JPH08184404A - Displacement sensor, acceleration sensor and clinometer - Google Patents

Displacement sensor, acceleration sensor and clinometer

Info

Publication number
JPH08184404A
JPH08184404A JP32723694A JP32723694A JPH08184404A JP H08184404 A JPH08184404 A JP H08184404A JP 32723694 A JP32723694 A JP 32723694A JP 32723694 A JP32723694 A JP 32723694A JP H08184404 A JPH08184404 A JP H08184404A
Authority
JP
Japan
Prior art keywords
weight
wire
sensor member
strain
member according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32723694A
Other languages
Japanese (ja)
Inventor
Kiyoshi Yamauchi
清 山内
Hideyuki Tanaka
秀之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP32723694A priority Critical patent/JPH08184404A/en
Publication of JPH08184404A publication Critical patent/JPH08184404A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE: To enhance the sensitivity and reliability while extending the linearity by arranging a weight in the center, suspending the weight with a shape-memory alloy wire having electric resistance variable due to strain in a plurality of directions, and detecting the electric resistance of the suspension wire. CONSTITUTION: Wires 2a, 2b are made of a shape-memory alloy exhibiting superelasticity and suspends a weight 1. The wires 2a, 2b are connected, at the opposite ends thereof, with electric conductors 6 which are connected, at the other ends thereof, with detection circuits 3a, 3b. Terminals 7 are provided between the weight 1 and the wires 2a, 2b. The circuits 3a, 3b are resistance bridge circuits and deliver detection signals (A), (B), respectively, to a measurement control circuit. When the weight 1 is displaced in the direction shown by an arrow by an external force, tensile force is applied to the wires 2a, 2b and the variation of resistance caused by corresponding strain is measured. When the relationship between the strain caused by tensile force and the variation of resistance is previously determined and an initial value is set, the strain can be determined based on the variation of resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,形状記憶合金からなる
線材を受感抵抗素子とし,歪み変化による電気抵抗変化
率を利用して,変位量を検出する変位センサ,加速度を
検出する加速度センサ,及び傾斜角を検出する傾斜計等
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a wire rod made of a shape memory alloy as a sensitive resistance element and utilizes the rate of change in electrical resistance due to strain change to detect a displacement amount and an acceleration sensor for detecting acceleration. , And an inclinometer for detecting an inclination angle.

【0002】[0002]

【従来の技術】張力による弾性変形量を,電気抵抗率の
変化で測定する力学量計測器は,土木,建築,機械分野
などにおいて多数利用されている。例えば,両持梁型に
よるひずみゲージ,荷重センサ,変位センサ等がある。
或いは一端を支持部とし,他端を自由端とした片持梁型
の加速度センサ,変位センサ等がある。上記した従来の
センサの受感抵抗素子としては,Cu−Ni系,Ni−
Cr系等の金属抵抗体,或いは半導体抵抗歪みゲージ等
が使われている。
2. Description of the Related Art A large number of mechanical quantity measuring instruments for measuring the amount of elastic deformation due to tension by changing the electrical resistivity are used in the fields of civil engineering, construction, machinery and the like. For example, there are strain gages of both-supported beam type, load sensors, displacement sensors, and the like.
Alternatively, there is a cantilever type acceleration sensor having one end as a support portion and the other end as a free end, a displacement sensor, and the like. As the sensitive resistance element of the above-mentioned conventional sensor, Cu-Ni-based, Ni-
A metal resistor such as a Cr-based material, or a semiconductor resistance strain gauge is used.

【0003】一般に抵抗値変化による歪み計測において
は,受感抵抗素子にΔR/R=Kεなる関係が成り立つ
ことが重要である。ここでRは,金属抵抗体の抵抗,ε
はひずみ量(変形量),ゲージ率Kが一定であれば,非
直線性補正を行うことなく,抵抗値変化から歪み量を知
ることができる。すなわち精度のよい計測においては,
金属抵抗体材料の弾性限界範囲が広く,ゲージ率Kが大
きく,一定であることが必要である。この抵抗変化率Δ
R/Rは,前記した従来のCu−Ni,Ni−Cr系金
属抵抗体では,0.5%以下であった。
Generally, in strain measurement due to a change in resistance value, it is important that the relationship of ΔR / R = Kε is established in the sensitive resistance element. Where R is the resistance of the metal resistor, ε
If the strain amount (deformation amount) and the gauge factor K are constant, the strain amount can be known from the resistance value change without performing non-linearity correction. That is, in accurate measurement,
It is necessary that the elastic limit range of the metal resistor material is wide and the gauge factor K is large and constant. This resistance change rate Δ
R / R was 0.5% or less in the above-mentioned conventional Cu-Ni, Ni-Cr-based metal resistor.

【0004】また,片持梁型の半導体抵抗ひずみゲージ
を利用した加速度系などは,感度も高く,小型になり各
方面で使用されているが,大きなひずみ量には対応して
ない。
Further, an acceleration system using a cantilever type semiconductor resistance strain gauge has a high sensitivity and is small in size and is used in various fields, but it cannot cope with a large strain amount.

【0005】一方,Ti−Ni系合金,Cu−Zn系合
金の形状記憶合金は,マルテンサイト変態の逆変態に付
随して,顕著な形状記憶効果を示すことがよく知られて
いる。また,これと同時に良好な超弾性を示すこともよ
く知られている。ここにおいて,形状記憶効果とは,マ
ルテンサイト相で外力によって受けた歪みが,加熱によ
って解消することであり,一方,超弾性とは外力によっ
て受けた歪みが,外力の解放と同時に加熱なしで解消す
る現象である。これらの解消可能な歪みは,弾性限界歪
みを越え最大8%程度におよぶ。また,形状記憶効果に
おいても,加熱なしで解消可能なひずみは1.5〜2.
0%を示し,通常の鋼線よりも大きい。
On the other hand, it is well known that shape memory alloys such as Ti-Ni type alloys and Cu-Zn type alloys exhibit a remarkable shape memory effect accompanying the reverse transformation of martensitic transformation. At the same time, it is well known that it exhibits good superelasticity. Here, the shape memory effect means that the strain received by the external force in the martensite phase is eliminated by heating, while the superelasticity eliminates the strain received by the external force without releasing the external force and without heating. It is a phenomenon. These strains that can be eliminated exceed the elastic limit strain and reach up to about 8%. Also in the shape memory effect, the strain that can be eliminated without heating is 1.5 to 2.
0%, which is larger than that of ordinary steel wire.

【0006】[0006]

【発明が解決しようとする課題】従来の金属抵抗体で
は,弾性限界内の抵抗変化率ΔR/Rは,Cu−Ni,
Ni−Cr系金属抵抗体では,0.5%以下で小さかっ
た。
In the conventional metal resistor, the resistance change rate ΔR / R within the elastic limit is Cu-Ni,
In the Ni-Cr based metal resistor, it was small at 0.5% or less.

【0007】そこで,本発明の第1の技術的課題は,広
い範囲にわたって歪みを感度及び精度高く測定し得る金
属抵抗体の受感抵抗素子を使用したセンサ部材とそれを
用いた変位センサ,加速度センサ,及び傾斜計とを提供
することにある。
Therefore, the first technical problem of the present invention is to provide a sensor member using a sensitive resistance element of a metal resistor capable of measuring strain over a wide range with high sensitivity and accuracy, a displacement sensor using the same, and an acceleration. It is to provide a sensor and an inclinometer.

【0008】また,半導体抵抗ひずみゲージを利用した
加速度計などは,感度も高く,小型になり各方面で使用
されているが,大きな歪み量には対応してない。
Further, an accelerometer using a semiconductor resistance strain gauge has high sensitivity and is small in size, and is used in various fields, but it cannot cope with a large amount of strain.

【0009】そこで,本発明の第2の技術的課題は,大
きな歪み量にも対応し,信頼性の高いセンサ部材とそれ
を用いた変位センサ及び加速度センサを提供することに
ある。
Therefore, a second technical object of the present invention is to provide a highly reliable sensor member which can cope with a large amount of strain and a displacement sensor and an acceleration sensor using the same.

【0010】[0010]

【課題を解決するための手段】上記の技術的課題を解決
するために,本発明のセンサ部材は,中央に重りを配置
し,該重りを2つ以上の方向に,歪み変化によって電気
抵抗が変化する線材で懸架し,該重りと反対側の他端部
を該線材に張力歪みが加わるように固定した構成とした
ことを特徴としている。
In order to solve the above technical problems, in the sensor member of the present invention, a weight is arranged at the center, and the electric resistance is changed in two or more directions by a strain change. It is characterized in that it is suspended by a changing wire rod, and the other end portion on the opposite side of the weight is fixed so that tension strain is applied to the wire rod.

【0011】ここで,本発明のセンサ部材において,前
記重りを懸架した2つ以上の線材を,同一性状,同一断
面寸法とすることで,被検出線材部の環境条件による電
気抵抗変動を相殺することが好ましい。
Here, in the sensor member of the present invention, the two or more wire rods on which the weight is suspended have the same properties and the same cross-sectional dimensions, thereby canceling the electric resistance fluctuation due to the environmental conditions of the detected wire rod portion. It is preferable.

【0012】また,本発明のセンサ部材において,前記
重りを懸架した2つ以上の線材の各々に,電流を流すこ
とで,被検出線材部が電流による発熱を伴う電気抵抗変
動を相殺することが好ましい。
Further, in the sensor member of the present invention, a current is caused to flow through each of the two or more wire rods on which the weight is suspended, so that the detected wire rod portion cancels the electric resistance fluctuation caused by the heat generation by the current. preferable.

【0013】また,本発明のセンサ部材において,前記
重りを懸架する線材の外形は丸線,異形線,リボン線で
あり,前記線材の外観形状は,直線状ヘリカルコイル
状,或いはジグザグコイル状であることが好ましい。
Further, in the sensor member of the present invention, the wire rod for suspending the weight has a round wire, a deformed wire or a ribbon wire, and the wire rod has an outer shape of a linear helical coil or a zigzag coil. Preferably there is.

【0014】また,本発明のセンサ部材において,前記
懸架された線材に加えられる歪みは,引張り歪み,曲げ
歪み,せん断歪み,及び圧縮歪みの中の何れかであるこ
とが好ましい。
Further, in the sensor member of the present invention, the strain applied to the suspended wire rod is preferably any one of tensile strain, bending strain, shear strain, and compressive strain.

【0015】さらに,本発明のセンサ部材において,前
記重りを懸架する線材を,形状記憶合金で構成すること
が好ましい。
Further, in the sensor member of the present invention, it is preferable that the wire for suspending the weight is made of a shape memory alloy.

【0016】更に,本発明においては,前記線材に,超
弾性効果を有するNi−Ti系形状記憶合金を使用して
センサ部材を構成することが好ましい。
Furthermore, in the present invention, it is preferable that the wire member be made of a Ni-Ti type shape memory alloy having a superelastic effect to form a sensor member.

【0017】また,本発明においては,前記線材を用い
て変位センサ,加速度センサ,及び傾斜計を構成するこ
とができる。
Further, according to the present invention, a displacement sensor, an acceleration sensor, and an inclinometer can be constructed by using the wire.

【0018】[0018]

【作用】本発明においては,弾性変形量に応じて電気抵
抗が変化する超弾性効果を有する線材に重りを懸架し
て,線材にかかる歪みの電気抵抗変化を検知するので,
弾性変形量の範囲が広くなり,又,金属疲労による劣化
が少なく,コストの安いセンサ部材とそれを用いた変位
センサ,加速度センサ,及び傾斜計が構成できる。
In the present invention, the weight is suspended on the wire having the superelastic effect in which the electric resistance changes according to the elastic deformation amount, and the change in the electric resistance due to the strain applied to the wire is detected.
It is possible to configure a low cost sensor member that has a wide range of elastic deformation amount and less deterioration due to metal fatigue, and a displacement sensor, an acceleration sensor, and an inclinometer using the sensor member.

【0019】[0019]

【実施例】以下,本発明の実施例について図面を参照し
ながら述べる。
Embodiments of the present invention will be described below with reference to the drawings.

【0020】(実施例1)図1は,本発明の実施例を説
明するための概念図である。図1に示すように重り1
が,線材2a,線材2bにて懸架されている。固定端4
a,固定端4bは固定されて動かない。線材2a,線材
2bは,超弾性特性を示す形状記憶合金製である。線材
2a,2bは,らせん状に形成されているが,抵抗値の
絶対値小さくなるが,直線でもよい。又,ジグザグつず
ら状でも形成可能である。
(Embodiment 1) FIG. 1 is a conceptual diagram for explaining an embodiment of the present invention. Weight 1 as shown in FIG.
Are suspended by the wire rod 2a and the wire rod 2b. Fixed end 4
a, the fixed end 4b is fixed and does not move. The wire rods 2a and 2b are made of a shape memory alloy exhibiting superelasticity. Although the wire rods 2a and 2b are formed in a spiral shape, the absolute value of the resistance value is small, but they may be straight lines. It can also be formed in a zigzag zigzag shape.

【0021】そして線材2a,線材2bの両端には,電
気導線6が接続されていて,検出回路3a,検出回路3
bに接続されている。重り1と線材2a,2b間には端
子7が構成されている。検出回路3a,3bは抵抗ブリ
ッジ回路となっている。尚,線材2a,2bを一つの抵
抗ブリッジ回路の対向辺の素子にすることも可能であ
る。この場合は,線材の温度変化による抵抗値変化を補
正することが可能である。
Electrical conductors 6 are connected to both ends of the wire rods 2a and 2b, and the detection circuit 3a and the detection circuit 3 are connected.
connected to b. A terminal 7 is formed between the weight 1 and the wires 2a and 2b. The detection circuits 3a and 3b are resistance bridge circuits. The wires 2a and 2b may be elements on opposite sides of one resistance bridge circuit. In this case, it is possible to correct the resistance change due to the temperature change of the wire.

【0022】線材2a,線材2bは,環境条件による電
気抵抗変動をキャンセルするために,同一性状,同一断
面形状の線材で構成するのがよい。
The wire rods 2a and 2b are preferably made of wire rods having the same properties and the same cross-sectional shape in order to cancel fluctuations in electrical resistance due to environmental conditions.

【0023】検出回路3a,検出回路3bからは,各々
検出値(A),検出値(B)の信号が計測制御回路(図
示してない)に伝送される。
Signals of the detection value (A) and the detection value (B) are transmitted from the detection circuit 3a and the detection circuit 3b to a measurement control circuit (not shown).

【0024】図1では,重り1が外力により,例えば図
1の矢印の方向に変位するので,線材2A,線材2Bに
は張力がかかり,それに応じた歪みによる抵抗値変化Δ
Rが計測される。予め張力による歪み量(変形率)εと
抵抗変化率ΔRの関係を求めて初期値を設定しておけ
ば,抵抗値の変化から歪み量(変化率)εを求めること
ができる。
In FIG. 1, the weight 1 is displaced by an external force, for example, in the direction of the arrow in FIG. 1, so that tension is applied to the wire rods 2A and 2B, and the resistance value change Δ due to the corresponding strain Δ
R is measured. If the relationship between the strain amount (deformation rate) ε due to the tension and the resistance change rate ΔR is obtained in advance and the initial value is set, the strain amount (change rate) ε can be obtained from the change in the resistance value.

【0025】本発明の実施例1において,重りを懸架す
るための超弾性効果を有する形状記憶合金の線材は,N
i50.7at%,残部TiであるTi−Ni系合金で
あり以下にその製法を説明する。先ず非酸化性雰囲気中
でアーク溶解炉を用いて原料を溶解した。溶解した合金
インゴットを熱間にて圧延した後,冷間加工を施し,目
的形状である線径φ40μmに加工した。その線材を4
00℃で5分の熱処理を行ったのち,雰囲気温度による
抵抗変化(抵抗温度係数)を調査した。結果を図2の線
3で示す。本発明の合金は,測定温度範囲内で負の特性
を示すとともに,比抵抗137μΩ・cm,抵抗温度係
数(TCR)約−120ppm/℃の特性が得られた。
この線材について室温における引張りひずみ量と抵抗値
変化の関係を求めた結果を図3の線32で示す。この線
材は,図3に示すごとく,ひずみ量と抵抗値変化の関係
において,その直線性が非常に良く,またヒステリシス
も無く,弾性限界が広いことが判明した。前述したよう
に,実施例1においては,この線材を用いてセンサ部材
を構成している。
In the first embodiment of the present invention, the shape memory alloy wire rod having the superelastic effect for suspending the weight is N
This is a Ti-Ni based alloy in which i is 50.7 at% and the balance is Ti. The manufacturing method will be described below. First, the raw materials were melted using an arc melting furnace in a non-oxidizing atmosphere. The molten alloy ingot was hot-rolled and then cold-worked to a target shape of wire diameter φ40 μm. The wire rod 4
After heat treatment was performed at 00 ° C. for 5 minutes, the resistance change (resistance temperature coefficient) depending on the ambient temperature was investigated. The result is shown by line 3 in FIG. The alloy of the present invention showed negative characteristics within the measurement temperature range, and had characteristics of a specific resistance of 137 μΩ · cm and a temperature coefficient of resistance (TCR) of about -120 ppm / ° C.
The result of obtaining the relationship between the tensile strain amount and the resistance value change at room temperature for this wire is shown by the line 32 in FIG. As shown in FIG. 3, it was found that this wire has a very good linearity, no hysteresis, and a wide elastic limit in the relationship between the amount of strain and the change in resistance value. As described above, in the first embodiment, the wire member is used to form the sensor member.

【0026】尚,線材の断面形状は,円断面が一般的で
あるが,四角形状を含む多角形状断面を持つ異形線でも
よい,これらは線引きダイスの穴形状により決まる。
The cross-sectional shape of the wire rod is generally a circular cross-section, but it may be a modified wire having a polygonal cross-section including a square shape, which is determined by the hole shape of the drawing die.

【0027】(実施例2)図4は,本発明による実施例
2を示した概念図である。図4に示すように,重り11
を,水平面(固定端14a,14b,14cが水平面)
にてA,B,Cの三方向から,実施例1と同様の線材1
2a,12b,12cにて懸架したものである。A,
B,Cの三方向が角度120度であれば,重り11によ
るひずみ量(変形率)は均等になり,検出値(A),検
出値(B),検出値(C)は等しい値となる。しかし固
定端14a,14b,14cの位置関係に傾斜が生じた
場合,線材12a,12b,12cにかかる歪み量に差
が生じ,検出値(A),(B),(C)にも違いが現れ
る。
(Second Embodiment) FIG. 4 is a conceptual diagram showing a second embodiment according to the present invention. As shown in FIG. 4, the weight 11
On a horizontal plane (fixed ends 14a, 14b, 14c are horizontal planes)
From the three directions of A, B, and C, wire rod 1 similar to that of the first embodiment
It is suspended by 2a, 12b and 12c. A,
If the three directions of B and C are at an angle of 120 degrees, the amount of strain (deformation rate) due to the weight 11 will be equal, and the detected value (A), detected value (B), and detected value (C) will be equal. . However, when the positional relationship between the fixed ends 14a, 14b, 14c is inclined, a difference occurs in the strain amount applied to the wire rods 12a, 12b, 12c, and the detected values (A), (B), (C) also differ. appear.

【0028】ここで,固定端間に於ける傾斜角度と検出
値を予め求めておけば,傾斜センサ,或いは変位センサ
として使用できる。
If the tilt angle between the fixed ends and the detected value are obtained in advance, it can be used as a tilt sensor or a displacement sensor.

【0029】更に,重り11に,加速度が加わった時に
は,それに応じた張力が各線材12a,12b,12c
に加わるので,線材の抵抗値変化が起こる。予め,重り
11に加わる加速度の大きさ,方向と,各線材の抵抗変
化率ΔRの関係を求めておけば,加速度センサとして利
用できる。
Further, when acceleration is applied to the weight 11, the tension corresponding to the acceleration is applied to each of the wire rods 12a, 12b, 12c.
Therefore, the resistance value of the wire changes. If the relationship between the magnitude and direction of the acceleration applied to the weight 11 and the resistance change rate ΔR of each wire is obtained in advance, it can be used as an acceleration sensor.

【0030】(実施例3)図5は本発明による実施例3
を示した概略図である。図5に示すように,重り21
は,実施例1及び実施例2と同様の線材22zにて垂直
に懸架されている。そして線材22zから下方,角度1
20度の,更に周120度の角度に分かれたA,B,C
の3方向から線材22a,22b,22cにて重り21
を懸架した構成である。この構成によって,重り21は
宙づりになった状況にあり,重り21に加わる全方向の
加速度を検知することが可能である。
(Third Embodiment) FIG. 5 shows a third embodiment according to the present invention.
It is the schematic which showed. As shown in FIG. 5, the weight 21
Is vertically suspended by a wire rod 22z similar to those in the first and second embodiments. And downward from the wire 22z, angle 1
A, B, C divided into angles of 20 degrees and 120 degrees around
From the three directions of the wire rods 22a, 22b, 22c to the weight 21
It is a suspended structure. With this configuration, the weight 21 is in a suspended state, and it is possible to detect acceleration in all directions applied to the weight 21.

【0031】更に,この図5の構成において,各固定端
24z,24a,24b,24cの相関位置関係が,初
期設定位置関係から変化した場合,その位置関係に応じ
た各線材の抵抗値変化として検出されるので,全方向の
変位センサとして利用が可能である。
Further, in the configuration of FIG. 5, when the correlation positional relationship between the fixed ends 24z, 24a, 24b, and 24c changes from the initial setting positional relationship, the resistance value of each wire rod changes according to the positional relationship. Since it is detected, it can be used as an omnidirectional displacement sensor.

【0032】以上説明した本発明の実施例1〜3では,
超弾性を示すTi−Ni合金を用いた例のみを示した
が,形状記憶効果を示すTiN合金においてもひずみ量
1.5〜2.0%以下であれば,弾性材として十分対応
でき,他のCu−Zn系を含む形状記憶合金においても
本発明は適用可能であることは明らかである。
In the first to third embodiments of the present invention described above,
Although only an example using a Ti-Ni alloy exhibiting superelasticity is shown, a TiN alloy exhibiting a shape memory effect can be sufficiently used as an elastic material if the strain amount is 1.5 to 2.0% or less. It is obvious that the present invention can be applied to the shape memory alloy containing the Cu-Zn system.

【0033】[0033]

【発明の効果】以上述べたように,本発明によると,セ
ンサ部材の重りを懸架するための線材に超弾性特性を示
す形状記憶合金を用い,その抵抗値の変化から変位,あ
るいは加速度を計測するので,感度が高く,直線性も広
くとれ,信頼性も高い変位センサ,加速度センサ,及び
傾斜計を提供することができる。
As described above, according to the present invention, a wire for suspending a weight of a sensor member is made of a shape memory alloy exhibiting superelastic characteristics, and displacement or acceleration is measured from a change in its resistance value. Therefore, it is possible to provide a displacement sensor, an acceleration sensor, and an inclinometer which have high sensitivity, wide linearity, and high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1を説明するための概念図であ
る。
FIG. 1 is a conceptual diagram for explaining a first embodiment of the present invention.

【図2】本発明の実施例1に用いられる形状記憶合金の
温度に対する抵抗変化率のグラフである。
FIG. 2 is a graph of the resistance change rate with respect to temperature of the shape memory alloy used in Example 1 of the present invention.

【図3】本発明の実施例1に用いられる形状記憶合金の
歪み量(変形率)に対する抵抗変化率のグラフである。
FIG. 3 is a graph of resistance change rate with respect to strain amount (deformation rate) of the shape memory alloy used in Example 1 of the present invention.

【図4】本発明の実施例2におけるセンサ部材の構成図
である。
FIG. 4 is a configuration diagram of a sensor member according to a second embodiment of the present invention.

【図5】本発明の実施例3におけるセンサ部材の構成図
である。
FIG. 5 is a configuration diagram of a sensor member according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,11,21 重り 2a,2b,12a,12b,12c,22a,22
b,22c,22z線材 3a,3b,13a,13b,13c,23a,23
b,23c,23z検出回路 4a,4b,14a,14b,14c,24a,24
b,24c,24z固定端 6 電気導線 7 端子
1,11,21 Weights 2a, 2b, 12a, 12b, 12c, 22a, 22
b, 22c, 22z wire rods 3a, 3b, 13a, 13b, 13c, 23a, 23
b, 23c, 23z detection circuit 4a, 4b, 14a, 14b, 14c, 24a, 24
b, 24c, 24z Fixed end 6 Electric wire 7 Terminal

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 中央に重りを配置し,前記重りを少なく
とも2方向に歪みによって電気抵抗が変化する線材で懸
架し,前記重りの移動に伴って生じる前記線材の電気抵
抗の変化を検出することを特徴とするセンサ部材。
1. A weight is arranged in the center, the weight is suspended by a wire rod whose electric resistance changes in at least two directions, and the change in the electric resistance of the wire rod caused by the movement of the weight is detected. A sensor member characterized by.
【請求項2】 請求項1記載のセンサ部材において,前
記重りを懸架した2つ以上の線材を,同一性状,同一断
面寸法とすることで,被検出線材部の環境条件による電
気抵抗変動を相殺することを特徴とするセンサ部材。
2. The sensor member according to claim 1, wherein the two or more wire rods on which the weight is suspended have the same property and the same cross-sectional dimension, thereby canceling the electric resistance fluctuation due to the environmental conditions of the detected wire rod portion. A sensor member characterized by being.
【請求項3】 請求項1記載のセンサ部材において,前
記重りを懸架した2つ以上の線材の各々に,電流を流す
ことで,被検出線材部が電流による発熱を伴う電気抵抗
変動を相殺することを特徴とするセンサ部材。
3. The sensor member according to claim 1, wherein an electric current is applied to each of the two or more wire rods on which the weight is suspended, so that the detected wire rod portion cancels the electric resistance fluctuation caused by the heat generation by the electric current. A sensor member characterized by the above.
【請求項4】 請求項1記載のセンサ部材において,前
記重りを懸架する線材の外形は丸線,異形線,リボン
線,あるいは薄膜であり,前記線材の外観形状は,直線
状,ヘリカルコイル状,或いはジグザグコイル状である
ことを特徴とするセンサ部材。
4. The sensor member according to claim 1, wherein the wire rod for suspending the weight has a round wire, an irregular wire, a ribbon wire, or a thin film, and the wire rod has an outer shape of a straight line or a helical coil. Or a sensor member having a zigzag coil shape.
【請求項5】 請求項1記載のセンサ部材において,前
記懸架された線材に加えられる歪みは,引張り歪み,曲
げ歪み,せん断歪み,及び圧縮歪みの中の何れかである
ことを特徴とするセンサ部材。
5. The sensor member according to claim 1, wherein the strain applied to the suspended wire rod is one of tensile strain, bending strain, shear strain, and compressive strain. Element.
【請求項6】 請求項1記載のセンサ部材において,前
記重りを懸架する線材を,形状記憶合金で構成したこと
を特徴とするセンサ部材。
6. The sensor member according to claim 1, wherein the wire for suspending the weight is made of a shape memory alloy.
【請求項7】 請求項1記載のセンサ部材において,前
記線材を常用温度で超弾性を示すNi−Ti系形状記憶
合金で構成したことを特徴とするセンサ部材。
7. The sensor member according to claim 1, wherein the wire is made of a Ni—Ti-based shape memory alloy that exhibits superelasticity at a normal temperature.
【請求項8】 請求項1乃至7の内のいずれかに記載の
センサ部材を用いて,予め定められた抵抗値と変位量と
の関係に基づき,変位量を求めることを特徴とする変位
センサ。
8. A displacement sensor using the sensor member according to claim 1 to obtain a displacement amount based on a relationship between a predetermined resistance value and displacement amount. .
【請求項9】 請求項1乃至7の内のいずれかに記載の
センサ部材を用いて,前記重りに加わる加速度の大き
さ,方向,各線材の抵抗値との関係に基づき,加速度を
求めることを特徴とする加速度センサ。
9. Using the sensor member according to any one of claims 1 to 7, to obtain the acceleration based on the magnitude of the acceleration applied to the weight, the direction, and the resistance value of each wire. Acceleration sensor characterized by.
【請求項10】 請求項1乃至7の内のいずれかに記載
のセンサ部材を用いて,予め定められた固定端間に於け
る傾斜角度と抵抗値との関係に基づき,傾斜角を求める
ことを特徴とする傾斜計。
10. Using the sensor member according to any one of claims 1 to 7, to obtain an inclination angle based on a relationship between a predetermined inclination angle between the fixed ends and a resistance value. Inclinometer characterized by.
JP32723694A 1994-12-28 1994-12-28 Displacement sensor, acceleration sensor and clinometer Pending JPH08184404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32723694A JPH08184404A (en) 1994-12-28 1994-12-28 Displacement sensor, acceleration sensor and clinometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32723694A JPH08184404A (en) 1994-12-28 1994-12-28 Displacement sensor, acceleration sensor and clinometer

Publications (1)

Publication Number Publication Date
JPH08184404A true JPH08184404A (en) 1996-07-16

Family

ID=18196853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32723694A Pending JPH08184404A (en) 1994-12-28 1994-12-28 Displacement sensor, acceleration sensor and clinometer

Country Status (1)

Country Link
JP (1) JPH08184404A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006105698A1 (en) * 2005-04-08 2006-10-12 Ronghua Tang Small displacement sensing method and device
JP2010054211A (en) * 2008-08-26 2010-03-11 Konica Minolta Opto Inc Inspection device and inspection method
CN102589512A (en) * 2011-12-31 2012-07-18 赤峰百润科技有限公司 Method, device and system for measuring skew deformation amount of tower of wind generating set
WO2014062672A1 (en) * 2012-10-15 2014-04-24 Gangbing Song Fiber bragg grating systems and methods for moisture detection

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006105698A1 (en) * 2005-04-08 2006-10-12 Ronghua Tang Small displacement sensing method and device
JP2010054211A (en) * 2008-08-26 2010-03-11 Konica Minolta Opto Inc Inspection device and inspection method
CN102589512A (en) * 2011-12-31 2012-07-18 赤峰百润科技有限公司 Method, device and system for measuring skew deformation amount of tower of wind generating set
WO2014062672A1 (en) * 2012-10-15 2014-04-24 Gangbing Song Fiber bragg grating systems and methods for moisture detection
US9222877B2 (en) 2012-10-15 2015-12-29 University Of Houston Fiber Bragg grating systems and methods for moisture detection

Similar Documents

Publication Publication Date Title
US7221144B2 (en) Micro-electromechanical system (MEMS) based current and magnetic field sensor having improved sensitivities
TWI277735B (en) Semiconductor acceleration sensor
US20020062692A1 (en) Method and sensor for detecting strain using shape memory alloys
US5508676A (en) Strain gauge on a flexible support and transducer equipped with said gauge
US5184520A (en) Load sensor
JP2002525599A (en) Electromechanical transducer
Prudenziati et al. Piezoresistive Properties of Thick‐film Resistors An Overview
US6546806B1 (en) Multi-range force sensors utilizing shape memory alloys
JPH08184404A (en) Displacement sensor, acceleration sensor and clinometer
GHOSH AN INTRODUCTION TO LINEAR ALGEBRA
US4475409A (en) Transducer for dynamometer
CN111238361A (en) Graphene temperature strain sensor
JP6535367B2 (en) Temperature measurement device using strain gauge
JP7268333B2 (en) Strain sensing element and mechanical quantity sensor
JP6977157B2 (en) Sheet resistance and thin film sensor
JP4988938B2 (en) Temperature sensitive strain sensor
CN112710405B (en) Temperature sensor
US3305816A (en) Ternary alloy strain gauge
JPS6216368B2 (en)
JP6801155B2 (en) Membrane register and thin film sensor
US3305817A (en) Electric strain gauge having platinumpalladium-molybdenum alloy filament
US5979243A (en) Microfabricated multifunction strain-temperature gauge
JPS6212458B2 (en)
JPS6312930A (en) Force detecting element
US5437745A (en) High copper alloy composition for a thermocouple extension cable

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031105