JPH0818101A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH0818101A
JPH0818101A JP15207694A JP15207694A JPH0818101A JP H0818101 A JPH0818101 A JP H0818101A JP 15207694 A JP15207694 A JP 15207694A JP 15207694 A JP15207694 A JP 15207694A JP H0818101 A JPH0818101 A JP H0818101A
Authority
JP
Japan
Prior art keywords
layer
crystal
substrate
ingaalp
crystal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15207694A
Other languages
Japanese (ja)
Inventor
Junichi Sonoda
純一 園田
Tadashi Horio
直史 堀尾
Yasuo Arai
康夫 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP15207694A priority Critical patent/JPH0818101A/en
Publication of JPH0818101A publication Critical patent/JPH0818101A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To make luminance performance high even if LEDs, which emit red light and yellow light, are formed and to enhance electric conductivity in a semiconductor device, wherein an InGaAlP-based crystal layer is formed by epitaxial growth on a substrate. CONSTITUTION:On an (n)-type GaAs crystal layer 1, a composition gradient layer 5, which is compositionally graded from an (n)-type GaAs crystal and made to be the GaAsP crystal layer, is formed as an epitaxially grown substrate. On this substrate, an (n)-type InGaAl layer 2, an InGaP layer (active layer) 6, which does not contain Al, and a (p)-type InGaAlP crystal layer 4 are sequentially formed by epitaxial growing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特にLED、半導体レ
ーザー等に適した半導体装置及びその製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device particularly suitable for LEDs, semiconductor lasers and the like, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】図3は従来のInGaAlP系結晶層を
有した半導体装置の構成を示す図であり、(a)は断面
構造を示し、また(b),(c)及び(d)はその各層
の格子定数、エネルギーギャップ及びAl(アルミニウ
ム)組成をそれぞれ示している。
2. Description of the Related Art FIG. 3 is a diagram showing a structure of a conventional semiconductor device having an InGaAlP-based crystal layer, in which (a) shows a sectional structure, and (b), (c) and (d) show the structure. The lattice constant, energy gap, and Al (aluminum) composition of each layer are shown.

【0003】同図中、1は基板となるn(形)−GaA
s結晶層で、この基板上にn−InGaAlP結晶層
2、活性層となるInGaAlP結晶層3、及びP
(形)−InGaAlP結晶層4が半導体部品として積
層形成されている。
In the figure, 1 is an n (type) -GaA substrate.
An s crystal layer, an n-InGaAlP crystal layer 2, an InGaAlP crystal layer 3 serving as an active layer, and P on the substrate.
(Shape) -InGaAlP crystal layer 4 is laminated and formed as a semiconductor component.

【0004】ここで、GaAsを基板結晶とし、この上
にMOVPE(Metal Organic Vapor Phase Epitaxial
)などでInGaAlP系結晶によるDH(Double He
terogeneity)−LEDを作製する場合、In1-x {G
1-y Alyx Pは4元混晶であるため、その格子定
数と発光波長(エネルギーギャップ)は固相組成のxと
yの値により各々独立に制御可能である。また、Gaと
Alの結合半径は非常に近いので、格子定数はyの値に
よりほとんど変化せず、ほぼxの値のみにより制御可能
である。
Here, GaAs is used as a substrate crystal, and MOVPE (Metal Organic Vapor Phase Epitaxial) is formed on the substrate crystal.
) And the like, DH (Double He
heterogeneity) -When manufacturing an LED, In1 -x {G
For a 1-y Al y} x P is the quaternary mixed crystal, the emission wavelength (energy gap) and the lattice constant can be controlled independently by the values of x and y of the solid phase composition. Further, since the bond radii of Ga and Al are very close to each other, the lattice constant hardly changes depending on the value of y and can be controlled only by the value of x.

【0005】このため、基板をGaAs結晶層とし、エ
ピタキシャル層が格子整合することを条件とすると、x
の値は一定(GaAsの場合はx=0.52)となり、
発光波長の制御はyの値によってのみ行われる。そし
て、y=0の時に赤色を発光し、y=0.3〜0.4程
度で黄色を発光する。
Therefore, if the substrate is a GaAs crystal layer and the epitaxial layer is lattice-matched, x
Is constant (x = 0.52 for GaAs),
The emission wavelength is controlled only by the value of y. Then, when y = 0, red light is emitted, and when y = 0.3 to 0.4, yellow light is emitted.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の半導体装置にあっては、例えばLEDとし
てオレンジ色〜黄色あたりの発光をターゲット(目標)
とした場合、活性層は必ずAlを含む結晶つまりInG
aAlP結晶となってしまうため、発光効率が低下する
という問題点があり、また伝導率が低く、オーミック電
極の形成が困難で、電流拡散層に向かないという問題点
があった。
However, in the conventional semiconductor device as described above, for example, the light emission from orange to yellow is targeted as the LED (target).
In this case, the active layer is always a crystal containing Al, that is, InG
Since it becomes an aAlP crystal, there is a problem that the luminous efficiency is lowered, and there is a problem that the conductivity is low, it is difficult to form an ohmic electrode, and it is not suitable for a current diffusion layer.

【0007】すなわち、上記InGaAlP結晶はAl
を含むので、結晶中に酸素を取り込みやすい。そして、
この酸素が深く入り、かつ非発光の再結合センターとな
るため、発光効率が低下する。
That is, the above InGaAlP crystal is Al
Therefore, oxygen is easily incorporated into the crystal. And
Since this oxygen enters deeply and serves as a non-radiative recombination center, the luminous efficiency is reduced.

【0008】また、DHのクラッド層は活性層より高い
エネルギーギャップを持つ必要があり、yの値はy=
0.8程度になる。この高いyの値の結晶は伝導率が低
く、このためオーミック電極の形成が困難で、かつ電流
拡散機能が低く、素子性能は低いものとなる。
The clad layer of DH needs to have a higher energy gap than the active layer, and the value of y is y =
It will be about 0.8. The crystal having a high y value has a low conductivity, so that it is difficult to form an ohmic electrode, the current spreading function is low, and the device performance is low.

【0009】本発明は、上記のような問題点に着目して
なされたもので、発光効率が高く、また伝導率も高くす
ることができ、オーミック電極の形成が容易で、電流拡
散機能も高く、素子性能が向上した半導体装置及びその
製造方法を提供することを目的としている。
The present invention has been made by paying attention to the above problems, and has high luminous efficiency, high conductivity, easy formation of ohmic electrodes, and high current spreading function. It is an object of the present invention to provide a semiconductor device having improved element performance and a manufacturing method thereof.

【0010】[0010]

【課題を解決するための手段】本発明に係る半導体装置
は、基板上にエピタキシャル成長によるInGaAlP
系結晶層を有した半導体装置において、前記基板を、G
aAs系結晶あるいはGaP系結晶から組成勾配させて
GaAsP系結晶とした組成勾配層で形成したものであ
る。
A semiconductor device according to the present invention is an InGaAlP film formed by epitaxial growth on a substrate.
In a semiconductor device having a system crystal layer, the substrate is G
It is formed of a composition gradient layer which is a GaAsP type crystal obtained by subjecting an aAs type crystal or a GaP type crystal to a composition gradient.

【0011】また本発明に係る半導体装置の製造方法
は、基板上にInGaAlP系結晶層を有した半導体装
置の製造方法において、前記基板を、GaAs系結晶あ
るいはGaP系結晶から組成勾配させてGaAsP系結
晶とした組成勾配層で形成し、この基板上に前記InG
aAlP系結晶層をエピタキシャル成長により形成する
ようにしたものである。
A method of manufacturing a semiconductor device according to the present invention is the method of manufacturing a semiconductor device having an InGaAlP-based crystal layer on a substrate, wherein the substrate is a GaAsP-based crystal or a GaP-based crystal with a composition gradient. It is formed of a compositional gradient layer made of crystal, and the InG is formed on this substrate.
The aAlP-based crystal layer is formed by epitaxial growth.

【0012】[0012]

【作用】本発明の半導体装置及びその製造方法において
は、エピタキシャル成長によりInGaAlP系結晶が
形成される基板が、GaAs系結晶あるいはGaP系結
晶から組成勾配させてGaAsP系結晶とした組成勾配
層であるため、活性層にAlを含まないものとなる。
In the semiconductor device and the method of manufacturing the same according to the present invention, the substrate on which the InGaAlP-based crystal is formed by epitaxial growth is a GaAs-based crystal or a composition-graded layer of a GaP-based crystal that is a GaAsP-based crystal. The active layer does not contain Al.

【0013】[0013]

【実施例】図1は本発明の一実施例の構成を示す図であ
り、図3と同様(a)はデバイスの断面構造、(b),
(c),(d)はその格子定数、エネルギーギャップ、
Al組成をそれぞれ示し、また図3と同一符号は同一構
成要素を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing the structure of an embodiment of the present invention. Like FIG. 3, (a) is a sectional structure of a device, (b),
(C) and (d) are the lattice constant, energy gap,
The respective Al compositions are shown, and the same reference numerals as those in FIG. 3 indicate the same constituent elements.

【0014】同図において、1はn−GaAs結晶層
(基板)で、その上に組成勾配層5が形成され、この組
成勾配層5を基板としてInGaAlP系結晶層がエピ
タキシャル成長によりクラッド層として形成されてい
る。
In the figure, reference numeral 1 is an n-GaAs crystal layer (substrate), on which a composition gradient layer 5 is formed, and using this composition gradient layer 5 as a substrate, an InGaAlP-based crystal layer is formed as a cladding layer by epitaxial growth. ing.

【0015】上記組成勾配層5は、n−GaAs結晶か
ら組成勾配させてn−GaAsP結晶としたものであ
り、上側がN−GaAsP結晶層となっている。そし
て、これを基板としてn−InGaAlP結晶層2、I
nGaP結晶層(活性層)6、P−InGaAlP結晶
層4が順次形成されている。
The composition gradient layer 5 is an n-GaAsP crystal having a composition gradient from an n-GaAs crystal, and the upper side is an N-GaAsP crystal layer. Then, using this as a substrate, the n-InGaAlP crystal layers 2, I
An nGaP crystal layer (active layer) 6 and a P-InGaAlP crystal layer 4 are sequentially formed.

【0016】ここで、GaAs基板上に組成勾配させて
GaAsP結晶を成長させたウエハーは、黄色や赤色発
光のLEDの材料となり、一般に入手可能である。また
組成勾配層5は、GaAsとGaAsPの大きな格子定
数差を緩和し、これによりGaAsP層は良質の結晶性
を示す。そして、この組成勾配層5が機能する領域であ
れば、所望の格子定数を持った組成のGaAsPウエハ
ーを作製することができる。
Here, a wafer obtained by growing a GaAsP crystal on a GaAs substrate with a composition gradient is a material for LEDs emitting yellow or red light, and is generally available. Further, the composition gradient layer 5 relaxes a large difference in lattice constant between GaAs and GaAsP, so that the GaAsP layer exhibits good crystallinity. Then, in the region where the composition gradient layer 5 functions, a GaAsP wafer having a composition having a desired lattice constant can be manufactured.

【0017】表1は、GaAs1-zz のリン組成z
と、それに格子整合するIn1-x Gax Pのガリウム組
成xと、その各種GaAsP結晶に格子整合するInG
aP結晶を活性層としたLEDの計算により求めた発光
波長及び実験による発光波長との関係を示したものであ
る。
[0017] Table 1, GaAs 1-z P z phosphorus composition z of
And the gallium composition x of In 1-x Ga x P that is lattice-matched to it and InG that is lattice-matched to various GaAsP crystals.
2 shows the relationship between the emission wavelength obtained by calculation of an LED having an aP crystal as an active layer and the emission wavelength obtained by experiments.

【0018】[0018]

【表1】 [Table 1]

【0019】一般的に理論上の計算値と実験値には差が
あるが、これは組成の決定方法の違いによる差あるいは
成長条件の違いによる差に基づく結晶物性の差と考えら
れる。またMOVPEの場合は、成長温度、5族と3族
のV/III 比、成長速度等により発光波長(エネルギー
ギャップ)の調整が可能である。
Generally, there is a difference between the theoretical calculated value and the experimental value, but this is considered to be a difference in the crystal properties based on the difference in the method of determining the composition or the difference in the growth conditions. Further, in the case of MOVPE, the emission wavelength (energy gap) can be adjusted by the growth temperature, the V / III ratio of group 5 and group 3, the growth rate, and the like.

【0020】表1に示すように、z=0つまりGaAs
結晶上に格子整合するInGaP結晶の発光波長は67
0nmであり、zの値を大きくするに従ってそれに格子
整合するIn1-xx P結晶の発光波長は短波長化す
る。そして、z=0.4の時に発光波長は595nmと
なり、黄色発光となる。
As shown in Table 1, z = 0, that is, GaAs
The emission wavelength of the InGaP crystal lattice-matched on the crystal is 67
It is 0 nm, and as the value of z is increased, the emission wavelength of the In 1-x G x P crystal lattice-matched with it becomes shorter. Then, when z = 0.4, the emission wavelength becomes 595 nm, and yellow emission occurs.

【0021】このように、基板(組成勾配層5)を選択
することによって発光波長を確定することができ、素子
性能の優れたSH(Single Heterogeneity) 、DH等の
LEDを作成することができる。またその発光色は、基
板のGaAsP組成により調整するので、活性層にAl
を含まず、かつクラッド層のAlも低濃度ですむ。
As described above, the emission wavelength can be determined by selecting the substrate (composition gradient layer 5), and LEDs such as SH (Single Heterogeneity) and DH having excellent device performance can be produced. The emission color is adjusted by the GaAsP composition of the substrate.
The Al content of the cladding layer is low and does not need to be high.

【0022】したがって、酸素濃度つまり非発光再結合
センターが減り、発光効率が高いものとなる。また、ク
ラッド層の前述のyの値が0.5程度ですむことによ
り、伝導率も高くすることができ、オーミック電極の形
成が容易で、電流拡散機能も高いものとなる。
Therefore, the oxygen concentration, that is, the non-radiative recombination center is reduced, and the luminous efficiency is high. Further, since the value of y of the cladding layer is about 0.5, the conductivity can be increased, the ohmic electrode can be easily formed, and the current spreading function can be enhanced.

【0023】また、本発明の他の実施例として、P組成
が大きい場合は、図1の組成勾配層5をGaP系結晶か
ら組成勾配させてGaAsP系結晶とした基板にし、こ
の基板上にInGaAlP系結晶をエピタキシャル成長
させても良い。図2にGaAs結晶から組成勾配させた
場合とGaP結晶から組成勾配させた場合のGaAsP
結晶の格子定数調整範囲を示す。図では5.653Å〜
5.451Åとなっている。
As another embodiment of the present invention, when the P composition is large, the composition gradient layer 5 of FIG. 1 is formed into a GaAsP crystal substrate by grading the composition from the GaP crystal, and InGaAlP is formed on this substrate. The system crystal may be epitaxially grown. In FIG. 2, GaAsP with a composition gradient from a GaAs crystal and with a composition gradient from a GaP crystal.
The crystal lattice constant adjustment range is shown. In the figure, 5.653Å ~
It is 5.451 Å.

【0024】[0024]

【発明の効果】以上説明したように、本発明によれば、
GaAs系結晶あるいはGaP系結晶から組成勾配させ
てGaAsP系結晶とした組成勾配層を基板とし、この
基板上にInGaAlP系結晶層をエピタキシャル成長
により形成するようにしたため、発光効率が高く、また
伝導率も高くすることができ、オーミック電極の形成が
容易で、電流拡散機能も高く、素子性能が向上するとい
う効果がある。
As described above, according to the present invention,
Since the composition gradient layer of GaAs-based crystal or GaP-based crystal is formed into a GaAsP-based crystal as a substrate, and the InGaAlP-based crystal layer is formed on this substrate by epitaxial growth, the luminous efficiency is high and the conductivity is also high. It is possible to increase the height, the formation of the ohmic electrode is easy, the current spreading function is high, and the device performance is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の構成を示す図FIG. 1 is a diagram showing a configuration of an embodiment of the present invention.

【図2】 GaAsP結晶の格子定数調整範囲を示す説
明図
FIG. 2 is an explanatory diagram showing a lattice constant adjustment range of a GaAsP crystal.

【図3】 従来例の構成を示す図FIG. 3 is a diagram showing a configuration of a conventional example.

【符号の説明】[Explanation of symbols]

1 n−GaAs結晶層 2 n−InGaAlP結晶層 4 P−InGaAlP結晶層 5 組成勾配層(基板) 6 InGaP結晶層(活性層) 1 n-GaAs crystal layer 2 n-InGaAlP crystal layer 4 P-InGaAlP crystal layer 5 composition gradient layer (substrate) 6 InGaP crystal layer (active layer)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上にエピタキシャル成長によるIn
GaAlP系結晶層を有した半導体装置において、前記
基板を、GaAs系結晶あるいはGaP系結晶から組成
勾配させてGaAsP系結晶とした組成勾配層で形成し
たことを特徴とする半導体装置。
1. An In grown by epitaxial growth on a substrate.
A semiconductor device having a GaAlP-based crystal layer, wherein the substrate is formed of a composition-graded layer that is a GaAsP-based crystal with a composition gradient from a GaAs-based crystal or a GaP-based crystal.
【請求項2】 基板上にInGaAlP系結晶層を有し
た半導体装置の製造方法において、前記基板を、GaA
s系結晶あるいはGaP系結晶から組成勾配させてGa
AsP系結晶とした組成勾配層で形成し、この基板上に
前記InGaAlP系結晶層をエピタキシャル成長によ
り形成することを特徴とする半導体装置の製造方法。
2. A method of manufacturing a semiconductor device having an InGaAlP-based crystal layer on a substrate, wherein the substrate is GaA.
A compositional gradient from an s-based crystal or GaP-based crystal
A method of manufacturing a semiconductor device, comprising forming a composition gradient layer made of AsP-based crystal, and forming the InGaAlP-based crystal layer on this substrate by epitaxial growth.
JP15207694A 1994-07-04 1994-07-04 Semiconductor device and manufacture thereof Withdrawn JPH0818101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15207694A JPH0818101A (en) 1994-07-04 1994-07-04 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15207694A JPH0818101A (en) 1994-07-04 1994-07-04 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0818101A true JPH0818101A (en) 1996-01-19

Family

ID=15532535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15207694A Withdrawn JPH0818101A (en) 1994-07-04 1994-07-04 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0818101A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057592A (en) * 1996-01-12 2000-05-02 Shin-Etsu Handotai Co., Ltd. Compound semiconductor epitaxial wafer
WO2007088841A1 (en) * 2006-01-31 2007-08-09 Shin-Etsu Handotai Co., Ltd. Light-emitting device and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057592A (en) * 1996-01-12 2000-05-02 Shin-Etsu Handotai Co., Ltd. Compound semiconductor epitaxial wafer
WO2007088841A1 (en) * 2006-01-31 2007-08-09 Shin-Etsu Handotai Co., Ltd. Light-emitting device and method for manufacturing same
JP2007207932A (en) * 2006-01-31 2007-08-16 Shin Etsu Handotai Co Ltd Light emitting element and its fabrication process

Similar Documents

Publication Publication Date Title
US5744829A (en) A1GaInP light emitting diode
US20020136932A1 (en) GaN-based light emitting device
JP3890930B2 (en) Nitride semiconductor light emitting device
JPH08288544A (en) Semiconductor light-emitting element
JPH0897468A (en) Semiconductor light emitting device
JPH11340509A (en) Nitride semiconductor element
GB2320136A (en) Semiconductor light emitting devices
JP2002033512A (en) Nitride semiconductor light emitting diode
JP3602856B2 (en) Semiconductor light emitting device and method of manufacturing the same
JPH05167101A (en) Semiconductor light emitting element
JPH11274082A (en) Group iii nitride semiconductor and fabrication thereof, and group iii nitride semiconductor device
JP2000150959A (en) Gallium nitride compound semiconductor light emitting element
JP2713095B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP2900754B2 (en) AlGaInP light emitting device
JP2713094B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP2000114599A (en) Semiconductor light emitting element
JPH09283799A (en) Semiconductor light-emitting element
JP2006005044A (en) Nitride system semiconductor light emitting device and its manufacturing method
JPH0818101A (en) Semiconductor device and manufacture thereof
JP2001168382A (en) Semiconductor light emitting element
JP2003008058A (en) AlGaInP EPITAXIAL WAFER, METHOD OF MANUFACTURING THE SAME, AND SEMICONDUCTOR LIGHT-EMITTING ELEMENT USING THE SAME
JP2001015803A (en) AlGaInP LIGHT EMITTING DIODE
JPH0661525A (en) Light emitting diode
JP2000332293A (en) Iii-v nitride semiconductor light emitting element and its manufacture
JP3635613B2 (en) Semiconductor laminated structure and semiconductor light emitting device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904