JPH08181115A - Method of manufacturing integrated circuit - Google Patents

Method of manufacturing integrated circuit

Info

Publication number
JPH08181115A
JPH08181115A JP32265694A JP32265694A JPH08181115A JP H08181115 A JPH08181115 A JP H08181115A JP 32265694 A JP32265694 A JP 32265694A JP 32265694 A JP32265694 A JP 32265694A JP H08181115 A JPH08181115 A JP H08181115A
Authority
JP
Japan
Prior art keywords
film
conductor
forming
organic
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32265694A
Other languages
Japanese (ja)
Inventor
Shuichi Nagasawa
秀一 永沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP32265694A priority Critical patent/JPH08181115A/en
Publication of JPH08181115A publication Critical patent/JPH08181115A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To flatten the irregularities of a conductor film in arbitrary size and shape. CONSTITUTION: After the formation of Nb electrodes 1A, 2B in different width on an Si substrate an SiO2 film 3 is formed so as to form the first photoresist film 4A in the same film thickness so that the Nb electrodes 2A, 2B using as an inversion masks of the Nb electrode patterns. Next, after the formation of the second photoresist film 4B, the first photoresist film 4A is formed by etch-back step.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体及び超伝導の集
積回路の製造方法に関し、特にエッチバックによる層間
絶縁膜の平坦化方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor and a superconducting integrated circuit, and more particularly to a method for flattening an interlayer insulating film by etching back.

【0002】[0002]

【従来の技術】回路の高集積化、微細化に伴い素子表面
での凹凸段差に起因する配線の断切れ及び配線間のショ
ートが大きな問題となってきている。このため、凹凸段
差をなくすことが集積回路の製造技術上重要な課題とな
っており、この方法としてエッチバックによる平坦化方
法は極めて有望な技術として期待され、現在各方面で精
力的な研究開発が行われている。以下図面を用いて説明
する。
2. Description of the Related Art With the high integration and miniaturization of circuits, disconnection of wiring and short circuit between wirings due to uneven steps on the element surface have become a serious problem. For this reason, eliminating uneven steps is an important issue in integrated circuit manufacturing technology. As a method for this, the planarization method by etchback is expected to be a very promising technology, and currently active research and development in various fields. Is being done. This will be described below with reference to the drawings.

【0003】図2は従来のエッチバックによる平坦化方
法を工程順に説明するための断面図であり、特に超伝導
集積回路における平坦化工程、即ち被平坦化パターンと
して大きさの異なるNb(ニオブ超伝導体)電極による
凹凸をSiO2 膜により平坦化する場合について示した
ものである。
FIG. 2 is a cross-sectional view for explaining a conventional flattening method by etching back in the order of steps. Particularly, a flattening step in a superconducting integrated circuit, that is, Nb (Niobium-containing superb) having a different size as a pattern to be flattened. This is a case where the concavities and convexities due to the (conductor) electrode are flattened by the SiO 2 film.

【0004】まず、図2(a)に示すように、Si基板
1上に大きさの異なるNb電極2A、2Bを形成する。
Nb電極の大きさは、例えばNb電極2Aは幅20μ
m、膜厚500nmであり、Nb電極2Bは幅2μm、
膜厚500nmであり、Nb電極間の間隔は5μmであ
る。次に図2(b)に示すように、Nb電極2A、2B
の膜厚以上の膜厚のSiO2 膜3を基板全面に形成す
る。次でこの上にフォトレジストからなる有機膜を基板
全面にスピン塗布しベーキングすることにより、図2
(c)に示すような表面が比較的平坦なフォトレジスト
膜4を形成する。次にフォトレジスト膜4とSiO2
3のエッチング速度が等しい条件でエッチングすること
により、図2(d)に示すように、SiO2 膜3による
平坦化を行う。
First, as shown in FIG. 2A, Nb electrodes 2A and 2B having different sizes are formed on a Si substrate 1.
The size of the Nb electrode is, for example, 20 μm for the Nb electrode 2A.
m, the film thickness is 500 nm, the width of the Nb electrode 2B is 2 μm,
The film thickness is 500 nm, and the distance between the Nb electrodes is 5 μm. Next, as shown in FIG. 2B, the Nb electrodes 2A and 2B are formed.
The SiO 2 film 3 having a film thickness equal to or larger than the above is formed on the entire surface of the substrate. Then, an organic film made of a photoresist is spin-coated on the entire surface of the substrate and baked to form a film shown in FIG.
A photoresist film 4 having a relatively flat surface as shown in (c) is formed. Then, the photoresist film 4 and the SiO 2 film 3 are etched under the same etching rate to flatten the SiO 2 film 3 as shown in FIG. 2D.

【0005】以上の工程により絶縁膜の初期の段差を軽
減して比較的平坦な構造を実現することができる。
Through the above steps, the initial step difference of the insulating film can be reduced and a relatively flat structure can be realized.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た従来技術のエッチバックによる平坦化方法では、被平
坦化パターンである導電体膜の幅が数ミクロン程度以下
の場合は良好な平坦化が可能であるが、導電体膜の幅が
これ以上で且つ、導電体膜が数ミクロン程度以上離れて
存在する場合には、図2(c)に示したように、フォト
レジスト膜4の上部表面の良好な平坦性を得ることが出
来なかった。フォトレジスト膜4の平坦性は導電体膜の
パターン幅に大きく依存し、幅10μm以上のパターン
ではほとんど平坦性が得られない。その結果、図2
(d)に示したように、パターン幅の小さなNb電極2
Bは上部表面が露出されるが、パターン幅の大きなNb
電極2Aは上部表面が露出されない為、均一に良好な平
坦化を行うことが出来ないという問題点があった。
However, according to the above-described conventional flattening method by the etch-back, good flattening is possible when the width of the flattened pattern conductor film is about several microns or less. However, when the width of the conductor film is larger than this and the conductor films are separated by several microns or more, as shown in FIG. 2C, the upper surface of the photoresist film 4 is good. The flatness could not be obtained. The flatness of the photoresist film 4 largely depends on the pattern width of the conductor film, and flatness is hardly obtained with a pattern having a width of 10 μm or more. As a result,
As shown in (d), the Nb electrode 2 having a small pattern width
The upper surface of B is exposed, but Nb has a large pattern width.
Since the upper surface of the electrode 2A is not exposed, there is a problem that it is not possible to perform uniform flattening.

【0007】本発明の目的は、この様な導電体膜の大き
さ依存性を除去して、任意の大きさ及び形状の導電体膜
による凹凸を容易に平坦化できる集積回路の製造方法を
提供することにある。
An object of the present invention is to provide a method of manufacturing an integrated circuit, which can eliminate such size dependency of a conductor film and easily flatten the unevenness due to the conductor film having an arbitrary size and shape. To do.

【0008】[0008]

【課題を解決するための手段】本発明の集積回路の製造
方法は、基板上に幅の異なる複数の導電体膜を形成する
工程と、前記導電体膜を含む全面に前記導電体膜よりも
厚い絶縁膜を形成する工程と、前記導電体膜の上部以外
の前記絶縁膜上の凹状領域に前記導電体膜と同じ膜厚の
第1の有機膜を形成する工程と、前記第1の有機膜を含
む全面に第2の有機膜を形成する工程と、前記絶縁膜と
前記第1及び第2の有機膜に対するエッチング速度が等
しくなる条件でエッチングし少くとも前記第1及び第2
の有機膜を除去する工程とを含むことを特徴とするもの
である。
A method of manufacturing an integrated circuit according to the present invention comprises a step of forming a plurality of conductor films having different widths on a substrate, and a step of forming a conductor film on the entire surface including the conductor film rather than the conductor film. A step of forming a thick insulating film, a step of forming a first organic film having the same thickness as that of the conductor film in a concave region on the insulating film other than an upper portion of the conductor film, the first organic film Forming a second organic film on the entire surface including the film, and etching at least the first and second organic films under the condition that the etching rates for the insulating film and the first and second organic films are equal.
And a step of removing the organic film.

【0009】[0009]

【作用】本発明では、導電体膜の膜厚以上の膜厚を有す
る絶縁膜を形成した後、絶縁膜の凹部に導電体膜と同じ
膜厚の第1の有機膜を形成することで、凹凸は絶縁膜の
凸部と第1の有機膜との間の溝だけにすることが出来
る。この溝の幅は被平坦化パターンである導電体膜の大
きさ及び形状に関係なくほぼ一定の小さな値(1μm以
下)にすることができるため、この溝に対しては表面が
平坦な第2の有機膜を容易に形成することが出来る。こ
れにより、任意の大きさ及び形状の導電体膜に対してエ
ッチバックにより均一で良好な平坦化を行うことが出来
る。
According to the present invention, after forming the insulating film having a film thickness equal to or larger than that of the conductor film, the first organic film having the same film thickness as the conductor film is formed in the concave portion of the insulating film. The unevenness can be formed only in the groove between the convex portion of the insulating film and the first organic film. The width of this groove can be set to a substantially constant small value (1 μm or less) regardless of the size and shape of the conductor film that is the pattern to be flattened. The organic film can be easily formed. As a result, uniform and good planarization can be performed on the conductor film having an arbitrary size and shape by etching back.

【0010】また、絶縁膜の凹部に形成する第1の有機
膜は、導電体膜の反転マスクを用いるか、またはネガ型
レジストを用いて通常の露光技術により容易に形成する
ことができる。このように、絶縁膜の凹部に形成するパ
ターンは、有機膜であるため通常の露光技術で容易に形
成することができる。
Further, the first organic film formed in the concave portion of the insulating film can be easily formed by using a reversal mask of a conductor film or a negative resist by an ordinary exposure technique. As described above, since the pattern formed in the concave portion of the insulating film is the organic film, it can be easily formed by a normal exposure technique.

【0011】[0011]

【実施例】次に、本発明について図面を参照して説明す
る。図1(a)〜(e)は本発明の一実施例を説明する
ための工程順に示した半導体チップの断面図である。本
実施例は、超伝導集積回路の製造工程で使用される平坦
化工程、即ち超伝導体であるNb電極をSiO2 膜によ
り平坦化する工程を示している。
Next, the present invention will be described with reference to the drawings. 1A to 1E are cross-sectional views of a semiconductor chip shown in the order of steps for explaining an embodiment of the present invention. This embodiment shows a flattening step used in the manufacturing process of a superconducting integrated circuit, that is, a step of flattening an Nb electrode which is a superconductor with a SiO 2 film.

【0012】まず図1(a)に示すように、厚さ500
nmのNbからなる電極膜をRFマグネトロンスパッタ
リングによりSi基板1上に形成し、被平坦化パターン
の大きさを規定するフォトレジストからなるエッチング
マスクを通常のリソグラフィー技術を用いて形成し、ド
ライエッチングにより幅の異なるNb電極2A、2Bを
形成する。Nb電極2Aの線幅は20μm、Nb電極2
Bの線幅は2μm、Nb電極間の間隔は5μmである。
First, as shown in FIG. 1A, a thickness 500
An electrode film made of Nb of nm is formed on the Si substrate 1 by RF magnetron sputtering, an etching mask made of photoresist for defining the size of the pattern to be flattened is formed by a normal lithography technique, and dry etching is performed. Nb electrodes 2A and 2B having different widths are formed. The line width of the Nb electrode 2A is 20 μm.
The line width of B is 2 μm, and the distance between the Nb electrodes is 5 μm.

【0013】次に図1(b)に示すように、基板全面に
Nb電極2A、2Bの膜厚以上の膜厚を有するSiO2
膜(膜厚700nm)3を形成する。
Next, as shown in FIG. 1B, SiO 2 having a film thickness equal to or larger than the film thickness of the Nb electrodes 2A and 2B is formed on the entire surface of the substrate.
A film (film thickness 700 nm) 3 is formed.

【0014】次に図1(c)に示すように、SiO2
3の凹部に、Nb電極の反転マスク(リソグラフィーの
ための露光マスクで、Nb電極パターン形成時に使用し
た露光マスクの白黒を反転して作製された露光マスク)
により通常のリソグラフィー技術を用いて、Nb電極2
A、2Bと同じ膜厚の第1のフォトレジスト膜4Aを形
成する。これにより凹凸段差は、SiO2 膜3の凸部と
第1のフォトレジスト膜4Aとの間の小さな溝だけにな
る。
Next, as shown in FIG. 1C, in the concave portion of the SiO 2 film 3, a reversal mask of the Nb electrode (an exposure mask for lithography, black and white of the exposure mask used when the Nb electrode pattern was formed is reversed). Exposure mask manufactured by
By using a normal lithography technique, the Nb electrode 2
A first photoresist film 4A having the same film thickness as A and 2B is formed. As a result, the uneven step is only a small groove between the convex portion of the SiO 2 film 3 and the first photoresist film 4A.

【0015】次に図1(d)に示すように、フォトレジ
ストを基板全面にスピン塗布しベーキングする(例えば
120℃)ことにより表面が平坦な第2のフォトレジス
ト膜5を形成する。
Next, as shown in FIG. 1D, a photoresist is spin-coated on the entire surface of the substrate and baked (for example, 120 ° C.) to form a second photoresist film 5 having a flat surface.

【0016】次に図1(e)に示すように、第1のフォ
トレジスト膜4Aと第2のフォトレジスト膜4B及びS
iO2 膜3のエッチング速度が等しくなる条件でNb電
極2A、2Bの上部表面が表れるまでエッチングを行
う。エッチングの終点は、発光分析等を利用してNb電
極の上部表面を検出することで検出できる。エッチング
としては、例えば、CHF3 とO2 の混合ガスを用いた
反応性イオンエッチング(ガス圧3Pa、高周波電力1
00W)を用いることができる。
Next, as shown in FIG. 1E, the first photoresist film 4A and the second photoresist films 4B and S are formed.
Etching is performed until the upper surfaces of the Nb electrodes 2A and 2B appear under the condition that the etching rates of the iO 2 film 3 are equal. The end point of etching can be detected by detecting the upper surface of the Nb electrode using emission analysis or the like. As the etching, for example, reactive ion etching using a mixed gas of CHF 3 and O 2 (gas pressure 3 Pa, high frequency power 1
00W) can be used.

【0017】このように本実施例によれば、任意の幅及
び形状のNb電極による凹凸に対して、Nb電極の上部
表面を露出した状態で、均一に良好な平坦化を行うこと
ができるという効果がある。この平坦化の後、直接配線
等の導電層を形成するか、又は一定の膜厚の絶縁膜を形
成したのち配線等の導電層を形成することにより容易に
多層構造を実現できる。直接配線等の導電層を形成する
場合には、すでにNb電極の上部表面が露出されている
ため、上部配線とのコンタクトを容易に得ることができ
る。本実施例ではNb電極の上部表面が露出するまでエ
ッチバックを行ったが、SiO2 膜3をより厚く形成し
ておくことで、Nb電極の上部表面を露出させずにエッ
チングを終了させても平坦な構造を実現することができ
る。
As described above, according to the present embodiment, it is possible to uniformly perform good planarization with respect to the unevenness of the Nb electrode having an arbitrary width and shape with the upper surface of the Nb electrode exposed. effective. After the flattening, a conductive layer such as a wiring is directly formed, or an insulating film having a certain thickness is formed and then a conductive layer such as a wiring is formed, so that a multilayer structure can be easily realized. When a conductive layer such as a direct wiring is formed, the upper surface of the Nb electrode is already exposed, so that contact with the upper wiring can be easily obtained. In this embodiment, the etching back is performed until the upper surface of the Nb electrode is exposed. However, by forming the SiO 2 film 3 to be thicker, even if the etching is finished without exposing the upper surface of the Nb electrode. A flat structure can be realized.

【0018】上記実施例では、超伝導集積回路の1つの
製造工程を例として示したため、導電体として超伝導材
料であるNbを用いたが、半導体集積回路で一般的に使
用されるA1、Cu、ポリシリコン及びそれらの合金等
を用いても良い。また、絶縁膜としてはスパッタ法によ
るSiO2 を用いたが、これ以外にCVD法によるSi
2 、蒸着によるSiO、スパッタ法によるMgO等の
任意の絶縁膜を使用することも可能である。
In the above embodiment, one manufacturing process of the superconducting integrated circuit is shown as an example. Therefore, although Nb which is a superconducting material is used as the conductor, A1 and Cu which are generally used in the semiconductor integrated circuit are used. , Polysilicon and alloys thereof may be used. Further, as the insulating film, SiO 2 formed by the sputtering method is used.
It is also possible to use any insulating film such as O 2 , SiO by vapor deposition, and MgO by sputtering.

【0019】さらに、上記実施例では、第1のフォトレ
ジスト膜4Aの形成にNb電極パターンの反転マスクを
使用したが、Nb電極の形成時に使用した同じ露光マス
クと極性の異なるフォトレジスト(例えば、Nb電極の
形成時にポジ型フォトレジストを使用していれば、第1
のフォトレジスト膜4Aの形成時にはネガ型フォトレジ
ストを用いる)を用いても通常の露光技術により容易に
第1のフォトレジスト膜4Aを形成することができ、同
様の良好な平坦化を行うことが出来る。また、第2の有
機膜としてフォトレジスト膜を用いたが、例えばポリス
チレンの様な被覆時の平坦性の良い有機膜であれば、任
意の有機膜を使用しても同様の効果を得ることができ
る。
Further, in the above embodiment, the inversion mask of the Nb electrode pattern is used for forming the first photoresist film 4A. However, the same exposure mask used at the time of forming the Nb electrode has a different polarity (for example, photoresist). If a positive photoresist is used when forming the Nb electrode, the first
Even if a negative photoresist is used when forming the photoresist film 4A, the first photoresist film 4A can be easily formed by a normal exposure technique, and the same good planarization can be performed. I can. Although the photoresist film is used as the second organic film, the same effect can be obtained even if any organic film is used as long as it is an organic film having good flatness at the time of coating, such as polystyrene. it can.

【0020】[0020]

【発明の効果】以上説明したように本発明は、導電体膜
上に絶縁膜を形成したのち、この絶縁膜の凹部にのみ第
1の有機膜を形成し、次で全面に第2の有機膜を形成す
る為表面が完全に平坦化される。従って、この第1,第
2の有機膜及び絶縁膜を等速エッチングすることによ
り、導電体膜による凹凸を完全に平坦化できるという効
果がある。
As described above, according to the present invention, after the insulating film is formed on the conductor film, the first organic film is formed only in the concave portion of the insulating film, and then the second organic film is formed on the entire surface. The surface is completely flattened to form a film. Therefore, there is an effect that the unevenness due to the conductor film can be completely flattened by etching the first and second organic films and the insulating film at a constant rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を説明するための半導体チッ
プ断面図。
FIG. 1 is a sectional view of a semiconductor chip for explaining an embodiment of the present invention.

【図2】従来の技術を説明するための半導体チップ断面
図。
FIG. 2 is a cross-sectional view of a semiconductor chip for explaining a conventional technique.

【符号の説明】[Explanation of symbols]

1 Si基板 2A,2B Nb電極 3 SiO2 膜 4 フォトレジスト膜 4A 第1のフォトレジスト膜 4B 第2のフォトレジスト膜1 Si Substrate 2A, 2B Nb Electrode 3 SiO 2 Film 4 Photoresist Film 4A First Photoresist Film 4B Second Photoresist Film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上に幅の異なる複数の導電体膜を形
成する工程と、前記導電体膜を含む全面に前記導電体膜
よりも厚い絶縁膜を形成する工程と、前記導電体膜の上
部以外の前記絶縁膜上の凹状領域に前記導電体膜と同じ
膜厚の第1の有機膜を形成する工程と、前記第1の有機
膜を含む全面に第2の有機膜を形成する工程と、前記絶
縁膜と前記第1及び第2の有機膜に対するエッチング速
度が等しくなる条件でエッチングし少くとも前記第1及
び第2の有機膜を除去する工程とを含むことを特徴とす
る集積回路の製造方法。
1. A step of forming a plurality of conductor films having different widths on a substrate, a step of forming an insulating film thicker than the conductor film on the entire surface including the conductor film, and a step of forming the conductor film. A step of forming a first organic film having the same film thickness as the conductor film in the concave region on the insulating film other than the upper part, and a step of forming a second organic film on the entire surface including the first organic film And the step of removing at least the first and second organic films by etching under the condition that the etching rates of the insulating film and the first and second organic films are equal to each other. Manufacturing method.
【請求項2】 導電体膜を形成する為に用いたマスクの
反転マスクを用いて第1の有機膜を形成する請求項1記
載の集積回路の製造方法。
2. The method for manufacturing an integrated circuit according to claim 1, wherein the first organic film is formed by using an inversion mask of the mask used for forming the conductor film.
JP32265694A 1994-12-26 1994-12-26 Method of manufacturing integrated circuit Pending JPH08181115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32265694A JPH08181115A (en) 1994-12-26 1994-12-26 Method of manufacturing integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32265694A JPH08181115A (en) 1994-12-26 1994-12-26 Method of manufacturing integrated circuit

Publications (1)

Publication Number Publication Date
JPH08181115A true JPH08181115A (en) 1996-07-12

Family

ID=18146136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32265694A Pending JPH08181115A (en) 1994-12-26 1994-12-26 Method of manufacturing integrated circuit

Country Status (1)

Country Link
JP (1) JPH08181115A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9129875B2 (en) 2011-10-13 2015-09-08 Panasonic Intellectual Property Management Co., Ltd. Solid-state imaging device and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271617A (en) * 1989-04-13 1990-11-06 Fuji Electric Co Ltd Manufacture of semiconductor integrated circuit
JPH04359544A (en) * 1991-06-06 1992-12-11 Nippon Telegr & Teleph Corp <Ntt> Formation method of flat wiring layer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271617A (en) * 1989-04-13 1990-11-06 Fuji Electric Co Ltd Manufacture of semiconductor integrated circuit
JPH04359544A (en) * 1991-06-06 1992-12-11 Nippon Telegr & Teleph Corp <Ntt> Formation method of flat wiring layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9129875B2 (en) 2011-10-13 2015-09-08 Panasonic Intellectual Property Management Co., Ltd. Solid-state imaging device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US20020037617A1 (en) Method for forming gate electrodes in a semicoductor device using formed fine patterns
US6211557B1 (en) Contact structure using taper contact etching and polycide step
JP3344786B2 (en) Method for manufacturing capacitor electrode of semiconductor memory cell
JPH0313744B2 (en)
JPH08181115A (en) Method of manufacturing integrated circuit
JP2000173996A (en) Semiconductor device and manufacture thereof
JP2555958B2 (en) Method for manufacturing semiconductor device
KR950011642B1 (en) Dram using a bit line contact or capacitor contact
JPH0766178A (en) Fabrication of semiconductor device
JPH05226333A (en) Manufacture of semiconductor device
KR100404219B1 (en) Semiconductor device and manufacturing method
KR100237758B1 (en) Manufacture of semiconductor device
JPH098007A (en) Method for flattening insulation film
JP2827256B2 (en) Etchback flattening method
KR100400763B1 (en) Method for manufacturing capacitor of semiconductor device
KR100268896B1 (en) method for manufacturing of capactor
JPH01272121A (en) Through-hole structure and manufacture thereof
CN111477541A (en) Self-aligned dual imaging technique
JPS6362255A (en) Method for flattening semiconductor device
KR100357174B1 (en) Method for fabricating capacitor of semiconductor device
KR0126887B1 (en) Contact hole formation method of semiconductor device
JPS58175848A (en) Manufacture of semiconductor device
JPH11135478A (en) Manufacture of semiconductor device
KR20040008510A (en) Method for manufacturing semiconductor device
JPH07161715A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970204