している。即ち本発
明は、基板上に化合物半導体層を積層して半導体素子を
製造する方法において、アクセプタを添加した窒化物系
III-V族化合物半導体層上にアクセプタを添加したAl
Nキャップ層を形成したのち、窒化物系III-V族化合物
半導体層に熱処理を施し、しかるのちAlNキャップ層
の少なくとも一部を除去することを特徴とする。また本
発明は、アクセプタを添加したAlNの代わりにAl2
3 をキャップ層として用いることを特徴とする。
In order to solve the above problems, the present invention employs the following configurations. That is, the present invention provides a method of manufacturing a semiconductor device by laminating a compound semiconductor layer on a substrate, wherein a nitride-based compound containing an acceptor is used.
Al with an acceptor added on the III-V compound semiconductor layer
After forming the N cap layer, the nitride-based III-V group compound semiconductor layer is heat-treated, and at least a part of the AlN cap layer is removed thereafter. Further, the present invention uses Al 2 instead of AlN to which an acceptor is added.
It is characterized by using O 3 as a cap layer.

【0008】ここで、本発明の望ましい実施態様として
は、次のものがあげられる。 (1) AlN中のアクセプタ添加濃度が1017〜1020
-3であること (2) 熱処理温度が700℃以上、好ましくは800℃以
上1200℃以下であること。 (3) 窒化物系III-V族化合物半導体はGaN又はAlG
aNであり、アクセプタ不純物はMgであること。
Here, the following are preferred embodiments of the present invention. (1) The acceptor addition concentration in AlN is 10 17 to 10 20 c
m -3 (2) The heat treatment temperature is 700 ° C or higher, preferably 800 ° C or higher and 1200 ° C or lower. (3) The nitride-based III-V compound semiconductor is GaN or AlG
aN and the acceptor impurity is Mg.

【0009】[0009]

【作用】窒化物系III-V族化合物半導体のアクセプタ不
純物として用いられるMgについて考える。Mgの活性
化率を上げることができればMg添加量を減少でき、表
面平坦性の良い低欠陥・低抵抗のp型層を実現できる。
そこで、本発明者らはMgの活性化率の低下に深く係わ
っていると考えられている結晶中の水素濃度について調
べた。この結果、アンドープ層に比べ多量のMg濃度と
同程度の水素がMgドーピング層に混入しており、その
水素混入量は熱処理を行うことにより減少することが分
った。
Function Consider Mg used as an acceptor impurity in a nitride III-V compound semiconductor. If the activation rate of Mg can be increased, the amount of Mg added can be reduced, and a low-defect / low-resistance p-type layer having good surface flatness can be realized.
Therefore, the present inventors investigated the hydrogen concentration in the crystal, which is considered to be deeply related to the decrease in the activation rate of Mg. As a result, it was found that a large amount of hydrogen was mixed in the Mg-doped layer as compared with the undoped layer, and the amount of mixed hydrogen was reduced by the heat treatment.

【0010】図1に、温度を変化させて熱処理を行った
際の熱処理温度と水素濃度の関係を示す。試料はMgド
ープのGaNである。700℃以上の温度にて熱処理を
行うことにより水素濃度を低下させることができる。な
お、半導体レーザ等のキャリア濃度の精密なコントロー
ルが必要な素子の場合は水素濃度を飽和濃度の10%以
下に抑える必要があり、その場合は1000℃以上の処
理が必要となる。ところが、800℃以上の処理では表
面からの窒素等の構成元素の蒸発が急激に激しくなり結
晶表面が顕著に劣化する。
FIG. 1 shows the relationship between the heat treatment temperature and the hydrogen concentration when the heat treatment is performed while changing the temperature. The sample is Mg-doped GaN. The hydrogen concentration can be reduced by performing the heat treatment at a temperature of 700 ° C. or higher. In the case of an element such as a semiconductor laser that requires precise control of carrier concentration, it is necessary to suppress the hydrogen concentration to 10% or less of the saturation concentration, and in that case, a treatment at 1000 ° C. or higher is required. However, when the treatment is performed at 800 ° C. or higher, the vaporization of constituent elements such as nitrogen from the surface is rapidly increased and the crystal surface is significantly deteriorated.

【0011】高温処理による表面劣化を防ぐためには表
面からの窒素等の構成元素の蒸発を抑えることが重要で
ある。本発明者らの研究によれば、適切な方法を選択す
ることにより、水素を十分除去できるような高温域にお
いても構成元素の蒸発を抑えられることが分かった。そ
れは、別の材料(キャップ層)で表面を覆って熱処理を
行う方法である。その際のキャップ層としては耐熱性が
あること、拡散により窒化物層のp型化に悪影響を含む
元素(例えばSi,Se等のドナー性不純物)を含まな
いこと、水素透過性が良いこと、格子定数が窒化物と近
く熱歪みが入らないこと、窒素やGaを通さない緻密な
膜であることが重要である。また、キャップ層は熱処理
終了後に取り除かれるので、下地の窒化物層と選択的に
エッチングできる材料が適している。
In order to prevent surface deterioration due to high temperature treatment, it is important to suppress evaporation of constituent elements such as nitrogen from the surface. According to the research conducted by the present inventors, it has been found that the vaporization of the constituent elements can be suppressed even in a high temperature region where hydrogen can be sufficiently removed by selecting an appropriate method. It is a method of covering the surface with another material (cap layer) and performing heat treatment. In that case, the cap layer has heat resistance, does not contain an element (for example, a donor impurity such as Si or Se) that adversely affects the p-type conversion of the nitride layer due to diffusion, and has good hydrogen permeability. It is important that the lattice constant is close to that of nitride and thermal strain does not enter, and that the film is a dense film that does not pass nitrogen or Ga. Further, since the cap layer is removed after the heat treatment, a material that can be selectively etched with the underlying nitride layer is suitable.

【0012】これらの条件のうち最も重要なものは、抵
抗増大の要因となるドナー性又は深い準位を形成する不
純物を含まないことである。このためにはIII-V族化合
物半導体が適している。III-V族化合物半導体のうち窒
化物と格子定数が近いものとしては窒化物それ自身とB
Pがある。しかし、BPは化学的に安定でありエッチン
グは困難である。また、GaNも選択的エッチングが困
難であり、InNは耐熱性がない。
The most important of these conditions is that it does not contain impurities that form a donor level or a deep level, which causes a resistance increase. For this purpose, III-V compound semiconductors are suitable. Among III-V group compound semiconductors, those having a lattice constant close to that of nitride are nitride itself and B.
There is P. However, BP is chemically stable and difficult to etch. Also, GaN is difficult to selectively etch, and InN has no heat resistance.

【0013】一方、AlNは耐熱性に優れ、塩酸等によ
り選択的なエッチングも可能であるが、水素透過性の点
で問題があった。しかし、本発明者らの研究ではIII-V
族窒化物の水素透過率はアクセプタを添加することによ
り大幅に増大することが分かった。例えばAlNの場
合、Mgを1017〜1020cm-3添加することにより十
分な水素透過性が得られる。特に、クラッド層のアクセ
プタ不純物と同じ不純物をキャップ層にドープすること
により、熱処理中の表面キャリア濃度減少によるコンタ
クト抵抗増大が防げる。従って、アクセプタをドープし
たAlNをキャップ層に用いることにより、窒素等の構
成元素の蒸発を抑えながら水素の除去が可能になる。
On the other hand, AlN has excellent heat resistance and can be selectively etched with hydrochloric acid or the like, but it has a problem in terms of hydrogen permeability. However, in our study, III-V
It was found that the hydrogen permeability of the group III nitrides was significantly increased by adding the acceptor. For example, in the case of AlN, sufficient hydrogen permeability can be obtained by adding Mg at 10 17 to 10 20 cm −3 . In particular, by doping the cap layer with the same impurities as the acceptor impurities of the cladding layer, it is possible to prevent an increase in contact resistance due to a decrease in the surface carrier concentration during the heat treatment. Therefore, by using the acceptor-doped AlN for the cap layer, it becomes possible to remove hydrogen while suppressing evaporation of constituent elements such as nitrogen.

【0014】また、Al23 は格子定数こそ窒化物と
は異なるが、通常窒化物層形成のための基板として用い
られている材料であり、熱処理後の冷却の際に導入され
る熱歪みが大きく問題となることはない。しかも、その
他の点で、上述したようなキャップ層に対する条件を全
て満足する。さらに、Al23 キャップ層は、特にス
パッタリングにより容易に形成でき、かつ酸又はアルカ
リによるエッチングが容易なので有利である。従って本
発明においては、Al23 をキャップ層として用いて
も同様の効果が期待できる。
Al 2 O 3 has a lattice constant different from that of nitride, but it is a material usually used as a substrate for forming a nitride layer, and thermal strain introduced during cooling after heat treatment. Is not a big problem. Moreover, in other respects, all the conditions for the cap layer as described above are satisfied. Further, the Al 2 O 3 cap layer is advantageous because it can be easily formed especially by sputtering and can be easily etched by acid or alkali. Therefore, in the present invention, the same effect can be expected even if Al 2 O 3 is used as the cap layer.

【0015】このように本発明では、アクセプタを添加
したAlNやAl23 を耐熱性のキャップ層として堆
積した後に熱処理を行うことにより、熱処理温度の高温
化がはかれ、窒素等の構成元素の蒸発を抑えながら水素
の除去ができる。従って、Mgの活性化率が上がり、過
剰のMg添加を行わずに表面平坦性に優れた低抵抗高品
質のp型窒化物層の作成が可能となるので、半導体レー
ザ等の高性能短波長発光素子が実現できる。
As described above, in the present invention, heat treatment is performed after depositing AlN or Al 2 O 3 to which an acceptor has been added as a heat-resistant cap layer, whereby the heat treatment temperature is increased, and constituent elements such as nitrogen are included. Hydrogen can be removed while suppressing the evaporation of hydrogen. Therefore, the activation rate of Mg is increased, and it is possible to form a p-type nitride layer having a low resistance and a high quality, which has excellent surface flatness without adding excessive Mg. A light emitting device can be realized.

【0016】なお、上記の説明ではアクセプタ不純物と
してMgを例に取ったが、窒化物系III-V族化合物半導
体のアクセプタとして機能するもので、そのドープによ
ってドープ層に水素が取り込まれるような材料であれ
ば、キャップ層を設けて熱処理することにより同様の効
果が期待できる。
Although Mg has been taken as an example of the acceptor impurity in the above description, a material that functions as an acceptor of a nitride-based III-V group compound semiconductor and whose doping causes hydrogen to be taken into the doped layer. In that case, a similar effect can be expected by providing a cap layer and performing heat treatment.

【0017】[0017]

【実施例】以下、本発明の詳細を図示の実施例によって
説明する。図2に、Mgを5×1019cm-3添加したG
aNにおける、本発明によるアクセプタ添加AlNキャ
ップ層を用いた方法により熱処理を行った場合と、アク
セプタを添加しないAlNキャップ層を用いた場合、キ
ャップ層を用いなかった場合の熱処理温度に対する抵抗
値の変化を示す。
The details of the present invention will be described below with reference to the illustrated embodiments. In FIG. 2, G added with Mg of 5 × 10 19 cm −3
Change in resistance value with respect to heat treatment temperature in aN when heat treatment is performed by a method using an acceptor-added AlN cap layer according to the present invention, when an AlN cap layer without an acceptor is used, and when no cap layer is used Indicates.

【0018】キャップ層を用いなかった場合は400℃
以上の熱処理温度にて抵抗値の低減効果が認められ、抵
抗値は処理温度の上昇と共にさらに低下する。700℃
から900℃の間では最も低い抵抗値が得られるが、9
00℃以上の熱処理では再び抵抗は増大する。また、ア
ンドープAlNキャップ層を用いた場合には、処理温度
の上昇と共に抵抗値は単調に減少するが、800℃以上
では飽和してしまう。一方、本発明による方法では、7
00℃以上の処理温度にても処理温度上昇と共に抵抗は
顕著に低下し、800℃以上では抵抗低減効果は大きく
は変化しないが1000℃以上の処理温度領域まで温度
と共に単調に低下する。
400 ° C. when no cap layer is used
The effect of reducing the resistance value is recognized at the above heat treatment temperatures, and the resistance value further decreases as the treatment temperature increases. 700 ° C
The lowest resistance value can be obtained in the range
The resistance increases again by the heat treatment at 00 ° C. or higher. Further, when the undoped AlN cap layer is used, the resistance value monotonously decreases as the processing temperature rises, but becomes saturated at 800 ° C. or higher. On the other hand, in the method according to the present invention, 7
The resistance remarkably decreases as the processing temperature rises even at a processing temperature of 00 ° C. or higher, and at 800 ° C. or higher, the resistance reducing effect does not change significantly, but monotonously decreases with the processing temperature range up to 1000 ° C. or higher.

【0019】即ち、キャップ層を用いない場合、700
℃以上の処理温度では水素の除去効果は温度と共に改善
されるが、窒素等の構成元素の蒸発が同時に激しくなる
ために結晶欠陥が増大する。そのために抵抗値低減効果
が阻害され、900℃以上では処理温度を高めたにも拘
らず抵抗値が上昇したものと考えられる。AlNキャッ
プ層を用いることにより表面からの構成元素の脱離を抑
えることができるが、アクセプタを添加しない場合は水
素透過性が悪いため抵抗値は飽和してしまう。それに対
して本発明による方法では、キャップ層なしでは表面か
らの構成元素の脱離が無視できなかった700℃以上の
温度にても構成元素の脱離による欠陥等の増大がなく、
かつ水素透過性が良いことに基づき水素を有効に除去で
きるので、従来よりも低抵抗の結晶が得られた。この効
果は800℃以上の処理温度にて特に顕著である。但
し、1200℃を越えると、GaNの結晶品質を損なう
恐れがある。
That is, if the cap layer is not used, 700
At a treatment temperature of ℃ or more, the hydrogen removing effect improves with temperature, but crystal defects increase because vaporization of constituent elements such as nitrogen becomes intense at the same time. Therefore, it is considered that the resistance value reducing effect is hindered, and that the resistance value is increased at 900 ° C. or higher despite the increase of the processing temperature. By using the AlN cap layer, desorption of the constituent elements from the surface can be suppressed. However, when no acceptor is added, the hydrogen permeability is poor and the resistance value is saturated. On the other hand, in the method according to the present invention, the desorption of the constituent elements from the surface cannot be ignored without the cap layer, and there is no increase in defects due to the desorption of the constituent elements even at a temperature of 700 ° C. or higher.
In addition, since hydrogen can be effectively removed due to its high hydrogen permeability, a crystal having a lower resistance than the conventional one was obtained. This effect is particularly remarkable at the processing temperature of 800 ° C. or higher. However, if the temperature exceeds 1200 ° C, the crystal quality of GaN may be impaired.

【0020】またここで、アクセプタ添加によるAlN
の水素透過性の向上の効果は1017cm-3以上で顕著と
なるが、1020cm-3より多いアクセプタ添加は製造上
困難である。従って本発明において、AlNキャップ層
の好ましいアクセプタ添加量は1017〜1020cm-3
する。
Further, here, AlN by adding an acceptor
The effect of improving the hydrogen permeability of is remarkable at 10 17 cm −3 or more, but it is difficult to add acceptors in an amount of more than 10 20 cm −3 in terms of manufacturing. Therefore, in the present invention, the preferable amount of acceptor added to the AlN cap layer is 10 17 to 10 20 cm −3 .

【0021】図3に、Ar雰囲気中800℃,30分の
熱処理をした場合のGaN層におけるMg濃度と抵抗値
の関係を示す。キャップ層を用いない従来の方法では、
白濁が生じる1019cm-3を越えるMg添加を行わなけ
れば抵抗値の低下は見られなかった。これに対し、アク
セプタドープのAlNキャップ層を用いた本発明による
方法では、Mgの電気的活性化率を向上できるので、平
坦な膜が得られる1019cm-3以下のMg濃度において
も抵抗値を低下することができた。これらの効果は、A
lN,InNとの混晶においてもほぼ同様であった。
FIG. 3 shows the relationship between the Mg concentration and the resistance value in the GaN layer when heat-treated at 800 ° C. for 30 minutes in an Ar atmosphere. In the conventional method that does not use a cap layer,
No decrease in resistance was observed unless Mg was added in an amount of more than 10 19 cm -3 which causes clouding. On the other hand, in the method according to the present invention using the acceptor-doped AlN cap layer, the electrical activation rate of Mg can be improved, so that a resistance value is obtained even at a Mg concentration of 10 19 cm −3 or less at which a flat film can be obtained. Could be reduced. These effects are
The same was true for mixed crystals of 1N and InN.

【0022】図4は、本発明の実施例方法により作成し
た半導体レーザの素子構造断面図である。サファイア基
板10のc面上にAlN(10nm)の第1バッファ層
11、GaN(1.0μm)の第2バッファ層12、S
iドープn型AlGaN(1.0μm)のクラッド層1
3、GaN(0.5μm)の活性層14、Mgドープp
型AlGaN(1.0μm)のクラッド層15、Mgド
ープp型GaN(0.5μm)のコンタクト層16が順
次形成されている。また、図には示さないが、n型クラ
ッド層13の側面及びp型コンタクト層16の上面にそ
れぞれ電極が設けられている。
FIG. 4 is a sectional view of the device structure of a semiconductor laser produced by the method of the embodiment of the present invention. On the c-plane of the sapphire substrate 10, a first buffer layer 11 of AlN (10 nm), a second buffer layer 12 of GaN (1.0 μm), S
i-doped n-type AlGaN (1.0 μm) cladding layer 1
3, GaN (0.5 μm) active layer 14, Mg-doped p
Type AlGaN (1.0 μm) cladding layer 15 and Mg-doped p-type GaN (0.5 μm) contact layer 16 are sequentially formed. Although not shown in the drawing, electrodes are provided on the side surface of the n-type cladding layer 13 and the upper surface of the p-type contact layer 16, respectively.

【0023】図5は、本発明の実施例方法に使用した成
長装置を示す概略構成図である。図中の21は石英製の
反応管であり、この反応管21内にはガス導入口22か
ら原料混合ガスが導入される。そして、反応管21内の
ガスはガス排気口23から排気されるものとなってる。
反応管21内には、カーボン製のサセプタ24が配置さ
れており、試料基板20はこのサセプタ24上に載置さ
れる。また、サセプタ24は高周波コイル25により誘
導加熱されるものとなっている。なお、基板20の濃度
は図示の熱電対26によって測定され、別の装置(図示
せず)によりコントロールされる。
FIG. 5 is a schematic configuration diagram showing a growth apparatus used in the method of the embodiment of the present invention. Reference numeral 21 in the drawing is a reaction tube made of quartz, and a raw material mixed gas is introduced into the reaction tube 21 from a gas introduction port 22. The gas in the reaction tube 21 is exhausted from the gas exhaust port 23.
A susceptor 24 made of carbon is arranged in the reaction tube 21, and the sample substrate 20 is placed on the susceptor 24. The susceptor 24 is induction heated by the high frequency coil 25. The concentration of the substrate 20 is measured by the illustrated thermocouple 26 and controlled by another device (not shown).

【0024】次に、図5の成長装置を用いて図4の構造
の半導体レーザを製造する方法について簡単に説明す
る。まず、基板10を水素中で1100℃に加熱し表面
を清浄化する。次いで、基板温度を450〜900℃に
低下させた後、H2 ガスをNH3 ガス或いはNを含む有
機化合物、例えば(CH3222 に切り替えると
共に、成長すべき層に応じて有機金属化合物を導入して
成長を行う。AlNバッファ層11の形成の際には、有
機金属Al化合物、例えばAl(CH33 或いはAl
(C253 を導入してAlN第1バッファ層11の
成長を行う。GaNの第2バッファ層12,活性層1
4,コンタクト層16の形成の際には、有機金属Ga化
合物、例えばGa(CH33 或いはGa(C25
3 を導入して成長を行う。AlGaNクラッド層13,
15の形成の際には、有機金属Al化合物と有機金属G
a化合物の両方を導入して成長を行う。
Next, a method of manufacturing the semiconductor laser having the structure shown in FIG. 4 using the growth apparatus shown in FIG. 5 will be briefly described. First, the substrate 10 is heated to 1100 ° C. in hydrogen to clean the surface. Then, after lowering the substrate temperature to 450 to 900 ° C., the H 2 gas is switched to NH 3 gas or an organic compound containing N, for example, (CH 3 ) 2 N 2 H 2 , and depending on the layer to be grown. Growth is performed by introducing an organometallic compound. When the AlN buffer layer 11 is formed, an organometallic Al compound such as Al (CH 3 ) 3 or Al
(C 2 H 5 ) 3 is introduced to grow the AlN first buffer layer 11. GaN second buffer layer 12, active layer 1
4. When forming the contact layer 16, an organometallic Ga compound such as Ga (CH 3 ) 3 or Ga (C 2 H 5 ) is used.
Introduce 3 to grow. AlGaN cladding layer 13,
When forming 15, the organic metal Al compound and the organic metal G
Growth is performed by introducing both of the a compound.

【0025】なお、GaN活性層14のバンドギャップ
を狭めるためにInを添加してもよく、その場合有機金
属In化合物、例えばIn(CH33 或いはIn(C
253 を導入してInの添加を行う。
In addition, In may be added in order to narrow the band gap of the GaN active layer 14, in which case an organometallic In compound such as In (CH 3 ) 3 or In (C
2 H 5 ) 3 is introduced and In is added.

【0026】ドーピングの際にはドーピング用原料も同
時に導入する。クラッド層13を形成する際のn型ドー
ピング用原料としてはSi水素化物、例えばSiH4
いは有機金属Si化合物、例えばSi(CH34 を用
いる。また、クラッド層15及びコンタクト層16を形
成する際のp型ドーピング用原料としては有機金属Mg
化合物、例えばCp2 Mg或いは有機金属Zn化合物、
例えばZn(CH32 等を使用する。
At the time of doping, a doping raw material is also introduced at the same time. As a raw material for n-type doping when forming the cladding layer 13, Si hydride such as SiH 4 or organometallic Si compound such as Si (CH 3 ) 4 is used. Organometallic Mg is used as a p-type doping raw material when the cladding layer 15 and the contact layer 16 are formed.
Compounds such as Cp 2 Mg or organometallic Zn compounds,
For example, Zn (CH 3 ) 2 or the like is used.

【0027】ここで、本実施例では、Mgドープのp型
AlGaNクラッド層15及びp型GaNコンタクト層
16におけるp型ドーパントMgの活性化率を上げるた
めに、図6に示すように、コンタクト層16上にMgド
ープのAlNキャップ層17(10〜1000nm)を
形成し、室温まで冷却した後に、Ar,He,窒素等の
水素を含まないガス中又は真空中で800〜1200℃
で熱処理を行う。その後、塩酸,燐酸,硫酸を含む酸若
しくはNaOH,KOH等を含むアルカリエッチング液
により70〜200℃の温度でエッチングして、AlN
キャップ層17を取り除く。熱処理は真空中で行っても
構わないが、水素を含まないガス中で行った方が構成元
素の蒸発が妨げるのでより効果的である。またここで、
AlNキャップ層17の膜厚を10〜1000nmとし
たのは、この膜厚が薄いと窒素等の構成元素の蒸発防止
が不十分となる恐れがあり、膜厚が厚いと水素透過性が
低下する傾向があるからである。
Here, in this example, in order to increase the activation rate of the p-type dopant Mg in the Mg-doped p-type AlGaN cladding layer 15 and the p-type GaN contact layer 16, as shown in FIG. After forming a Mg-doped AlN cap layer 17 (10 to 1000 nm) on 16 and cooling to room temperature, 800 to 1200 ° C. in a gas containing no hydrogen such as Ar, He, and nitrogen or in a vacuum.
Heat treatment. Then, etching is performed at a temperature of 70 to 200 ° C. with an acid containing hydrochloric acid, phosphoric acid, sulfuric acid or an alkaline etching solution containing NaOH, KOH, etc.
The cap layer 17 is removed. The heat treatment may be performed in a vacuum, but it is more effective to perform the heat treatment in a gas containing no hydrogen because evaporation of constituent elements is hindered. Also here
The film thickness of the AlN cap layer 17 is set to 10 to 1000 nm, because if the film thickness is thin, the vaporization prevention of constituent elements such as nitrogen may be insufficient, and if the film thickness is large, hydrogen permeability decreases. Because there is a tendency.

【0028】より具体的には、原料としてNH3 を1×
10-3 mol/min、Ga(CH33を1×10-5 mol/mi
n、Al(CH33 を1×10-6 mol/min導入してA
lGaNクラッド層15の成長を行う。GaNコンタク
ト層16の場合はAlの供給を停止し、AlNキャップ
層17の場合はGaの供給を停止する。基板温度は10
50℃、圧力75Torr、原料ガスの総流量は1 l/min、
p型AlGaNクラッド層15,p型GaNコンタクト
層16及びAlNキャップ層17へのMg添加両は5×
1018cm-3とした。クラッド層13,15におけるド
ーピング用原料は、n型としてSiH4 、p型としてC
2 Mgを使用する。AlNキャップ層17形成後の熱
処理は図5の成長装置内でAr中で1000℃,30分
間行った。キャップ層17の除去は、燐酸(85%)に
より120℃,15分間エッチングして行った。
More specifically, 1 × NH 3 is used as a raw material.
10 -3 mol / min, Ga (CH 3 ) 3 at 1 × 10 -5 mol / mi
n, Al (CH 3 ) 3 was introduced at 1 × 10 -6 mol / min and A
The lGaN cladding layer 15 is grown. In the case of the GaN contact layer 16, the supply of Al is stopped, and in the case of the AlN cap layer 17, the supply of Ga is stopped. Substrate temperature is 10
50 ° C, pressure 75 Torr, total flow rate of source gas is 1 l / min,
The amount of Mg added to the p-type AlGaN cladding layer 15, the p-type GaN contact layer 16 and the AlN cap layer 17 is 5 ×.
It was set to 10 18 cm -3 . The doping raw materials in the clad layers 13 and 15 are SiH 4 as n-type and C as p-type.
Use p 2 Mg. The heat treatment after forming the AlN cap layer 17 was performed at 1000 ° C. for 30 minutes in Ar in the growth apparatus of FIG. The cap layer 17 was removed by etching with phosphoric acid (85%) at 120 ° C. for 15 minutes.

【0029】かくして製造された半導体レーザは、p型
GaN系化合物半導体層(AlGaNクラッド層15,
GaNコンタクト層16)のMgの活性化率を高めるこ
とができるので、Mgを過剰に添加することなしに低抵
抗のp型GaN系化合物半導体層を形成することができ
る。このため、高品質なp型GaN系化合物半導体層を
成長することができ、短波長の半導体レーザの高性能化
及び長寿命化をはかることができる。
The semiconductor laser thus manufactured is composed of a p-type GaN compound semiconductor layer (AlGaN cladding layer 15,
Since the activation rate of Mg in the GaN contact layer 16) can be increased, a p-type GaN-based compound semiconductor layer having a low resistance can be formed without excessively adding Mg. Therefore, a high-quality p-type GaN-based compound semiconductor layer can be grown, and the performance and the life of the short wavelength semiconductor laser can be improved.

【0030】次に、MgドープのAlNキャップ層に代
えてAl23 キャップ層を形成した以外は全く同様に
して半導体レーザを製造した。より具体的には、スパッ
タリングによりAl23 キャップ層を形成し、室温ま
で冷却した後にAr中で1000℃,30分感の熱処理
を行い、塩酸(85%)により70℃,15分間エッチ
ングしてAl23 キャップ層を除去した。この場合
も、得られるp型GaN系化合物半導体層のMgの活性
化率を高め、Mgを過剰に添加することなく低抵抗高品
質のp型GaN系化合物半導体層を成長することができ
た。
Next, a semiconductor laser was manufactured in exactly the same manner except that an Al 2 O 3 cap layer was formed instead of the Mg-doped AlN cap layer. More specifically, an Al 2 O 3 cap layer is formed by sputtering, cooled to room temperature, heat-treated in Ar at 1000 ° C. for 30 minutes, and etched with hydrochloric acid (85%) at 70 ° C. for 15 minutes. And the Al 2 O 3 cap layer was removed. Also in this case, the activation rate of Mg of the obtained p-type GaN-based compound semiconductor layer was increased, and the p-type GaN-based compound semiconductor layer of low resistance and high quality could be grown without excessive addition of Mg.

【0031】なお、本発明は上述した実施例に限定され
るものではない。実施例では、低抵抗のp型化合物半導
体層にGaN又はAlGaNを用いたが、本発明はこれ
らのGaN系化合物半導体に限るものではなく、窒化物
系III-V族化合物半導体であれば適用可能である。ま
た、キャップ層の膜厚やアクセプタのドーピング量、更
にはキャップ層形成後の熱処理温度等は仕様に応じて適
宜変更可能である。また、半導体レーザに限らず発光ダ
イオードの製造に適用することができ、さらにp型の窒
化物系III-V族化合物半導体層を有する各種の半導体素
子の製造に適用することが可能である。その他、本発明
の要旨を逸脱しない範囲で、種々変形して実施すること
ができる。
The present invention is not limited to the above embodiment. In the examples, GaN or AlGaN is used for the low-resistance p-type compound semiconductor layer, but the present invention is not limited to these GaN-based compound semiconductors, and any nitride-based III-V group compound semiconductor can be applied. Is. Further, the film thickness of the cap layer, the doping amount of the acceptor, and the heat treatment temperature after forming the cap layer can be appropriately changed according to the specifications. Further, the present invention can be applied not only to the semiconductor laser but also to the manufacture of a light emitting diode and further to the manufacture of various semiconductor elements having a p-type nitride III-V group compound semiconductor layer. In addition, various modifications can be made without departing from the scope of the present invention.

【0032】[0032]

【発明の効果】以上詳述したように本発明によれば、ア
クセプタ添加の窒化物系III-V族化合物半導体層上に、
アクセプタ添加のAlNやAl23 のキャップ層を形
成した後に熱処理を行うことにより、熱処理温度の高温
化がはかれ、窒素等の構成元素の蒸発を抑えながら水素
の除去ができるので、窒化物系III-V族化合物半導体層
中におけるアクセプタ不純物の電気的活性化率を上げて
高品質のp型層を形成することができ、高性能・短波長
の半導体レーザ等の実現に寄与することが可能となる。
As described in detail above, according to the present invention, on the nitride-based III-V group compound semiconductor layer to which the acceptor is added,
By performing heat treatment after forming the acceptor-added AlN or Al 2 O 3 cap layer, the heat treatment temperature can be raised, and hydrogen can be removed while suppressing evaporation of constituent elements such as nitrogen. A high-quality p-type layer can be formed by increasing the electrical activation rate of acceptor impurities in the system III-V group compound semiconductor layer, which contributes to the realization of a high-performance short-wavelength semiconductor laser and the like. It will be possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の作用を説明するためのもので、GaN
の熱処理温度と水素濃度との関係を示す特性図。
1 is a diagram for explaining the operation of the present invention, GaN
FIG. 6 is a characteristic diagram showing the relationship between the heat treatment temperature and the hydrogen concentration of.

【図2】Mgを添加したGaNにおける熱処理温度と抵
抗値との関係を示す特性図。
FIG. 2 is a characteristic diagram showing a relationship between a heat treatment temperature and a resistance value of GaN containing Mg.

【図3】Ar雰囲気中で熱処理した場合のMg濃度と抵
抗値との関係を示す特性図。
FIG. 3 is a characteristic diagram showing the relationship between the Mg concentration and the resistance value when heat-treated in an Ar atmosphere.

【図4】本発明の実施例方法により作成した半導体レー
ザを示す素子構造断面図。
FIG. 4 is a cross-sectional view of an element structure showing a semiconductor laser produced by a method according to an embodiment of the present invention.

【図5】本発明の実施例方法に使用した結晶成長装置を
示す概略構成図。
FIG. 5 is a schematic configuration diagram showing a crystal growth apparatus used in an example method of the present invention.

【図6】MgドープAlNキャップ層を形成して熱処理
を行う場合の手順を示す模式図。
FIG. 6 is a schematic diagram showing a procedure for forming a Mg-doped AlN cap layer and performing heat treatment.

【符号の説明】[Explanation of symbols]

10…サファイア基板 11…AlN第1バッファ層 12…GaN第2バッファ層 13…Siドープn型AlGaNクラッド層 14…GaN活性層 15…Mgドープp型AlGaNクラッド層 16…Mgドープp型GaNコンタクト層 17…MgドープAlNキャップ層 20…試料基板 21…石英製の反応管 22…ガス導入口 23…ガス排気口 24…サセプタ 25…高周波コイル 26…熱電対 10 ... Sapphire substrate 11 ... AlN first buffer layer 12 ... GaN second buffer layer 13 ... Si-doped n-type AlGaN cladding layer 14 ... GaN active layer 15 ... Mg-doped p-type AlGaN cladding layer 16 ... Mg-doped p-type GaN contact layer 17 ... Mg-doped AlN cap layer 20 ... Sample substrate 21 ... Quartz reaction tube 22 ... Gas inlet 23 ... Gas exhaust port 24 ... Susceptor 25 ... High frequency coil 26 ... Thermocouple

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年2月2日[Submission date] February 2, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】請求項2[Name of item to be corrected] Claim 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】アクセプタを添加した窒化物系III-V族化
合物半導体層上にアクセプタを添加したAlNキャップ
層を形成する工程と、前記窒化物系III-V族化合物半導
体層に熱処理を施す工程と、前記AlNキャップ層の少
なくとも一部を除去する工程とを含むことを特徴とする
半導体素子の製造方法。
1. A step of forming an AlN cap layer containing an acceptor on a nitride group III-V group compound semiconductor layer containing an acceptor, and a step of heat-treating the nitride group III-V group compound semiconductor layer. And a step of removing at least a part of the AlN cap layer, the method of manufacturing a semiconductor device.
【請求項2】アクセプタを添加した窒化物系III-V族化
合物半導体層上にアクセプタを添加したAl23 キャ
ップ層を形成する工程と、前記窒化物系III-V族化合物
半導体層に熱処理を施す工程と、前記Al23 キャッ
プ層の少なくとも一部を除去する工程とを含むことを特
徴とする半導体素子の製造方法。
2. A step of forming an acceptor-added Al 2 O 3 cap layer on an acceptor-doped nitride-based III-V group compound semiconductor layer, and a heat treatment on the nitride-based III-V-group compound semiconductor layer. And a step of removing at least a part of the Al 2 O 3 cap layer, a method of manufacturing a semiconductor device.
JP70495A 1994-03-09 1995-01-06 Method for manufacturing semiconductor device Expired - Fee Related JP3244980B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP70495A JP3244980B2 (en) 1995-01-06 1995-01-06 Method for manufacturing semiconductor device
US08/400,865 US5656832A (en) 1994-03-09 1995-03-08 Semiconductor heterojunction device with ALN buffer layer of 3nm-10nm average film thickness
US08/866,056 US5909040A (en) 1994-03-09 1997-05-30 Semiconductor device including quaternary buffer layer with pinholes
US08/874,299 US5929466A (en) 1994-03-09 1997-06-13 Semiconductor device and method of fabricating the same
US09/915,710 USRE38805E1 (en) 1994-03-09 2001-07-27 Semiconductor device and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP70495A JP3244980B2 (en) 1995-01-06 1995-01-06 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH08186332A true JPH08186332A (en) 1996-07-16
JP3244980B2 JP3244980B2 (en) 2002-01-07

Family

ID=11481166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP70495A Expired - Fee Related JP3244980B2 (en) 1994-03-09 1995-01-06 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3244980B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323751A (en) * 1999-05-10 2000-11-24 Pioneer Electronic Corp Fabrication of group 3 nitride semiconductor element
JP2004528700A (en) * 2000-03-14 2004-09-16 クリー インコーポレイテッド Semiconductor material having controlled conductivity and method of manufacturing semiconductor device
JP2011216578A (en) * 2010-03-31 2011-10-27 Advanced Power Device Research Association Nitride semiconductor and nitride semiconductor element
WO2015015973A1 (en) * 2013-07-31 2015-02-05 富士電機株式会社 Method for manufacturing semiconductor device, and semiconductor device
JP2015046441A (en) * 2013-08-27 2015-03-12 富士電機株式会社 Method of manufacturing semiconductor device, and semiconductor device
JP2015082641A (en) * 2013-10-24 2015-04-27 住友電気工業株式会社 Group iii nitride semiconductor element and group iii nitride semiconductor element manufacturing method
US9805930B2 (en) 2015-08-25 2017-10-31 Fuji Electric Co., Ltd. Method of manufacturing nitride semiconductor device using laminated cap layers
US9905433B2 (en) 2016-07-04 2018-02-27 Fuji Electric Co., Ltd. Manufacturing method of semiconductor device including a nitride semiconductor layer
US10121876B2 (en) 2016-07-13 2018-11-06 Fuji Electric Co., Ltd. Method for high temperature annealing of a nitride semiconductor layer
US10141192B2 (en) 2016-06-23 2018-11-27 Fuji Electric Co., Ltd. Manufacturing method of semiconductor device
CN111033752A (en) * 2017-08-25 2020-04-17 苏州晶湛半导体有限公司 Method for manufacturing p-type semiconductor, enhancement device, and method for manufacturing enhancement device
CN113330536A (en) * 2019-01-24 2021-08-31 加利福尼亚大学董事会 Method of treating semiconductor films for reduced evaporation and degradation
CN114267756A (en) * 2021-12-20 2022-04-01 江西兆驰半导体有限公司 Preparation method of light-emitting diode epitaxial wafer and epitaxial wafer
US11646357B2 (en) 2017-08-25 2023-05-09 Enkris Semiconductor, Inc. Method for preparing a p-type semiconductor structure, enhancement mode device and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6669029B2 (en) 2016-09-28 2020-03-18 豊田合成株式会社 Method for manufacturing semiconductor device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323751A (en) * 1999-05-10 2000-11-24 Pioneer Electronic Corp Fabrication of group 3 nitride semiconductor element
JP2004528700A (en) * 2000-03-14 2004-09-16 クリー インコーポレイテッド Semiconductor material having controlled conductivity and method of manufacturing semiconductor device
JP2011216578A (en) * 2010-03-31 2011-10-27 Advanced Power Device Research Association Nitride semiconductor and nitride semiconductor element
JP6070846B2 (en) * 2013-07-31 2017-02-01 富士電機株式会社 Semiconductor device manufacturing method and semiconductor device
WO2015015973A1 (en) * 2013-07-31 2015-02-05 富士電機株式会社 Method for manufacturing semiconductor device, and semiconductor device
US9754783B2 (en) 2013-07-31 2017-09-05 Fuji Electric Co., Ltd. Method for producing a semiconductor device, and semiconductor device
JP2015046441A (en) * 2013-08-27 2015-03-12 富士電機株式会社 Method of manufacturing semiconductor device, and semiconductor device
US9425348B2 (en) 2013-10-24 2016-08-23 Summitomo Electric Industries, Ltd. Group III nitride semiconductor device, and method for fabricating group III nitride semiconductor device
JP2015082641A (en) * 2013-10-24 2015-04-27 住友電気工業株式会社 Group iii nitride semiconductor element and group iii nitride semiconductor element manufacturing method
US9805930B2 (en) 2015-08-25 2017-10-31 Fuji Electric Co., Ltd. Method of manufacturing nitride semiconductor device using laminated cap layers
US10141192B2 (en) 2016-06-23 2018-11-27 Fuji Electric Co., Ltd. Manufacturing method of semiconductor device
US9905433B2 (en) 2016-07-04 2018-02-27 Fuji Electric Co., Ltd. Manufacturing method of semiconductor device including a nitride semiconductor layer
US10121876B2 (en) 2016-07-13 2018-11-06 Fuji Electric Co., Ltd. Method for high temperature annealing of a nitride semiconductor layer
CN111033752A (en) * 2017-08-25 2020-04-17 苏州晶湛半导体有限公司 Method for manufacturing p-type semiconductor, enhancement device, and method for manufacturing enhancement device
US11646357B2 (en) 2017-08-25 2023-05-09 Enkris Semiconductor, Inc. Method for preparing a p-type semiconductor structure, enhancement mode device and method for manufacturing the same
CN111033752B (en) * 2017-08-25 2024-02-09 苏州晶湛半导体有限公司 Method for manufacturing p-type semiconductor, enhanced device and method for manufacturing the same
CN113330536A (en) * 2019-01-24 2021-08-31 加利福尼亚大学董事会 Method of treating semiconductor films for reduced evaporation and degradation
JP2022518458A (en) * 2019-01-24 2022-03-15 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Methods for Processing Semiconductor Films with Reduced Evaporation and Degradation
CN114267756A (en) * 2021-12-20 2022-04-01 江西兆驰半导体有限公司 Preparation method of light-emitting diode epitaxial wafer and epitaxial wafer

Also Published As

Publication number Publication date
JP3244980B2 (en) 2002-01-07

Similar Documents

Publication Publication Date Title
JP3866540B2 (en) Nitride semiconductor device and manufacturing method thereof
US5656832A (en) Semiconductor heterojunction device with ALN buffer layer of 3nm-10nm average film thickness
EP1655766B1 (en) Substrate for growth of nitride semiconductor
TWI447959B (en) Method for manufacturing nitride semiconductor crystal layer
JP2872096B2 (en) Vapor phase growth method of low resistance p-type gallium nitride based compound semiconductor
JP3822318B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP3325380B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3648386B2 (en) SEMICONDUCTOR DEVICE AND WAFER AND METHOD FOR MANUFACTURING THE SAME
US5909040A (en) Semiconductor device including quaternary buffer layer with pinholes
JP2008205514A (en) Iii-v nitride semiconductor device
JP3244980B2 (en) Method for manufacturing semiconductor device
TW201145584A (en) Process for production of nitride semiconductor element, nitride semiconductor light-emitting element, and light-emitting device
US20110062016A1 (en) Method for manufacturing aluminum-containing nitride intermediate layer, method for manufacturing nitride layer, and method for manufacturing nitride semiconductor element
JP3147316B2 (en) Method for manufacturing semiconductor light emitting device
JP2016058693A (en) Semiconductor device, semiconductor wafer, and method of manufacturing semiconductor device
KR100814049B1 (en) Method of heat-treating nitride compound semiconductor layer and method of producing semiconductor device
JPH11220169A (en) Gallium nitride compound semiconductor device and manufacture thereof
JP2007227832A (en) Nitride semiconductor element
JP3361964B2 (en) Semiconductor light emitting device and method of manufacturing the same
WO2010041485A1 (en) Method for fabricating p-type gallium nitride-based semiconductor, method for fabricating nitride-based semiconductor element, and method for fabricating epitaxial wafer
JP2002208732A (en) Compound semiconductor device
JP4137223B2 (en) Method for producing compound semiconductor
JP2007173316A (en) Nitride semiconductor light emitting element and its fabrication process
JPH0529653A (en) Semiconductor device
JPH088460A (en) Method of manufacturing p-type algan semiconductor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091026

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees