JPH0818304A - Band pass filter consisting of double mode dielectric resonator - Google Patents

Band pass filter consisting of double mode dielectric resonator

Info

Publication number
JPH0818304A
JPH0818304A JP16733694A JP16733694A JPH0818304A JP H0818304 A JPH0818304 A JP H0818304A JP 16733694 A JP16733694 A JP 16733694A JP 16733694 A JP16733694 A JP 16733694A JP H0818304 A JPH0818304 A JP H0818304A
Authority
JP
Japan
Prior art keywords
mode
outer conductor
double
resonance
coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16733694A
Other languages
Japanese (ja)
Inventor
Hiroshi Hatanaka
博 畠中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENGIYOU KOSAKU KK
Nihon Dengyo Kosaku Co Ltd
Original Assignee
NIPPON DENGIYOU KOSAKU KK
Nihon Dengyo Kosaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENGIYOU KOSAKU KK, Nihon Dengyo Kosaku Co Ltd filed Critical NIPPON DENGIYOU KOSAKU KK
Priority to JP16733694A priority Critical patent/JPH0818304A/en
Publication of JPH0818304A publication Critical patent/JPH0818304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To realize the band pass filter which has the temperature characteristic improved and stabilized and is superior in quake-proof property. CONSTITUTION:A resonance element main body 2R consisting of a part which has a relatively large diameter, a supporting part consisting of a part 2S which has a relatively small diameter, and a flange part 2F are collected into one body by the same solid state dielectric material to form a double mode dielectric resonance element 2. The flange part 2F of the double mode dielectric resonance element 2 is attached to an end wall 14 and a partition of an outer conductor. Resonance frequency fine adjustment elements 5 and 6 of the H mode and the V mode, an inter-mode coupling adjustment element 7 and an input/output coupling element 3 are attached to a cylindrical partition 11 of the outer conductor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、極超短波帯(UHF)
ないしセンチ波帯(SHF)における無線通信装置又は
放送装置等の各種通信機器の構成素子として好適な、二
重モ−ド誘電体共振器を用いて構成した帯域通過ろ波器
に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to the ultra high frequency band (UHF).
Also, the present invention relates to a bandpass filter constituted by using a double mode dielectric resonator, which is suitable as a constituent element of various communication devices such as a wireless communication device or a broadcasting device in the centimeter wave band (SHF).

【0002】[0002]

【従来の技術】図23(a)は、従来の二重モ−ド誘電
体共振器より成る帯域通過ろ波器を示す断面図[図23
(b)のC−C断面図]、図23(b)は、図23
(a)のA−A端面図、図23(c)は、図23(a)
のB−B端面図で、11及び12は外部導体の円筒状側壁、
13及び14は外部導体の端壁、121 及び122 は二重モ−ド
誘電体共振素子、131 ないし134 は船形の支持体で、例
えばポリテトラフルオロエチレン(所謂テフロン)又は
ポリスチレン等の誘電率の低い固体誘電体より成る。外
部導体の円筒状側壁11と支持体131 及び132 との間、外
部導体の円筒状側壁12と支持体133 及び134 との間は、
適当な接着剤で接着固定してある。51、52及び53、54
Hモ−ドの共振周波数微調整素子、61、62及び63、64
Vモ−ドの共振周波数微調整素子、71、72及び73、74
モ−ド間結合調整素子で、素子51及び52の共通軸芯と素
子61及び62の共通軸芯が互いに直交し、素子53及び54
共通軸芯と素子63及び64の共通軸芯が互いに直交し、素
子71及び72の共通軸芯と素子73及び74の共通軸芯が互い
に直交すると共に、素子51及び52の共通軸芯と素子71
び72の共通軸芯が45°の角度差で交差するように取り付
けてある。8Vは入力(又は出力)結合ル−プ、4Vは入力
(又は出力)端子、82V は出力(又は入力)結合ル−
プ、42V は出力(又は入力)端子、15は隔壁、9は段間
結合孔隙である。図24は、従来の分波器を示す図で、
F1及びF2はそれぞれ従来の帯域通過ろ波器で、各通過中
心周波数を互いに適宜異ならせてある。L1及びL2は、帯
域通過ろ波器F1及びF2の各入出力端子をT型コネクタTC
に接続する接続線、CAは共通の空中線等に接続されるケ
−ブルである。
2. Description of the Related Art FIG. 23 (a) is a sectional view showing a conventional band-pass filter made of a double mode dielectric resonator [FIG.
23B is a cross-sectional view taken along line CC of FIG. 23B.
23A is an end view taken along line AA of FIG. 23A, and FIG.
Cylindrical side wall of the in B-B end view, 1 1 and 1 2 is the external conductor,
1 3 and 1 4 is external conductor of the end wall, 12 1 and 12 2 are dual mode - de dielectric resonance element, 13 1 to 13 4 in support of the boat, such as polytetrafluoroethylene (so-called Teflon) or It is made of a solid dielectric having a low dielectric constant such as polystyrene. Between the outer conductor cylindrical side wall 1 1 of the support 13 1 and 13 2, between the cylindrical side wall 1 2 of the outer conductor and the support 13 3, and 13 4,
It is fixed with an appropriate adhesive. 5 1 , 5 2 and 5 3 , 5 4 are H-mode resonance frequency fine adjustment elements, 6 1 , 6 2 and 6 3 , 6 4 are V-mode resonance frequency fine adjustment elements, 7 1 , 7 2 and 7 3 , 7 4 are inter-mode coupling adjusting elements, the common axis of the elements 5 1 and 5 2 and the common axis of the elements 6 1 and 6 2 are orthogonal to each other, and the elements 5 3 and 5 4 The common axis and the common axis of the elements 6 3 and 6 4 are orthogonal to each other, the common axis of the elements 7 1 and 7 2 and the common axis of the elements 7 3 and 7 4 are orthogonal to each other, and the element 5 1 and The common axis of 5 2 and the common axis of the elements 7 1 and 7 2 are mounted so as to intersect each other with an angle difference of 45 °. 8 V is an input (or output) coupling loop, 4 V is an input (or output) terminal, 82 V is an output (or input) coupling loop
, 42 V is an output (or input) terminal, 15 is a partition wall, and 9 is an inter-stage coupling hole. FIG. 24 is a diagram showing a conventional duplexer,
Each of F 1 and F 2 is a conventional bandpass filter, and the respective pass center frequencies are appropriately different from each other. L 1 and L 2 connect the input / output terminals of the band pass filter F 1 and F 2 to the T-type connector TC
CA is a cable connected to a common antenna or the like.

【0003】[0003]

【発明が解決しようとする課題】図23に示した従来の
二重モ−ド誘電体共振器より成る帯域通過ろ波器におい
ては、誘電率の低い固体誘電体より成る支持体131 ない
し134 によって、二重モ−ド誘電体共振素子121 及び12
2 を所要箇所に支持するように構成してあるが、一般
に、低誘電率の固体誘電体は温度変化に対する線膨張係
数が大で、又、誘電率の温度特性に劣るため、このよう
な固体誘電体によって共振素子を支持するように構成し
た従来の共振器を用いて構成した帯域通過ろ波器は、温
度特性を良好安定にすることが極めて困難である。又、
上記従来の共振器を用いて分波器を構成するときは、温
度特性を良好安定にすることが極めて困難なばかりでな
く、図24に示した帯域通過ろ波器F1の入出力結合ル−
プの接地端から入出力結合ル−プ及び接続線L1を経由し
てT型コネクタTCの分岐点に到る長さを電気長で、帯域
通過ろ波器F2の通過中心周波数に対応する波長の1/4
はその奇数倍に形成すると共に、帯域通過ろ波器F2の入
出力結合ル−プの接地端から入出力結合ル−プ及び接続
線L2を経由してT型コネクタTCの分岐点に到る長さを電
気長で、帯域通過ろ波器F1の通過中心周波数に対応する
波長の1/4 又はその奇数倍に形成する必要がある。即
ち、従来の分波器においては、互いに長さの異なる外付
けの接続線L1及びL2を必要とするから全体が複雑大型と
なるのを避けることができない。
In the conventional band-pass filter composed of the double-mode dielectric resonator shown in FIG. 23, the supports 13 1 to 13 composed of a solid dielectric having a low dielectric constant are used. The dual mode dielectric resonant elements 12 1 and 12
2 is configured to be supported at a required location, but in general, a solid dielectric with a low dielectric constant has a large coefficient of linear expansion with respect to temperature changes, and is inferior in temperature characteristics of the dielectric constant. It is extremely difficult to make the temperature characteristics of a bandpass filter formed by using a conventional resonator configured to support a resonant element by a dielectric material good and stable. or,
When a duplexer is constructed using the above-mentioned conventional resonator, it is extremely difficult to stabilize the temperature characteristics well, and the input / output coupling filter of the band pass filter F 1 shown in FIG. −
The length from the ground end of the loop to the branch point of the T-type connector TC via the input / output coupling loop and the connecting line L 1 is the electrical length and corresponds to the pass center frequency of the band pass filter F 2. and forming a 1/4 or an odd multiple thereof of wavelengths, the band-pass unit F 2 of the input and output coupling Le - flop input and output coupling Le from ground end - T type via the flop and the connection line L 2 the reaching the branch point of the connector TC length in electrical length, it is necessary to form a 1/4 or an odd multiple thereof of a wavelength corresponding to the passing center frequency of the band-pass device F 1. That is, in the conventional duplexer, external connecting lines L 1 and L 2 having different lengths from each other are required, so that it is inevitable that the whole becomes complicated and large.

【0004】[0004]

【課題を解決するための手段】本発明は、直径の比較的
大なる部分より成る共振素子本体と、直径の比較的小な
る部分より成る支持部と、この支持部を介して共振素子
本体と反対側に設けられ、有底円筒状外部導体の端壁又
は外部導体の軸方向の中間部に設けられる隔壁に取り付
けられるフランジ部とを、同一固体誘電体材で一体に形
成して成る二重モ−ド誘電体共振素子を備えた二重モ−
ド誘電体共振器より成る帯域通過ろ波器を実現すること
により、従来の帯域通過ろ波器における上記欠点を除こ
うとするものである。
SUMMARY OF THE INVENTION According to the present invention, a resonance element body having a relatively large diameter portion, a support portion having a relatively small diameter portion, and a resonance element body via the support portion are provided. A double-layer structure that is integrally formed of the same solid dielectric material with a flange portion that is provided on the opposite side and that is attached to the end wall of the bottomed cylindrical outer conductor or the partition wall that is provided at the intermediate portion in the axial direction of the outer conductor. Dual mode with mode dielectric resonator
The purpose of the present invention is to eliminate the above-mentioned drawbacks of conventional bandpass filters by realizing a bandpass filter composed of a dielectric resonator.

【0005】[0005]

【実施例】図1(a)は、本発明の一実施例を示す断面
図[図1(b)のB−B断面図]、図1(b)は、図1
(a)のA−A端面図で、11は外部導体の円筒状側壁、
13及び14は外部導体の端壁、2は二重モ−ド誘電体共振
素子で、図1(c)に示すように、円柱状の共振素子本
体2R、本体2Rより直径の小なる支持部2S及びフランジ部
2Fより成ると共に、これらは同一の固体誘電体材で一体
に形成され、本体2Rの直径Dと軸長Hの積D×Hは、本
体2R、支持部2S及びフランジ部2Fを一体に形成する固体
誘電体の材質、比誘電率、使用モ−ド及び共振周波数等
に応じて定められる。即ち、上記本体2Rの直径Dと軸長
Hの積D×Hを適当に選ぶことによって、図2に電磁界
分布を示すようなEH11テ゛ルタ モ−ド誘電体共振素子、又
は図3に電磁界分布を示すようなHE11テ゛ルタ モ−ド誘電
体共振素子を形成することができる。図2及び図3にお
いて、矢印を付した実線は電界分布を示し、矢印を付し
た破線は磁界分布を示す。図2(a)及び図3(a)
は、共振素子本体2R部分のみを側面から見た図、図2
(b)及び図3(b)は、共振素子本体2R部分を正面か
ら見た図、即ち、図1(C)の左側から見た図である。
図1(c)に示した支持部2Sの直径dを λ/(2ε1/2)
>d となるように定めると、支持部2Sは遮断領域とな
り、支持部2Sが共振作用に影響を与えるおそれはほとん
どない。支持部2Sの直径dは、上記条件の他、共振素子
本体2Rを支持するのに十分な機械的強度を持たせること
も考慮に入れて定める。フランジ部2Fの周辺部には、止
め螺子の挿通孔を適宜数穿ち、図1(a)に示すよう
に、外部導体の端壁14(又は13)に止め螺子によってフ
ランジ部2Fを固定し、共振素子2を所要位置に支持させ
る。次に、3Hは入力(又は出力)結合容量素子、3Vは出
力(又は入力)結合容量素子で、それぞれ例えばプロ−
ブより成る。4Hは入力(又は出力)端子、4Vは出力(又
は入力)端子で、それぞれ例えば同軸接栓より成る。52
はHモ−ドの共振周波数微調整素子、62はVモ−ドの共
振周波数微調整素子、71及び72はモ−ド間結合調整素子
である。素子3H及び素子52の共通軸芯と素子3V及び素子
62の共通軸芯とが互いに直交すると共に、素子71及び72
の共通軸芯と素子3H及び素子52の共通軸芯とが45°の角
度差で交差するように設けてある。素子52、62、71及び
72等は、外部導体内への挿入長(以下、管内挿入長と称
する)を自在かつ微細に調整でき、所要の管内挿入長に
おいて固定可能な、例えば外部導体の円筒状側壁に螺合
させた金属螺子及びロックナットより成る。この点は、
以下、詳述する各実施例における共振周波数微細調整素
子及びモ−ド間結合調整素子についても同様である。
1 (a) is a sectional view showing an embodiment of the present invention [a sectional view taken along line BB of FIG. 1 (b)], and FIG.
In the A-A end view of (a), 11 is a cylindrical side wall of the outer conductor,
1 3 and 1 4 is external conductor of the end walls, 2 double mode - in de dielectric resonant element, as shown in FIG. 1 (c), a cylindrical resonator body 2R, become smaller in diameter than the body 2R Support part 2S and flange part
2F, which are integrally formed of the same solid dielectric material, and the product D × H of the diameter D and the axial length H of the main body 2R integrally forms the main body 2R, the support portion 2S and the flange portion 2F. It is determined according to the material of the solid dielectric, the relative permittivity, the mode used, the resonance frequency, and the like. That is, by appropriately selecting the product D × H of diameter D and axial length H of the body 2R, EH 11 delta shown an electromagnetic field distribution in FIG. 2 mode - de dielectric resonance element, or the electromagnetic 3 it is possible to form the de-dielectric resonance element - HE 11 delta mode as shown the field distribution. 2 and 3, a solid line with an arrow shows an electric field distribution, and a broken line with an arrow shows a magnetic field distribution. 2 (a) and 3 (a)
Is a side view of only the 2R part of the resonant element body.
FIGS. 3B and 3B are views of the resonant element body 2R viewed from the front, that is, the left side of FIG. 1C.
The diameter d of the supporting portion 2S shown in FIG. 1 (c) is λ / (2ε 1/2 ).
When it is determined that> d, the supporting portion 2S serves as a blocking area, and there is almost no possibility that the supporting portion 2S affects the resonance action. In addition to the above conditions, the diameter d of the supporting portion 2S is determined in consideration of having sufficient mechanical strength to support the resonant element body 2R. An appropriate number of through holes for a set screw are formed in the peripheral portion of the flange 2F, and as shown in FIG. 1 (a), the flange 2F is fixed to the end wall 1 4 (or 1 3 ) of the outer conductor by the set screw. Then, the resonance element 2 is supported at a required position. Next, 3 H is an input (or output) coupling capacitance element, and 3 V is an output (or input) coupling capacitance element.
It consists of 4 H is an input (or output) terminal, and 4 V is an output (or input) terminal, each of which is, for example, a coaxial plug. 5 2
The H mode - de of the resonance frequency fine-tuning element, 6 2 V mode - de of the resonance frequency fine-tuning element, is 7 1 and 7 2 mode - a coupling adjustment element between de. Element 3 H and element 5 2 common axis and element 3 V and element
The common axis of 6 2 is orthogonal to each other, and the elements 7 1 and 7 2
A common axis of the common axis and the element 3 H and the element 5 2 are provided so as to intersect at an angle difference of 45 °. Elements 5 2 , 6 2 , 7 1 and
7 2 etc., the insertion length into the outer conductor (hereinafter referred to as the pipe insertion length) can be freely and finely adjusted, and can be fixed at the required pipe insertion length, for example, screwed onto the cylindrical side wall of the outer conductor. It consists of a metal screw and a lock nut. This point is
The same applies to the resonance frequency fine adjustment element and the inter-mode coupling adjustment element in each embodiment described in detail below.

【0006】図1(c)について説明したような二重モ
−ド誘電体共振素子を備えた共振器より成る本発明帯域
通過ろ波器においては、例えば端子4H及び容量素子3H
介して入力を加えると、図4(a)に示す電磁界(Hモ
−ド)が発生し、モ−ド間結合調整素子71及びび72の管
内挿入長を適当に調整すると、図4(b)に示す電磁界
を生じ、この電磁界によって図4(c)に示す電磁界
(Vモ−ド)が励振される。したがって、Hモ−ドの共
振周波数微調整素子52及びVモ−ドの共振周波数微調整
素子62の各管内挿入長を適当に調整することによって、
二重モ−ドの共振が行われる。図4(c)に示した電磁
界は、容量素子3Vと結合して端子4Vから出力される。図
4における矢印を付した実線は電界を、矢印を付した破
線は磁界を、それぞれ示す。図5は、上記帯域通過ろ波
器の等価回路図で、C1及びC2は共振素子2の大きさ、比
誘電率、外部導体と共に形成する共振器全体の大きさ、
共振周波数微調整素子52及び62の大きさ等によって定ま
る等価容量、L1及びL2は共振素子2の大きさ、比誘電
率、共振器全体の大きさ等によって定まる等価インダク
タンス、C12 はモ−ド間結合調整素子71及び72によって
形成される段間結合容量、CT1 は容量素子3Hによって形
成される入力(又は出力)結合容量、C2T は容量素子3V
によって形成される出力(又は入力)結合容量である。
In the band pass filter of the present invention comprising a resonator having a double mode dielectric resonance element as described with reference to FIG. 1C, for example, a terminal 4 H and a capacitive element 3 H are used. the addition of input Te, the electromagnetic field shown in FIG. 4 (a) (H mode - de) is generated, mode - when properly adjust the tube insertion length of the coupling adjusting elements 71 and beauty 7 2 between de, 4 The electromagnetic field shown in FIG. 4B is generated, and the electromagnetic field (V mode) shown in FIG. 4C is excited by this electromagnetic field. Thus, H mode - by suitably adjusting each tube insertion length of the resonance frequency fine-tuning element 6 2 de, - de of the resonance frequency fine-tuning element 5 2 and V mode
Double mode resonance occurs. The electromagnetic field shown in FIG. 4C is coupled with the capacitive element 3 V and output from the terminal 4 V. A solid line with an arrow in FIG. 4 indicates an electric field, and a broken line with an arrow indicates a magnetic field. FIG. 5 is an equivalent circuit diagram of the bandpass filter, where C 1 and C 2 are the size of the resonant element 2, the relative permittivity, and the size of the entire resonator formed together with the outer conductor.
Equivalent capacitance determined by the size of the resonance frequency fine adjustment elements 5 2 and 6 2 , etc., L 1 and L 2 are equivalent inductances determined by the size of the resonance element 2, the relative permittivity, the size of the entire resonator, C 12 the motor - interstage coupling capacitance formed by the de linkage adjustment element 71 and 7 2, C T1 is input that is formed by the capacitor 3 H (or output) binding capacity, C 2T capacitor element 3 V
Is the output (or input) coupling capacitance formed by

【0007】図6(a)は、本発明の他の実施例を示す
断面図[図6(b)のB−B断面図]、図6(b)は、
図6(a)のA−A端面図で、本実施例は、入力(又は
出力)結合素子を、外部導体の端壁13に設けた結合ル−
プ8Hで形成すると共に、図1における容量素子3HをHモ
−ドの共振周波数微調整素子51で置き換えたもので、他
の符号及び構成は図1と同じである。尚、図6以下の各
図における外部導体のフランジ部の機械的結合用止め螺
子は、これを図示するのを省いてある。本実施例におい
ては、例えば結合ル−プ8Hに入力電流が流れると、結合
ル−プ8Hの周りに生じた電磁界が、共振素子2と磁気結
合して図4(a)に示す電磁界(Hモ−ド)を生じ、以
下、前実施例と同様にして図4(b)に示す電磁界が発
生し、この電磁界によって図4(c)に示す電磁界(V
モ−ド)が励振され、二重モ−ドの共振が行われ、図4
(c)に示した電磁界が容量素子3Vに結合し、端子4V
ら出力される。図7は、図6に示した本発明帯域通過ろ
波器の等価回路図で、MT1 は入力(又は出力)磁気結合
係数で、他の符号は、図5と同じである。
FIG. 6 (a) is a sectional view showing another embodiment of the present invention [a sectional view taken along the line BB of FIG. 6 (b)], and FIG. 6 (b) is
In A-A end view in FIG. 6 (a), the present embodiment, the input (or output) coupling element, provided on the end wall 1 3 outer conductor coupling Le -
And forming at flop 8 H, the capacitor 3 H in FIG. 1 H mode - which was replaced by de resonance frequency fine-tuning element 5 1, other numerals and configurations are the same as FIG. It should be noted that the set screw for mechanical coupling of the flange portion of the outer conductor in each of FIGS. 6 and below is omitted from illustration. In the present embodiment, for example, binding Le - flows the input current to the flop 8 H, bond Le - electromagnetic field generated around the flop 8 H is shown in FIG. 4 (a) and magnetically coupled with the resonator element 2 An electromagnetic field (H mode) is generated, and thereafter, the electromagnetic field shown in FIG. 4 (b) is generated in the same manner as in the previous embodiment, and the electromagnetic field (V) shown in FIG. 4 (c) is generated by this electromagnetic field.
Mode) is excited, and double mode resonance is performed.
The electromagnetic field shown in (c) is coupled to the capacitive element 3 V and output from the terminal 4 V. FIG. 7 is an equivalent circuit diagram of the bandpass filter of the present invention shown in FIG. 6, where M T1 is an input (or output) magnetic coupling coefficient, and other symbols are the same as those in FIG.

【0008】図8(a)もまた本発明の他の実施例を示
す断面図[図8(b)のD−D断面図]、図8(b)
は、図8(a)のA−A端面図、図8(c)は、図8
(a)のB−B端面図で、21及び22はそれぞれ図1
(c)に示した共振素子と同様の二重モ−ド誘電体共振
素子で、共振素子21のフランジ部は、外部導体の円筒状
側壁11と12の間に介在させた導体板より成る隔壁15に取
り付け、共振素子22のフランジ部は、外部導体の端壁14
に取り付けると共に、隔壁15のほぼ中央に図9[図8
(a)のC−C端面図]に示すような十字型の結合孔隙
9を穿ってある。53及び54はHモ−ドの共振周波数微調
整素子、64はVモ−ドの共振周波数微調整素子、73及び
74はモ−ド間結合調整素子、32V は出力(又は入力)結
合容量素子で、例えばプロ−ブより成る。42V は出力
(又は入力)端子で、例えば同軸接栓より成る。素子53
及び54の共通軸芯と容量素子32V 及び素子64の共通軸芯
とが互いに直交し、素子73及び74の共通軸芯と素子53
び54の共通軸芯とが45°の角度差で交差すると共に、素
子73及び74の共通軸芯が素子71及び72の共通軸芯と直交
し、素子53及び54の共通軸芯と素子51及び52の共通軸芯
とが平行となるように形成してある。他の符号及び構成
は、図1及び図6と同様である。
FIG. 8 (a) is also a sectional view showing another embodiment of the present invention [a sectional view taken along the line DD of FIG. 8 (b)], FIG. 8 (b).
8A is an end view of FIG. 8A, and FIG.
In B-B end view of (a), respectively, 2 1 and 2 2 Figure 1
(C) the same dual mode resonant element shown - in de dielectric resonance element, the flange portion of the resonant element 2 1, the conductor plate is interposed between the cylindrical side wall 1 1 and 1 2 of the outer conductor Attached to the partition wall 15 of the resonance element 2 2 and the flange portion of the resonance element 2 2 is an end wall 1 4 of the outer conductor.
Figure 9 attached with, substantially at the center of the partition wall 1 5 in FIG. 8
C-C end view of (a)], a cross-shaped coupling hole 9 is formed. 5 3 and 5 4 are resonance mode fine adjustment elements for H mode, 6 4 are resonance frequency fine adjustment elements for V mode, 7 3 and
7 4 is an inter-mode coupling adjusting element, 32 V is an output (or input) coupling capacitive element, and is composed of, for example, a probe. 42 V is an output (or input) terminal, and is composed of, for example, a coaxial plug. Element 5 3
And 5 4 and the common axis of the capacitive element 3 2V and the element 6 4 are orthogonal to each other, and the common axis of the elements 7 3 and 7 4 and the common axis of the elements 5 3 and 5 4 are 45 While intersecting at an angle difference of °, the common axes of the elements 7 3 and 7 4 are orthogonal to the common axes of the elements 7 1 and 7 2 , and the common axes of the elements 5 3 and 5 4 and the elements 5 1 and 5 It is formed so that the common axis of 2 is parallel. Other reference numerals and configurations are the same as those in FIGS. 1 and 6.

【0009】例えば端子4V及び容量素子3Vを介して入力
を加えると、図10(a)に示す電磁界(Vモ−ド)が
生じ、モ−ド間結合調整素子71及び72の管内挿入長の調
整によって図10(b)に示す電磁界が発生し、この電
磁界によって図10(c)に示す電磁界(Hモ−ド)が
励振され、共振周波数微調整素子51、52及び62の各管内
挿入長の調整によって二重モ−ドの共振が行われる。図
10(c)に示した電磁界は、隔壁15に穿った結合孔隙
9を励振し、共振素子22を備えた共振器内に図10
(d)に示す電磁界を発生させる。モ−ド間結合調整素
子73及び74の管内挿入長の調整によって図10(e)に
示す電磁界が発生し、この電磁界によって図10(f)
に示す電磁界が励振され、共振周波数微調整素子53、54
及び64の各管内挿入長の調整によって二重モ−ドの共振
が行われる。図10(f)に示した電磁界は、容量結合
素子32V に結合し、端子42V から出力される。図10に
おける矢印を付した実線は電界を、矢印を付した破線は
磁界を、それぞれ示す。図10(a)に示した電磁界と
図10(f)に示した電磁界は、隔壁15に穿った結合孔
隙9における水平方向の短い孔隙を介して互いに逆相で
副結合し、有極形の帯域通過ろ波器を形成する。結合孔
隙9における垂直方向の長い孔隙の長さと幅に応じて通
過域の電気的特性が定まり、水平方向の短い孔隙の長さ
と幅に応じて有極形帯域通過ろ波器における減衰極の周
波数位置が定まる。結合孔隙9の輪郭形状を、例えば垂
直方向のみの矩形又は垂直方向の細長い楕円形に形成す
ることによって、図10(a)に示した電磁界と図10
(f)に示した電磁界とを結合させることなく、無極形
の帯域通過ろ波器を形成することができ、結合孔隙9を
十字型に形成した場合においても、垂直方向の孔隙の長
さと水平方向の孔隙の長さの比を適当に定めることによ
って、無極形の帯域通過ろ波器を形成することができ
る。
[0009] For example, via the terminals 4 V, and the capacitor 3 V adding input, 10 an electromagnetic field shown in (a) (V mode - de) occurs, mode - de linkage adjustment element 7 1 and 7 2 the electromagnetic field shown in FIG. 10 (b) generated by the tube insertion length of the adjustment, the electromagnetic field shown in FIG. 10 (c) by an electromagnetic field (H mode - de) are excited, the resonance frequency fine-tuning element 5 1 , dual mode by adjusting the 5 2 and the tube insertion length of 6 2 - resonance of de is performed. Electromagnetic field shown in FIG. 10 (c), to excite the bound pores 9 bored in the partition wall 1 5, Figure in the resonator having a resonant element 2 2 10
The electromagnetic field shown in (d) is generated. Mode - the electromagnetic field is generated that shown in FIG. 10 (e) by the coupling adjusting element 7 3 and 7 4 of tube insertion length adjustment between de, 10 by the electromagnetic field (f)
The electromagnetic field shown in is excited, and the resonance frequency fine adjustment elements 5 3 , 5 4
And double by each tube insertion length adjustments 6 4 mode - resonance of de is performed. Electromagnetic field shown in FIG. 10 (f) binds to the capacitive coupling element 3 2V, output from the terminal 4 2V. A solid line with an arrow in FIG. 10 indicates an electric field, and a broken line with an arrow indicates a magnetic field. Field shown in the electromagnetic field and Figure 10 (f) of FIG. 10 (a), and subcombinations in opposite phases to each other through a horizontal short pores in binding pores 9 bored in the partition wall 1 5, Yes Form a polar bandpass filter. The electrical characteristics of the pass band are determined according to the length and width of the vertical long pores in the coupled pores 9, and the frequency of the attenuation pole in the polar bandpass filter is determined according to the length and width of the short horizontal pores. The position is set. By forming the contour shape of the coupling pore 9 into, for example, a rectangle only in the vertical direction or an elongated elliptical shape in the vertical direction, the electromagnetic field shown in FIG.
An apolar band-pass filter can be formed without coupling with the electromagnetic field shown in (f), and even when the coupling pore 9 is formed in a cross shape, the length of the pore in the vertical direction is By appropriately setting the ratio of the lengths of the pores in the horizontal direction, an apolar bandpass filter can be formed.

【0010】図11は、図8に示した本発明帯域通過ろ
波器を有極形に形成した場合における等価回路図で、C1
及びC2は図8において共振素子21を内装した側の共振器
における共振素子21の大きさ、比誘電率、共振素子21
内装した側の共振器全体の大きさ、共振周波数微調整素
子51、52及び62の大きさ等によって定まる等価容量、C3
及びC4は図8において共振素子22を内装した側の共振器
における共振素子22の大きさ、比誘電率、共振素子22
内装した側の共振器全体の大きさ、共振周波数微調整素
子53、54及び64の大きさ等によって定まる等価容量、L1
及びL2は共振素子21の大きさ、比誘電率、共振素子21
内装した側の共振器全体の大きさ等によって定まる等価
インダクタンス、L3及びL4は共振素子22の大きさ、比誘
電率、共振素子22を内装した側の共振器全体の大きさ等
によって定まる等価インダクタンス、C23 は隔壁15に穿
った結合孔隙9における垂直方向の長い孔隙によって形
成される段間結合容量、C34 はモ−ド間結合調整素子73
及び74によって形成される段間結合容量、C4T は容量素
子32V によって形成される出力(又は入力)結合容量、
C14 及びC41 は、隔壁15に穿った結合孔隙9における水
平方向の短い孔隙によって形成される副結合容量で、他
の符号は図5と同様である。
[0010] Figure 11 is an equivalent circuit diagram in the case of forming the present invention the band-pass device shown in FIG. 8 Attenuation Poles, C 1
And C 2 the size of the resonant elements 2 1 on the side of the resonators interior resonance element 2 1 8, the dielectric constant, resonant element 2 1 interior was side resonators overall size, the resonance frequency fine Equivalent capacitance determined by the size of adjusting elements 5 1 , 5 2 and 6 2 , etc., C 3
And C 4 is the magnitude of the resonance element 2 2 on the side of the resonators interior resonance element 2 2 8, the dielectric constant, the resonance element 2 2 interior was side resonators overall size, the resonance frequency fine Equivalent capacitance determined by the size of adjusting elements 5 3 , 5 4 and 6 4 , etc., L 1
And L 2 resonant element 2 1 size, dielectric constant, equivalent inductance determined by the size of the entire resonator side who furnished the resonant element 2 1, L 3 and L 4 of the resonant element 2 2 size , dielectric constant, equivalent inductance determined by the size of the entire resonator side who furnished the resonant element 2 2, C 23 is interstage formed by a long pores of the vertical direction in the coupling pores 9 bored in the partition wall 1 5 Coupling capacitance, C 34 is inter-mode coupling adjustment element 7 3
And 7 4 is an inter-stage coupling capacitance, C 4T is an output (or input) coupling capacitance formed by the capacitive element 3 2V ,
C 14 and C 41 is a sub-coupling capacitance formed by the horizontal short pores in binding pores 9 bored in the partition wall 1 5, other reference numerals are the same as FIG.

【0011】尚、共振素子21を形成する固体誘電体材の
比誘電率が比較的高い場合には、共振素子21のフランジ
部を、隔壁15に直接取り付けると、隔壁15に穿った結合
孔隙9の一面は比較的比誘電率の高い固体誘電体材に接
し、結合孔隙9の他面は空気に接することとなり、結合
孔隙9の両面における比誘電率の差が大となって結合孔
隙9の近傍における電磁界に乱れを生じ、段間結合に悪
影響を及ぼすおそれが生ずる場合があるが、このような
場合には、図12[図8(a)と同様の断面図]に示す
ように、共振素子21のフランジ部と隔壁15の間にスペ−
サ10を介在させ、このスペ−サを、共振素子21の比誘電
率に比して低い比誘電率を有する誘電体板で形成するこ
とにより、隔壁15に穿った結合孔隙9の両側における比
誘電率の差を小にして電磁界の乱れを抑えることができ
る。又、スペ−サ10の厚さを適当に選定することによっ
て、不要モ−ドの発生するのを抑えることができる。10
1 は共振素子22のフランジ部と端壁14の間に介在させた
スペ−サで、その厚さを適当に定めることによって、不
要モ−ドの発生を抑えることができる。スペ−サ101
その厚さを利用するのみであるから、材質としては、固
体誘電体又は金属体の何れでも差し支えない。図13に
おいて、共振素子21のフランジ部と隔壁15の間に介在さ
せたスペ−サ102 は、内径が隔壁15に設けた結合孔隙9
の輪郭寸法より適宜大なると共に、固体誘電体又は金属
体より成るリング状のスペ−サで、このスペ−サを設け
ることによって、隔壁15に穿った結合孔隙9の両側には
共に空気が存在することとなり、電磁界の乱れを防ぐこ
とができると共に、その厚さを適当に定めることによっ
て不要モ−ドの発生を抑えることができる。共振素子22
のフランジ部と端壁14の間に介在させたスペ−サ102
は、共振素子21のフランジ部と隔壁15の間に介在させた
スペ−サ102 と同様のスペ−サで、その厚さを適当に定
めることによって不要モ−ドの発生を抑えることができ
る。図14において共振素子21のフランジ部と隔壁15
間における止め螺子の周り及び共振素子22のフランジ部
と端壁14の間における止め螺子の周りにそれぞれ介在さ
せたスペ−サ103 は、それぞれ金属体又は固体誘電体よ
り成る座で形成したもので、それぞれ図13におけるス
ペ−サと同様の作用効果を呈する。図12ないし図14
の説明において言及することのなかった他の符号及び構
成は、図8と同様である。
[0011] Incidentally, when the dielectric constant of the solid dielectric material to form a resonant element 2 1 is relatively high, the flange portion of the resonant element 2 1, when attached directly to the partition wall 1 5, bored in the partition wall 1 5 Further, one surface of the bonding pore 9 comes into contact with the solid dielectric material having a relatively high dielectric constant, and the other surface of the bonding pore 9 comes into contact with air, so that the difference in relative dielectric constant between both surfaces of the bonding pore 9 becomes large. Disturbances may occur in the electromagnetic field in the vicinity of the coupling pores 9, which may adversely affect the inter-stage coupling. In such a case, FIG. 12 [a cross-sectional view similar to FIG. 8A] is used. shown way, space between the flange portion and the partition wall 1 5 of the resonant element 2 1 -
The support 10 is interposed, the space - the support, by forming a dielectric plate having a lower dielectric constant than the dielectric constant of the resonant element 2 1, both sides of the binding pores 9 bored in the partition wall 1 5 It is possible to suppress the disturbance of the electromagnetic field by reducing the difference in relative permittivity in. Further, by appropriately selecting the thickness of the spacer 10, it is possible to suppress the generation of unnecessary modes. Ten
1 space is interposed between the flange portion of the resonator element 2 2 and the end wall 1 4 - in service, by defining its thickness suitably, unnecessary mode - it is possible to suppress the occurrence of de. Space - from Sa 10 1 is only to utilize the thickness, the material, no problem either solid dielectric or metal body. 13, space is interposed between the flange portion and the partition wall 1 5 of the resonant element 2 1 - Sa 10 2 bond pores inside diameter provided in the partition wall 1 5 9
Suitably with large consisting of contour size, solid dielectric or metal body than made ring-shaped space - in service, this space - by providing the service, both the air on both sides of the binding pores 9 bored in the partition wall 1 5 Since it exists, the disturbance of the electromagnetic field can be prevented, and the generation of the unnecessary mode can be suppressed by appropriately setting the thickness. Resonant element 2 2
The flange portion and the end wall 1 4 space is interposed between the - Sa 10 2
A flange portion and space is interposed between the partition wall 1 5 of the resonant element 2 1 - in service, unwanted mode by defining its thickness suitably - - same space as the support 10 2 to suppress the occurrence of de You can Space respectively interposed around the screws between the resonant element 2 1 of the flange portion and the partition wall 1 around the screws 5 between and the resonance element 2 and second flange portion and the end wall 1 4 14 - Sa 10 Reference numeral 3 denotes a seat made of a metal body or a solid dielectric, respectively, and has the same effect as the spacer shown in FIG. 12 to 14
Other reference numerals and configurations not mentioned in the description of are the same as those in FIG.

【0012】図15(a)もまた本発明の他の実施例を
示す断面図[図15(b)のC−C断面図]、図15
(b)は、図15(a)のA−A端面図、図15(c)
は、図15(a)のB−B端面図で、本実施例において
は、二重モ−ド誘電体共振素子21及び22の各フランジ部
を共に隔壁15に取り付けてある。8Vは入力(又は出力)
結合ル−プ、82V は出力(又は入力)結合ル−プ、61
び63はVモ−ドの共振周波数微調整素子で、他の符号及
び構成は、図8と同様である。 本実施例における結合
ル−プ8Vと共振素子21との結合関係、段間結合関係及び
共振素子22と結合ル−プ82V との結合関係を電磁界分布
で示すと、図10と全く同様である。本実施例において
も、共振素子21のフランジ部と隔壁15の間、共振素子22
のフランジ部と隔壁15の間に、図12ないし図14にお
ける共振素子21のフランジ部と隔壁15との間に介装した
スペ−サ10、102 又は103 と同様のスペ−サを設けるこ
とによって、隔壁15に設けた結合孔隙9の近傍における
電磁界の乱れ及び不要モ−ドの発生を抑えることががで
きる。図16は、図15に示した帯域通過ろ波器を有極
形に構成した場合の等価回路図で、M4T は出力(又は入
力)磁気結合係数で、他の符号は、図7及び図11と同
様である。
FIG. 15 (a) is also a sectional view showing another embodiment of the present invention [a sectional view taken along the line CC of FIG. 15 (b)], FIG.
15B is an AA end view of FIG. 15A, FIG.
It is a B-B end view of FIG. 15 (a), in the present embodiment, the dual mode - the flange portions of de dielectric resonant element 2 1 and 2 2 are both attached to the partition wall 1 5. 8 V is input (or output)
Coupling Le - flop, 8 2V is output (or input) coupled Le - flop, 6 1 and 6 3 V mode - in de resonance frequency fine-tuning element, the other code and configuration is the same as FIG. Coupling Le in this embodiment - binding relation flop 8 V and the resonant element 2 1, interstage coupling relationship and the resonant element 2 2 and the coupling Le - When showing the coupling relationship between flop 8 2V in electromagnetic field distribution, 10 Is exactly the same as. In this embodiment, between the flange portion and the partition wall 1 5 of the resonator element 2 1, the resonant element 2 2
Between the flange portion and the partition wall 1 5, space is interposed between the flange portion and the partition wall 1 5 of the resonator element 2 1 in FIGS. 12 through 14 - the same space as the support 10, 10 2 or 10 3 - by providing the support, disturbance and unnecessary mode electromagnetic field in the vicinity of the binding pores 9 provided in the partition wall 1 5 - it is possible to suppress the occurrence of soil. 16 is an equivalent circuit diagram in the case where the bandpass filter shown in FIG. 15 is configured to have a polar shape, M 4T is an output (or input) magnetic coupling coefficient, and other symbols are those in FIGS. The same as 11.

【0013】本発明帯域通過ろ波器を有極形に形成し、
その通過域がチェビシェフ特性となるように構成した場
合における伝送特性は、次式で求めることができる。
The band-pass filter of the present invention is formed into a polar type,
The transmission characteristic when the passband is configured to have the Chebyshev characteristic can be obtained by the following equation.

【数1】 fp:許容電圧定在波比を与えるバンドエッジの周波数 上式においてReは実数部をとるの意、Imは虚数部をとる
の意である。図17は、上記本発明有極形帯域通過ろ波
器の伝送特性を示す図で、横軸は周波数、縦軸は減衰量
である。
[Equation 1] f p : Frequency of band edge that gives the allowable voltage standing wave ratio In the above equation, Re is the real part and I m is the imaginary part. FIG. 17 is a diagram showing the transmission characteristics of the above-described polarized band-pass filter of the present invention, in which the horizontal axis represents frequency and the vertical axis represents attenuation.

【0014】本発明帯域通過ろ波器をを無極形に形成
し、その通過域がチェビシェフ特性となるように構成し
た場合における伝送特性は、次式で求めることができ
る。
The transmission characteristic in the case where the band-pass filter of the present invention is formed in a non-polar shape and the pass band thereof has a Chebyshev characteristic can be obtained by the following equation.

【数2】 ATT :伝送損失 Tn(x) :チェビシェフの多項式で、 x<1 の場合、 Tn(x) = cos(n cos-1x) x>1 の場合、 Tn(x) =cosh(n cosh-1 x) x:基準化周波数で、[Equation 2] ATT: Transmission loss T n (x): Chebyshev polynomial, in the case of x <1, T n (x) = cos (n cos -1 x) In the case of x> 1, T n (x) = cosh (n cosh -1 x) x: Normalized frequency,

【数3】 f0 :帯域通過ろ波器の通過域における中心周波数 f:任意の伝送周波数 BWr:帯域通過ろ波器の許容通過周波数帯域幅 S:通過帯域内における許容電圧定在波比(VSWR) 図18は、上記本発明無極形帯域通過ろ波器の伝送特性
を示す図で、横軸及び縦軸は図17と同様である。図8
及び図15には、帯域通過ろ波器の次数nが4の場合に
ついて説明したが、次数nはこれを適宜増加して本発明
を実施することができ、2個又はその整数倍の個数の共
振回路を隔てた共振回路相互間を副結合することによっ
て、有極形帯域通過ろ波器を構成することができる。
(Equation 3) f 0 : Center frequency in the pass band of the band pass filter f: Arbitrary transmission frequency B Wr : Allowable pass frequency bandwidth of the band pass filter S: Allowable voltage standing wave ratio (VSWR) diagram in the pass band 18 is a diagram showing the transmission characteristics of the non-polar type bandpass filter of the present invention, and the horizontal and vertical axes are the same as those in FIG. FIG.
15 and FIG. 15, the case where the order n of the band-pass filter is 4 has been described. However, the order n can be appropriately increased to implement the present invention, and the number n is 2 or an integer multiple thereof. A polarized band-pass filter can be constructed by sub-coupling the resonant circuits separated by one another.

【0015】図8及び図15に示した実施例において
は、各共振回路の負荷Qが比較的高い場合、即ち、帯域
通過ろ波器の段間結合が比較的疎なる場合には、図10
について説明したとおりの電磁界結合及び二重モ−ド共
振が行われ、図17及び図18に示したように、中心周
波数に対して低い周波数領域と高い周波数領域における
各特性曲線が対称となるが、本発明者が試作品について
実験を重ねた結果、次のような事実を明らかにすること
ができた。即ち、図8及び図15に示した実施例におい
て、各共振回路の負荷Qが比較的低い場合、即ち、帯域
通過ろ波器の段間結合が比較的密なる場合には、図19
(横軸及び縦軸は図17と同じ)に示すように、低い周
波数領域と高い周波数領域における各特性曲線が中心周
波数に対して非対称となり、各共振回路の負荷Qが低く
なるにしたがって特性曲線の非対称の程度が著しくなる
傾向が認められた。そこで本発明者は種々改善策を講じ
た結果、外部導体の円筒状側壁11及び12を共通の円筒軸
の周りに相対的に回転させたところ、ある回転角におい
て特性曲線の非対称性が補正されて理想的な特性が得ら
れることを確かめることができた。本発明においては、
円筒状側壁11及び12の相対的回転によって特性曲線の非
対称性を補正することができたという事実に基づいて、
図20に示すように、外部導体の円筒状側壁11及び12
各端部に突出させたフランジ部に設けた止め螺子の挿通
孔、即ち、円筒状側壁11と12の間に介在させる隔壁15
周辺部との結合用止め螺子の挿通孔11の輪郭形状を、円
周方向に延びる彎曲楕円形に形成し、円筒状側壁11のフ
ランジ部、隔壁15の周辺部及び円筒状側壁12のフランジ
部を結合する止め螺子を緩めることによって、円筒状側
壁11及び12を共通の円筒軸の周りに相対的に回転させ得
るように形成してある。尚、図15に示すように、外部
導体の端壁13及び14に入出力結合ル−プ8V及び82V を取
り付けるような場合には、入出力結合ル−プ8V(又は8
2V )に流れる電流によって誘起される電磁界における
電界方向と隔壁15に設けた結合孔隙9に結合する電界方
向を所要角度差に一致させ、隔壁15に穿った結合孔隙9
によって励振される電界方向と入出力結合ル−プ82V
(又は8V)に結合する電界方向を所要角度差に一致させ
るために、端壁13と円筒状側壁11とが相対的に回転可能
で、端壁14と円筒状側壁12もまた相対的に回転可能に形
成することが望ましく、このために、円筒状側壁11及び
12のフランジ部のうち、端壁13及び14と結合されるフラ
ンジ部に穿ってある止め螺子の挿通孔の輪郭形状も図2
0に示すような円周方向に延びる彎曲楕円形に形成す
る。
In the embodiment shown in FIGS. 8 and 15, when the load Q of each resonant circuit is relatively high, that is, when the interstage coupling of the bandpass filter is relatively sparse, FIG.
The electromagnetic field coupling and the double mode resonance are performed as described above, and as shown in FIGS. 17 and 18, the characteristic curves in the low frequency region and the high frequency region with respect to the center frequency are symmetrical. However, as a result of repeated experiments on the prototype by the present inventor, the following facts could be clarified. That is, in the embodiment shown in FIGS. 8 and 15, when the load Q of each resonant circuit is relatively low, that is, when the interstage coupling of the bandpass filter is relatively dense, FIG.
As shown in (the horizontal axis and the vertical axis are the same as those in FIG. 17), the characteristic curves in the low frequency region and the high frequency region are asymmetric with respect to the center frequency, and the characteristic curves become lower as the load Q of each resonant circuit decreases. It was recognized that the degree of asymmetry of the was remarkable. The present inventors have results which take various improvements, was rotated relative to the cylindrical side wall 1 1 and 1 2 of the outer conductor about a common cylinder axis, the asymmetry of the characteristic curve at a certain rotation angle We were able to confirm that it was corrected to obtain the ideal characteristics. In the present invention,
Based on the fact that it was possible to correct the asymmetry of the characteristic curve by the relative rotation of the cylindrical side wall 1 1 and 1 2,
As shown in FIG. 20, the insertion hole of the set screws provided in the flange portion which projects at each end of the cylindrical side wall 1 1 and 1 2 of the outer conductor, i.e., between the cylindrical side wall 1 1 and 1 2 the contour shape of the insertion hole 11 of the coupling screws between the peripheral portion of the partition wall 1 5 of interposing, formed in curved oval circumferentially extending flange portion of the cylindrical side wall 1 1, the peripheral portion of the partition wall 1 5 and by loosening the screws coupling the flange portion of the cylindrical side wall 1 2, is formed so that the cylindrical side wall 1 1 and 1 2 capable of relative rotation about a common cylindrical axis. As shown in FIG. 15, the outer conductor of the end wall 1 3 and 1 4 in the input-output coupling Le - when such mounting a flop 8 V and 8 2V are input and output coupling Le - flop 8 V (or 8
To match the direction of an electric field to bind the binding pores 9 provided in the direction of the electric field and the partition wall 1 5 of the electromagnetic field induced by the current flowing through the 2V) to the required angle difference, coupled pores bored in the partition wall 1 5 9
Direction of electric field excited by and input / output coupling loop 8 2V
(Or 8 V) of the electric field direction that bind to match the required angle difference, the end wall 1 3 and a cylindrical side wall 1 1 and is rotatable relative, also the end wall 1 4 and a cylindrical side wall 1 2 It is also desirable to make it relatively rotatable, for this purpose, the cylindrical side walls 11 and
Of 1 second flange portion, the end wall 1 3 and 1 4 profile of the insertion hole of the screws which are bored in the flange portion coupled with even 2
It is formed in a curved elliptical shape extending in the circumferential direction as indicated by 0.

【0016】図21は、本発明帯域通過ろ波器を用いて
構成した分波器の一例を示す断面図[図15(a)と同
様の断面図]で、BPF1及びBPF2は図15に示した本発明
帯域通過ろ波器と同様の帯域通過ろ波器で、それぞれの
通過中心周波数を互いに異ならせてある。16は帯域通過
ろ波器BPF1及びBPF2の各外部導体の間に介在する隔壁、
82V1は帯域通過ろ波器BPF1側の入力(又は出力)結合ル
−プ、82V2は帯域通過ろ波器BPF2側の入力(又は出力)
結合ル−プ、TCは共通の入力(又は出力)端子で、例え
ば同軸接栓より成る。T1は帯域通過ろ波器BPF1の出力
(又は入力)端子、T2は帯域通過ろ波器BPF2の出力(又
は入力)端子である。帯域通過ろ波器BPF1側の入力(又
は出力)結合ル−プ82V1の長さ、即ち、ル−プの接地端
から同軸接栓TCの内部導体の延長部分への接続点までの
長さを、帯域通過ろ波器BPF2の通過中心周波数に対応す
る波長の1/4 に形成し、帯域通過ろ波器BPF2側の入力
(又は出力)結合ル−プ82V2の長さ、即ち、ル−プの接
地端から同軸接栓TCの内部導体の延長部分への接続点ま
での長さを、帯域通過ろ波器BPF1の通過中心周波数に対
応する波長の1/4 に形成して、帯域通過ろ波器BPF2の通
過中心周波数に対して帯域通過ろ波器BPF1の入力インピ
−ダンスが極めて高く、帯域通過ろ波器BPF1の通過中心
周波数に対して帯域通過ろ波器BPF2の入力インピ−ダン
スが極めて高くなるように形成してある。図22は、共
通の入力(又は出力)結合を容量で行うように形成した
分波器を示す断面図で、3TC は結合容量形成電極で、帯
域通過ろ波器BPF1及びBPF2の各初段(又は終段)の共振
器を形成する共振素子との間に入力(又は出力)結合容
量を形成する。尚、結合容量形成電極3TC と帯域通過ろ
波器BPF1側の共振素子との間に形成される容量と、結合
容量形成電極3TC と帯域通過ろ波器BPF2側の共振素子と
の間に形成される容量とを適当に異ならせることによっ
て、帯域通過ろ波器BPF1及びBPF2相互間の干渉を防ぐこ
とができるが、必要に応じて結合容量形成電極3TC のう
ち、帯域通過ろ波器BPF1側に位置する部分と隔壁16との
間にインダクタンス素子(図示していない)を接続し、
結合容量形成電極3TC のうち、帯域通過ろ波器BPF2側に
位置する部分と隔壁16との間にインダクタンス素子(図
示していない)を接続すると共に、各インダクタンス素
子のインダクタンスを適当に選定して、帯域通過ろ波器
BPF2の通過中心周波数に対して帯域通過ろ波器BPF1の入
力インピ−ダンスが極めて高く、帯域通過ろ波器BPF1
通過中心周波数に対して帯域通過ろ波器BPF2の入力イン
ピ−ダンスが極めて高くなるように形成してもよい。図
21及び図22には、図15に示した帯域通過ろ波器を
用いた場合を例示してあるが、図8に示した帯域通過ろ
波器を用いてもよく、何れの場合にも各帯域通過ろ波器
を構成する共振素子の数を適宜増減して分波器を構成す
ることができる。
FIG. 21 is a sectional view showing an example of a demultiplexer constructed by using the bandpass filter of the present invention [a sectional view similar to FIG. 15 (a)], and BPF 1 and BPF 2 are shown in FIG. In a band pass filter similar to the band pass filter of the present invention shown in FIG. 3, the respective pass center frequencies are different from each other. 1 6 is a partition wall interposed between the outer conductors of the band pass filters BPF 1 and BPF 2 ,
8 2V1 is an input (or output) coupling loop on the side of bandpass filter BPF 1 , and 8 2V2 is an input (or output) on the side of bandpass filter BPF 2
The coupling loop, T C, is a common input (or output) terminal, and comprises, for example, a coaxial plug. T 1 is an output (or input) terminal of the bandpass filter BPF 1 , and T 2 is an output (or input) terminal of the bandpass filter BPF 2 . Input of the band-pass device BPF 1 side (or output) coupled Le - length of flop 8 2V1, i.e., Le - from the ground terminal of the flop to the connection point to the extension of the inner conductor of the coaxial connector T C a length, corresponding to the pass center frequency of the band-pass device BPF 2 is formed on the 1/4 wavelength, the input of the band-pass unit BPF 2 side (or output) coupled Le - length of flop 8 2V2 , i.e., Le - coaxial connector T C of a length of up to connection point to the extension of the inner conductor, 1/4 of a wavelength corresponding to the passing center frequency of the band pass wave filter BPF 1 from the ground terminal of the flop It formed in the input of the band-pass unit BPF 1 to the passage center frequency of the band-pass unit BPF 2 Inpi - dancing is very high, bandwidth to pass center frequency of the band pass wave filter BPF 1 It is formed so that the input impedance of the pass filter BPF 2 is extremely high. FIG. 22 is a cross-sectional view showing a duplexer formed so that common input (or output) coupling is performed by capacitance, 3 TC is a coupling capacitance forming electrode, and each of band pass filters BPF 1 and BPF 2 An input (or output) coupling capacitance is formed between the first-stage (or last-stage) resonator and the resonance element forming the resonator. The capacitance formed between the coupling capacitance forming electrode 3 TC and the resonance element on the side of the band pass filter BPF 1 and the coupling capacitance forming electrode 3 TC and the resonance element on the side of the band pass filter BPF 2 are by varying the capacity proper to be formed between, but it is possible to prevent interference between the band-pass unit BPF 1 and BPF 2 mutually among the coupling capacitor forming electrode 3 TC as required band Connect an inductance element (not shown) between the partition located on the side of the pass filter BPF 1 and the partition wall 16 ,
An inductance element (not shown) is connected between the portion of the coupling capacitance forming electrode 3 TC located on the side of the band pass filter BPF 2 and the partition 16 and the inductance of each inductance element is appropriately adjusted. Select and pass bandpass filter
BPF 2 input of the central pass band pass wave filter BPF 1 with respect to the frequency Inpi - dancing is very high, the band-pass device BPF 2 input Inpi to the passage center frequency of the band pass wave filter BPF 1 - The dance may be formed to be extremely high. 21 and 22 exemplify the case where the band-pass filter shown in FIG. 15 is used, but the band-pass filter shown in FIG. 8 may be used, and in any case. The duplexer can be configured by appropriately increasing or decreasing the number of resonant elements that configure each bandpass filter.

【0017】[0017]

【発明の効果】本発明においては、二重モ−ド誘電体共
振素子として、直径の比較的大なる部分より成る共振素
子本体、直径の比較的小なる支持部、フランジ部を同一
固体誘電体材で一体に形成して成る二重モ−ド誘電体共
振素子を備えているので、従来のように、共振素子の支
持体を特別に必要とせず、共振素子自体によって、外部
導体の端壁又は隔壁への取り付けが可能であるから、従
来の支持体が原因となって発生する温度特性の劣化のお
それなく、温度特性が極めて良好で、耐震性に優れた帯
域通過ろ波器を実現することができる。図24に示した
従来の分波器においては、2個の帯域通過ろ波器をT型
コネクタTCへ接続するための外付け接続線L1及びL2を必
要とするため、全体の構成が比較的複雑大型となるに対
して、本発明帯域通過ろ波器より成る分波器において
は、2個の帯域通過ろ波器を、実質的に共通の外部導体
に内装すると共に、図24に示した従来の分波器におけ
るT型コネクタTCに対応する共通の接続端子TCを、実質
的に共通の外部導体の円筒状側壁に取り付けることによ
り、図24に示した従来の分波器における外付け接続線
L1及びL2を省いて全体の構成を比較的簡潔小型に形成す
ることができ、又、本発明帯域通過ろ波器と同様温度特
性が良好で、耐震性に優れた分波器を実現することがで
きる。
According to the present invention, as a double-mode dielectric resonant element, a resonant element body having a relatively large diameter portion, a support portion having a relatively small diameter, and a flange portion are made of the same solid dielectric material. Since the double-mode dielectric resonance element integrally formed of the material is provided, the support for the resonance element is not particularly required unlike the conventional case, and the resonance element itself allows the end wall of the outer conductor to be formed. Alternatively, since it can be mounted on a partition wall, there is no fear of deterioration of the temperature characteristics caused by the conventional support, and the temperature characteristics are extremely good, and a bandpass filter with excellent earthquake resistance is realized. be able to. The conventional duplexer shown in FIG. 24 requires external connection lines L 1 and L 2 for connecting the two bandpass filters to the T-type connector TC, so that the entire configuration is In contrast to the relatively complicated and large size, in the demultiplexer including the bandpass filter of the present invention, two bandpass filters are installed in a substantially common outer conductor, and common connection terminals T C corresponding to T-connector TC in a conventional duplexer shown, by mounting the cylindrical sidewall of the substantially common outer conductor, in a conventional duplexer shown in FIG. 24 External connection line
L 1 and L 2 to be able to form the whole structure in a relatively brief small omitted, also similar to the temperature characteristics and the present invention the band-pass device is good, implement the duplexer with excellent earthquake resistance can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】本発明において用いる共振素子の電磁界分布を
示す図である。
FIG. 2 is a diagram showing an electromagnetic field distribution of a resonance element used in the present invention.

【図3】本発明において用いる共振素子の電磁界分布を
示す図である。
FIG. 3 is a diagram showing an electromagnetic field distribution of a resonance element used in the present invention.

【図4】本発明帯域通過ろ波器の作動説明のための電磁
界分布図である。
FIG. 4 is an electromagnetic field distribution diagram for explaining the operation of the bandpass filter of the present invention.

【図5】本発明帯域通過ろ波器の等価回路図である。FIG. 5 is an equivalent circuit diagram of the bandpass filter of the present invention.

【図6】本発明の他の実施例を示す図である。FIG. 6 is a diagram showing another embodiment of the present invention.

【図7】本発明帯域通過ろ波器の等価回路図である。FIG. 7 is an equivalent circuit diagram of the bandpass filter of the present invention.

【図8】本発明の他の実施例を示す図である。FIG. 8 is a diagram showing another embodiment of the present invention.

【図9】本発明帯域通過ろ波器における段間結合孔隙を
示す図である。
FIG. 9 is a diagram showing interstage coupling pores in the bandpass filter of the present invention.

【図10】本発明帯域通過ろ波器の作動説明のための電
磁界分布図である。
FIG. 10 is an electromagnetic field distribution diagram for explaining the operation of the bandpass filter of the present invention.

【図11】本発明帯域通過ろ波器の等価回路図である。FIG. 11 is an equivalent circuit diagram of the bandpass filter of the present invention.

【図12】本発明の他の実施例を示す図である。FIG. 12 is a diagram showing another embodiment of the present invention.

【図13】本発明の他の実施例を示す図である。FIG. 13 is a diagram showing another embodiment of the present invention.

【図14】本発明の他の実施例を示す図である。FIG. 14 is a diagram showing another embodiment of the present invention.

【図15】本発明の他の実施例を示す図である。FIG. 15 is a diagram showing another embodiment of the present invention.

【図16】本発明帯域通過ろ波器の等価回路図である。FIG. 16 is an equivalent circuit diagram of the bandpass filter of the present invention.

【図17】本発明帯域通過ろ波器の伝送特性を示す曲線
図である。
FIG. 17 is a curve diagram showing the transmission characteristics of the bandpass filter of the present invention.

【図18】本発明帯域通過ろ波器の伝送特性を示す曲線
図である。
FIG. 18 is a curve diagram showing the transmission characteristics of the bandpass filter of the present invention.

【図19】本発明帯域通過ろ波器の伝送特性を説明する
曲線図である。
FIG. 19 is a curve diagram for explaining the transmission characteristics of the bandpass filter of the present invention.

【図20】本発明の他の実施例の要部を示す図である。FIG. 20 is a diagram showing a main part of another embodiment of the present invention.

【図21】本発明帯域通過ろ波器を用いた分波器を示す
図である。
FIG. 21 is a diagram showing a demultiplexer using the bandpass filter of the present invention.

【図22】本発明帯域通過ろ波器を用いた分波器を示す
図である。
FIG. 22 is a diagram showing a demultiplexer using the bandpass filter of the present invention.

【図23】従来の帯域通過ろ波器を示す図である。FIG. 23 is a diagram showing a conventional bandpass filter.

【図24】従来の分波器を示す図である。FIG. 24 is a diagram showing a conventional duplexer.

【符号の説明】[Explanation of symbols]

11、12 外部導体の円筒状側壁 13、14 外部導体の端壁 15、16 外部導体の隔壁 2、21、22 共振素子 2R 共振素子本体 2S 共振素子の支持部 2F 共振素子のフランジ部 3H、3V、32V 入出力結合容量素子 4H、4V、42V 入出力端子 51〜54 Hモ−ドの共振周波数微調整素子 61〜66 Vモ−ドの共振周波数微調整素子 71〜74 モ−ド間結合調整素子 8H、8V、82V 入出力結合ル−プ 9 段間結合孔隙 10、101@103 スペ−サ 11 止め螺子の挿通孔 BPF1、BPF2 本発明帯域通過ろ波器 82V1、82V2 入出力結合ル−プ TC、T1、T2 入出力端子 3TC 入出力結合容量形成電極 121 、122 共振素子 131 〜134 支持体 F1、F2 帯域通過ろ波器 L1、L2 接続線 TC T型コネクタ CA ケ−ブル1 1 , 1 2 Outer conductor cylindrical side wall 1 3 , 1 4 Outer conductor end wall 1 5 , 1 6 Outer conductor partition 2, 2 1 , 2 2 Resonance element 2R Resonance element body 2S Resonance element support 2F Resonant element flange 3 H , 3 V , 32 V Input / output coupling capacitance element 4 H , 4 V , 42 V Input / output terminal 5 1 to 5 4 H mode resonance frequency fine adjustment element 6 1 to 6 6 V Mode resonance frequency fine adjustment element 7 1 to 7 4 Mode inter-coupling adjustment element 8 H , 8 V , 82 V Input / output coupling loop 9 Inter-stage coupling hole 10, 10 1 @ 10 3 Spacer 11 Set screw insertion hole BPF 1 , BPF 2 Inventive band-pass filter 8 2V1 , 8 2V2 I / O coupling loop T C , T 1 , T 2 I / O terminal 3 TC I / O coupling capacitance forming electrode 12 1 , 12 2 Resonance element 13 1 ~ 13 4 Support F 1 , F 2 Band pass filter L 1 , L 2 Connection line TCT type connector CA cable

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】直径の比較的大なる部分より成る共振素子
本体と、直径の比較的小なる部分より成る支持部と、こ
の支持部を介して前記共振素子本体と反対側に設けら
れ、有底円筒状外部導体の端壁又は前記外部導体の軸方
向の中間部に設けられる隔壁に取り付けられるフランジ
部とを、同一固体誘電体材で一体に形成して成る二重モ
−ド誘電体共振素子を備えたことを特徴とする二重モ−
ド誘電体共振器より成る帯域通過ろ波器。
1. A resonance element body having a relatively large diameter portion, a support portion having a relatively small diameter portion, and a support portion provided on the opposite side of the resonance element body through the support portion. Double mode dielectric resonance in which an end wall of a cylindrical outer conductor or a flange portion attached to a partition wall provided at an axially intermediate portion of the outer conductor is integrally formed of the same solid dielectric material. Dual mode characterized by having an element
Bandpass filter consisting of a dielectric resonator.
【請求項2】二重モ−ド誘電体共振素子のフランジ部
と、段間結合孔隙が穿たれ、有底円筒状外部導体の軸方
向の中間部に設けられる隔壁との間に、二重モ−ド誘電
体共振素子を形成する固体誘電体材の比誘電率に比して
低い比誘電率を有する固体誘電体板より成るスペ−サを
介装した請求項1に記載の二重モ−ド誘電体共振器より
成る帯域通過ろ波器。
2. A double-mode dielectric resonator element is provided with a double-layer structure between a flange portion and a partition wall provided in an axially intermediate portion of a bottomed cylindrical outer conductor having an interstage coupling hole. The dual mode according to claim 1, wherein a spacer made of a solid dielectric plate having a relative dielectric constant lower than that of the solid dielectric material forming the mode dielectric resonant element is interposed. A bandpass filter consisting of a dielectric resonator.
【請求項3】二重モ−ド誘電体共振素子のフランジ部
と、段間結合孔隙が穿たれ、有底円筒状外部導体の軸方
向の中間部に設けられる隔壁とを機械的に結合する止め
螺子毎に設けられると共に、二重モ−ド誘電体共振素子
のフランジ部と段間結合孔隙を穿った隔壁との間に介装
される座金を設けた請求項1に記載の二重モ−ド誘電体
共振器より成る帯域通過ろ波器。
3. A flange portion of a double-mode dielectric resonator element and a partition wall provided in an axially intermediate portion of a bottomed cylindrical outer conductor having an inter-stage coupling hole formed therein are mechanically coupled to each other. The double-mode washer according to claim 1, further comprising a washer provided for each set screw and interposed between the flange of the double-mode dielectric resonance element and the partition wall having the interstage coupling hole. A bandpass filter consisting of a dielectric resonator.
【請求項4】段間結合孔隙が穿たれ、有底円筒状外部導
体の円筒状側壁の軸方向の中間部に介在する隔壁と、有
底円筒状外部導体の円筒状側壁の端部に設けたフランジ
部とを止め螺子によって結合するために、有底円筒状外
部導体の円筒状側壁の端部に設けたフランジ部に穿たれ
た止め螺子の挿通孔を、円周方向に延びる彎曲楕円形に
形成した請求項1に記載の二重モ−ド誘電体共振器より
成る帯域通過ろ波器。
4. A partition wall having an interstage coupling hole formed therein, which is interposed in the axially intermediate portion of the cylindrical side wall of the bottomed cylindrical outer conductor, and at the end of the cylindrical side wall of the bottomed cylindrical outer conductor. In order to connect the flange part with the set screw with a set screw, the set screw insertion hole bored in the flange part provided at the end of the cylindrical side wall of the bottomed cylindrical outer conductor has a curved elliptical shape extending in the circumferential direction. A band pass filter comprising the double mode dielectric resonator according to claim 1 formed in.
【請求項5】有底円筒状外部導体の端壁と有底円筒状外
部導体の円筒状側壁の端部に設けたフランジ部とを止め
螺子によって結合するために、有底円筒状外部導体の円
筒状側壁の端部に設けたフランジ部に穿たれた止め螺子
の挿通孔を、円周方向に延びる彎曲楕円形に形成した請
求項1に記載の二重モ−ド誘電体共振器より成る帯域通
過ろ波器。
5. A bottomed cylindrical outer conductor for connecting an end wall of the bottomed cylindrical outer conductor and a flange portion provided at an end of a cylindrical side wall of the bottomed cylindrical outer conductor with a set screw. The double-mode dielectric resonator according to claim 1, wherein a through hole for a set screw formed in a flange portion provided at an end of the cylindrical side wall is formed in a curved elliptical shape extending in a circumferential direction. Bandpass filter.
JP16733694A 1994-06-27 1994-06-27 Band pass filter consisting of double mode dielectric resonator Pending JPH0818304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16733694A JPH0818304A (en) 1994-06-27 1994-06-27 Band pass filter consisting of double mode dielectric resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16733694A JPH0818304A (en) 1994-06-27 1994-06-27 Band pass filter consisting of double mode dielectric resonator

Publications (1)

Publication Number Publication Date
JPH0818304A true JPH0818304A (en) 1996-01-19

Family

ID=15847852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16733694A Pending JPH0818304A (en) 1994-06-27 1994-06-27 Band pass filter consisting of double mode dielectric resonator

Country Status (1)

Country Link
JP (1) JPH0818304A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095011A (en) * 2007-09-19 2009-04-30 Ngk Spark Plug Co Ltd Dielectric resonator filter
JP2009194571A (en) * 2008-02-13 2009-08-27 Ngk Spark Plug Co Ltd Multimode dielectric resonator and method of adjusting the same
US8410873B2 (en) 2007-09-19 2013-04-02 Ngk Spark Plug Co., Ltd. Dielectric resonator having a dielectric resonant element with two oppositely located notches for EH mode coupling
JP2016005260A (en) * 2014-06-19 2016-01-12 日本電業工作株式会社 Resonator and filter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480958A (en) * 1987-09-22 1989-03-27 Toppan Printing Co Ltd Formation of cut mask
JPH01165204A (en) * 1987-12-21 1989-06-29 Nippon Dengiyou Kosaku Kk Dielectric resonator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6480958A (en) * 1987-09-22 1989-03-27 Toppan Printing Co Ltd Formation of cut mask
JPH01165204A (en) * 1987-12-21 1989-06-29 Nippon Dengiyou Kosaku Kk Dielectric resonator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095011A (en) * 2007-09-19 2009-04-30 Ngk Spark Plug Co Ltd Dielectric resonator filter
US8410873B2 (en) 2007-09-19 2013-04-02 Ngk Spark Plug Co., Ltd. Dielectric resonator having a dielectric resonant element with two oppositely located notches for EH mode coupling
JP2009194571A (en) * 2008-02-13 2009-08-27 Ngk Spark Plug Co Ltd Multimode dielectric resonator and method of adjusting the same
JP2016005260A (en) * 2014-06-19 2016-01-12 日本電業工作株式会社 Resonator and filter

Similar Documents

Publication Publication Date Title
US7567153B2 (en) Compact bandpass filter for double conversion tuner
US8704723B2 (en) Differential dipole antenna system with a coplanar radiating structure and transceiver device
JP2008543192A (en) Microwave filter with end wall connectable to coaxial resonator
JP2003508948A (en) High frequency band filter device with transmission zero point
US5065119A (en) Narrow-band, bandstop filter
JPS6161722B2 (en)
US5777527A (en) Method and apparatus for coupling a differential signal to an unbalanced port
JPH11308009A (en) Single mode and dual mode helix-mounted cavity filter
US6924718B2 (en) Coupling probe having an adjustable tuning conductor
JPH0818304A (en) Band pass filter consisting of double mode dielectric resonator
WO1995027318A1 (en) Resonator and filter using it
JP2014236362A (en) Dual band resonator and dual band pass filter using the same
US7113059B2 (en) Variable-frequency high frequency filter
US7142837B1 (en) Multiple-section bandpass filter for broadcast communications
KR19980079948A (en) Dielectric Filters, Dielectric Duplexers and Manufacturing Methods Thereof
JP2000013106A (en) Dielectric filter, shared transmitter/receiver sharing unit and communication equipment
US5559485A (en) Dielectric resonator
WO1992012546A1 (en) Dielectric filter
JP3050538B2 (en) Group delay time compensation type band pass filter
CN110364789A (en) A kind of multifunctional reconfigurable filter based on short-circuit coupled line structure
JPH09260902A (en) Stub type filter
CN109728388A (en) A kind of highly selective electricity tune coaxial filter with constant absolute bandwidth
JP3428928B2 (en) In-band Group Delay Constant Type Dielectric Filter and Distortion Compensation Amplifier Using It
AU712921B2 (en) Field effect transistor amplifier
JP2003304103A (en) Band pass filter

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960806