JPH08176631A - Operation of vertical type metal smelting reduction furnace - Google Patents

Operation of vertical type metal smelting reduction furnace

Info

Publication number
JPH08176631A
JPH08176631A JP31842994A JP31842994A JPH08176631A JP H08176631 A JPH08176631 A JP H08176631A JP 31842994 A JP31842994 A JP 31842994A JP 31842994 A JP31842994 A JP 31842994A JP H08176631 A JPH08176631 A JP H08176631A
Authority
JP
Japan
Prior art keywords
furnace
molten metal
tuyeres
blowing
reduction furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31842994A
Other languages
Japanese (ja)
Inventor
Taro Kusakabe
太郎 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP31842994A priority Critical patent/JPH08176631A/en
Publication of JPH08176631A publication Critical patent/JPH08176631A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE: To stably operate a vertical type metal smelting reduction furnace in the high productivity by blowing oxygen-containing hot blast from plural tuyeres at the lower part of a packing layer of solid reduction materials so as to deflect at a fixed angle to the radial direction at the fitting height of the tuyeres. CONSTITUTION: Cabonaceous material 3 is charged as the solid reduction material from the furnace top of the vertical type molten metal smelting reduction furnace 1 to form the packing layer 6 of the carbonaceous material in the furnace. Powdery and granular ore raw material 9 containing metallic oxide and flux 8 stored in raw material hopper group 14 are injected together with the oxygen-containing hot blast 2 to this packing layer 6 from plural tuyeres 4, 5 at the lower part of the furnace. By this method, the carbonaceous material 3 is burnt in raceways 7 formed in the packing layer 6 and the smelting reduction is executed to the metallic oxide with generated heat and CO gas and the obtd. metal is tapped off from an iron tapping hole 12. In the above operational method, the blowing of the hot blast into the furnace is deflected at the fixed angle to the radial direction of the furnace at the fitting height of the tuyeres, desirably, in the range of 10-45 deg. angle. By this method, the circulation of fused material, grains, etc., in the furnace and blow-off of gas, etc., are prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素系固体還元剤の充
填層を形成した竪型溶融金属還元炉の操業方法に関し、
特に、粉粒状鉱石類及び/又はダスト等を原料として、
それらが含有する金属酸化物より効率良く該溶融金属を
製造すると同時に、該溶融金属中の燐含有量を低減する
方法に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a vertical molten metal reducing furnace having a packed bed of a carbon-based solid reducing agent,
In particular, using granular ores and / or dust as raw materials,
The present invention relates to a method for producing the molten metal more efficiently than the metal oxides contained therein and, at the same time, reducing the phosphorus content in the molten metal.

【0002】[0002]

【従来の技術】一般に、銑鉄等の溶融金属を多量に製造
するには、塊状の原料を必要とする高炉が用いられるこ
とが多い。しかしながら、近年の原料事情より、酸化鉄
又は各種の金属酸化物を含有する鉱石原料は、塊状のも
のが減少し、粉状もしくは小粒状のものが多くなってお
り、その傾向はますます増大すると考えられている。
2. Description of the Related Art Generally, in order to produce a large amount of molten metal such as pig iron, a blast furnace which requires a lumpy raw material is often used. However, due to the recent circumstances of raw materials, the number of ore raw materials containing iron oxide or various metal oxides is decreasing in the form of lumps and increasing in the form of powder or small grains, and the tendency is increasing. It is considered.

【0003】一方、粉粒状鉱石を直接使用する溶融金属
の製造方法としては、流動層形式の炉を用いて粉粒状鉱
石を予備還元し、該予備還元鉱を電気炉、転炉等の溶解
炉で溶融還元する方法が一般的である。しかし、この方
法も、該予備還元鉱はバインダー等が添加されて塊成化
して使用されることが多く、塊成化のための処理費、処
理エネルギーを余分に必要とするばかりでなく、塊成化
した後に焼成を追加する場合には、その焼成費の他、N
X ,SOX 及びダストの発生防止の費用が多大になる
という欠点を有している。また、アーク炉、プラズマ炉
あるいは純酸素炉を用いて、上記予備還元鉱を粉粒状の
ままで溶融還元する方法も提案されているが、電力消費
量が莫大になる、酸素の余熱不可、立地条件の制約等の
問題があり、具現化されるに至っていない。そこで、本
出願人は、先に特開昭57ー198205号、特開昭5
8ー77548号等の他多くの公報で開示した所謂竪型
溶融金属還元炉を開発し、その実用化を図っている。
On the other hand, as a method for producing molten metal by directly using powdery granular ore, a fluidized bed type furnace is used to pre-reduce powdery granular ore, and the pre-reduced ore is melted in an electric furnace, a converter or the like. The method of smelting and reducing is generally used. However, in this method as well, the pre-reduced ore is often used by being agglomerated by adding a binder and the like, which not only requires extra processing cost and energy for agglomeration, but also agglomerates. If additional firing is required after compounding, in addition to the firing cost, N
O X, the cost of prevention of SO X and dust has the disadvantage becomes great. Further, a method of smelting and reducing the above-mentioned pre-reduction ore in a granular form by using an arc furnace, a plasma furnace or a pure oxygen furnace is also proposed, but the power consumption becomes enormous. There are problems such as restrictions on conditions, and it has not been realized yet. Therefore, the applicant of the present invention has previously disclosed JP-A-57-198205 and JP-A-5-198205.
The so-called vertical molten metal reduction furnace disclosed in many other publications such as 8-77548 has been developed and is being put into practical use.

【0004】その炉は、図1に示すように、上段羽口4
と下段羽口5を備え、炉上方の炭材供給装置(図示せ
ず)から炭素系固体還元剤が供給され炉内に充填層6を
形成するのを基本にしている。熱源は、高温送風装置
(図示せず)からの高温空気2が供給され、該高温空気
2は分配装置によって上下2段に配置された複数の羽口
4、5に分配される。原料の粉粒状鉱石類は、フラック
ス供給装置からのフラックス8と共に粉粒体吹き込み装
置により粉粒体輸送管10を経て上段羽口4から炉内に
吹き込まれ、生成した溶融金属及びスラグは、出銑口1
2から排出される。また、該竪型溶融金属還元炉1から
排出するガス13は、排ガス処理装置で処理される。そ
して、この炉は、高価な電力あるいは強粘結炭を使用す
ることなく、比較的安価な弱粘結あるいは非粘決炭を使
用し、且つ該炉から排出される還元性ガスを有効に鉱石
の予備還元に使用する利点を有するので、益々エネルギ
ーコストの上昇が危倶される今後の溶融金属の製造装置
として期待できる。
As shown in FIG. 1, the furnace has an upper tuyere 4
And the lower tuyeres 5 are provided, and a carbon-based solid reducing agent is supplied from a carbonaceous material supply device (not shown) above the furnace to form a packed bed 6 in the furnace. The heat source is supplied with high-temperature air 2 from a high-temperature air blower (not shown), and the high-temperature air 2 is distributed by a distributor to a plurality of tuyere 4, 5 arranged in upper and lower two stages. The raw material powdered ore and the flux 8 from the flux supply device are blown into the furnace from the upper tuyeres 4 through the powdered material transport pipe 10 by the powdered material blowing device, and the generated molten metal and slag are discharged. Piggy 1
Emitted from 2. Further, the gas 13 discharged from the vertical molten metal reduction furnace 1 is processed by the exhaust gas processing device. This furnace does not use expensive electric power or strong coking coal, uses relatively inexpensive weak cohesive or non-cohesive coal, and effectively reduces the reducing gas discharged from the furnace. Since it has the advantage of being used for the preliminary reduction of the above, it can be expected as a molten metal production apparatus in the future, where the increase in energy cost is more and more dangerous.

【0005】一方、現在低燐銑又は低燐鋼を得るために
は、所謂溶銑予備処理工程あるいは製鋼工程内において
脱燐処理が行なわれたり、溶銑の製造時に極低燐コーク
スを用いるのが一般的である。それは、高炉を用いる溶
銑製造法では、コークス中に含有されている燐分ほぼ1
00%が溶銑に移行してしまうことから、低燐溶銑製造
に際しては低燐含有のコークスを用いなければならない
し、さらに要求燐成分に応じFeOやFe23 を含む
粉体を溶銑中に吹き込み、溶銑脱燐処理を行う必要があ
るからである。また、製鋼工程で炭材としてコークスを
用いる場合(Cr鉱石の溶融還元)には、コークス中の
燐分が鋼中に移行するので、さらに脱燐の必要性を生
じ、脱燐のための処理設備の設置が別途必要となるから
であり、低燐鋼を狙う電解法も提案されているが、この
方法ではエネルギーコストが莫大となり、大量生産には
適さないからである。
On the other hand, at present, in order to obtain low-phosphorus pig iron or low-phosphorus steel, dephosphorization treatment is carried out in the so-called hot metal pretreatment step or steelmaking step, and ultra-low phosphorus coke is generally used in the production of hot metal. Target. In the hot metal manufacturing method using a blast furnace, the phosphorus content in coke is almost 1%.
Since 00% is transferred to the hot metal, coke with a low phosphorus content must be used in the production of low phosphorus hot metal, and powder containing FeO or Fe 2 O 3 should be added to the hot metal according to the required phosphorus component. This is because it is necessary to perform the blowing and the hot metal dephosphorization treatment. Further, when coke is used as carbonaceous material in the steelmaking process (melt reduction of Cr ore), the phosphorus content in the coke is transferred to the steel, which necessitates further dephosphorization and treatment for dephosphorization. This is because installation of equipment is required separately, and an electrolysis method aiming at low phosphorus steel is also proposed, but this method results in enormous energy cost and is not suitable for mass production.

【0006】しかしながら、上記溶銑予備処理工程等で
の脱燐処理は、次工程である炉外溶銑脱燐処理又は転炉
製錬に負担をかけ、トータルプロセスとしては不経済で
あったり、上記負担を避けるために低燐コークスを使用
する場合でも、該低燐コークス(製法は、特開昭52−
105902号公報参照)自体が高価であるため経済的
に不利となる、等の問題があった。そこで、低燐コーク
ス等の炭材を用いることなく、燐含有量が0.01重量
%以下の低燐銑を安価に大量生産可能な方法として、本
出願人は、特開昭57−198205号公報、特開平5
−9527号公報及び特開平5−247549号公報等
に開示されているように、上記竪型溶融金属還元炉を利
用する方法を提案した。それは、該竪型溶融金属還元炉
が高炉と異なり、炉内に所謂軟化融着帯が形成されず燐
の炉内循環が起きないので、低燐銑製造に好ましいから
である。つまり、上記公報で明らかにしたように、炉内
温度を高温に調整することで気化脱燐が可能だからであ
る。
However, the dephosphorization treatment in the hot metal pretreatment step or the like puts a burden on the next step, ie, the hot metal dephosphorization treatment outside the furnace or the converter smelting, which is uneconomical as a total process, or the above-mentioned burden. Even when a low phosphorus coke is used in order to avoid the problem, the low phosphorus coke (manufacturing method is described in JP-A-52-
However, there is a problem in that it is economically disadvantageous because it is expensive. Therefore, as a method for inexpensively mass-producing low phosphorus pigs having a phosphorus content of 0.01% by weight or less without using a carbonaceous material such as low phosphorus coke, the applicant of the present invention discloses Japanese Patent Application Laid-Open No. 57-198205. Publication, JP-A-5
As disclosed in Japanese Patent Application Laid-Open No. 9527 and Japanese Patent Application Laid-Open No. 5-247549, a method of utilizing the vertical molten metal reduction furnace has been proposed. This is because the vertical molten metal reduction furnace is different from the blast furnace in that a so-called softening cohesive zone is not formed in the furnace and phosphorus is not circulated in the furnace, which is preferable for the production of low phosphorus pig iron. That is, as disclosed in the above publication, vaporization and dephosphorization can be performed by adjusting the temperature in the furnace to a high temperature.

【0007】以上述べたように、本出願人が提案した竪
型溶融金属還元炉は、将来のエネルギー源の枯渇問題を
解決するばかりでなく、燐含有量の低い溶融金属の製造
にも好適であった。しかしながら、今までに提案された
この炉を用いる精錬方法は、まだ完全に確立したもので
はなく、いくつかの問題点を残している。例えば、脱燐
に関して言えば、該竪型溶融金属還元炉が上下に1対の
羽口のみを備え、そこから送風を行う構造の場合には、
図2(a)、図3(a)に示すように、羽口先に形成さ
れるレースウェイ7の周囲に溶融スラグの壁9ができ、
その壁9に覆われた領域内(レースウエイ側)のみをコ
ークスが降下するため、上下の羽口間にあるコークス
は、上下段羽口近傍の1800℃以上の高温領域を通過
して、この領域内で気化脱燐される。しかし、通常は該
炉の羽口は円周方向に複数箇所設けられるので、上記レ
ースウェイ7の深さが炉径の40%でも、図2(b)に
示すように、該レースウェイ7周辺に形成されるコーク
ス粒子旋回域11の一部が互いに重なり合うので、前記
上下段1対の羽口のみを使用する場合のように、レース
ウェイ7の周辺に溶融スラグの壁9ができず、炉内を降
下するコークス粒子の全てが1800℃以上の高温領域
を必ずしも通過しなくなる。つまり、竪型溶融金属還元
炉1を使用しても、如何なる場合にも安定して気化脱燐
できるわけではない。また、上段羽口から吹き込んだ金
属酸化物を含有する粉粒状鉱石類及び/又はダストの一
部がコークス粒子と共にレースウェイ7の回りを旋回
し、レースウェイ7上部に融体が存在するため、該融体
が気化した燐を吸収することもある。さらに、脱燐以外
に関しても、吹き込まれた鉱石原料9とフラックス8の
粉は、上段羽口4前に形成されるレースウェイ7空間で
溶融し、この溶融物が下段羽口5まで滴下する間に還
元、精錬され、炉床に溶融金属とスラグとして滞留する
が、この炉の精錬領域はレースウェイ7空間とその下部
の溶融物が滴下する領域に限定され、炉の水平断面に占
めるレースウェイ7領域の面積を大きくしなければ、生
産性が向上しないという問題もあった。加えて、特開平
4−225756号公報に示すように、操業中にレース
ウェイ7の深さが炉径の40%を超える場合には、炉内
ガスの吹き抜けを起こすことがあり、吹込まれた鉱石原
料9やフラックス8の粉がそのまま還元されずに炉外に
飛び出てしまうという問題もあった。
As described above, the vertical molten metal reduction furnace proposed by the present applicant not only solves the problem of exhaustion of future energy sources, but is also suitable for the production of molten metal having a low phosphorus content. there were. However, the refining methods using this furnace that have been proposed so far have not been completely established yet, and some problems remain. For example, in the case of dephosphorization, in the case where the vertical molten metal reduction furnace is provided with only a pair of upper and lower tuyere and blows air from there,
As shown in FIGS. 2 (a) and 3 (a), a wall 9 of molten slag is formed around the raceway 7 formed at the tuyere tip,
Since the coke descends only within the area covered by the wall 9 (raceway side), the coke between the upper and lower tuyeres passes through a high temperature area of 1800 ° C. or higher near the upper and lower tuyeres, It is vaporized and dephosphorized in the region. However, since the tuyere of the furnace is usually provided at a plurality of locations in the circumferential direction, even if the depth of the raceway 7 is 40% of the furnace diameter, as shown in FIG. Since the coke particle swirling regions 11 formed in the upper part overlap each other, the molten slag wall 9 is not formed around the raceway 7 as in the case of using only the pair of upper and lower tuyere, and the furnace is All of the coke particles descending inside do not necessarily pass through the high temperature region of 1800 ° C. or higher. That is, even if the vertical molten metal reduction furnace 1 is used, it is not possible to stably vaporize and dephosphorize in any case. In addition, since a part of the powdery ore and / or dust containing the metal oxide blown from the upper tuyeres turns around the raceway 7 together with the coke particles, and the melt exists above the raceway 7, The melt may absorb vaporized phosphorus. In addition to the dephosphorization, the blown ore raw material 9 and the powder of the flux 8 are melted in the space of the raceway 7 formed in front of the upper tuyeres 4, and while the melt is dropped to the lower tuyeres 5. The molten metal and slag are retained in the hearth as molten metal and slag, but the refining area of this furnace is limited to the raceway 7 space and the area where the molten material drops below it, and the raceway occupies the horizontal cross section of the furnace. There is also a problem that productivity cannot be improved unless the area of 7 regions is increased. In addition, as shown in Japanese Patent Application Laid-Open No. 4-225756, when the depth of the raceway 7 exceeds 40% of the furnace diameter during operation, blow-through of the gas in the furnace may occur and the gas was blown in. There is also a problem that the powder of the ore raw material 9 and the flux 8 is not reduced as it is and jumps out of the furnace.

【0008】[0008]

【発明が解決しようとする課題】本発明は、かかる事情
を鑑み、溶融物、ダストあるいはコークス等が炉内で循
環したり、炉内ガスが吹抜けするのを防止し、また降下
するコークス粒子がすべて上段羽口近傍を通過すること
により気化脱燐を促進し、且つガス流分布が安定して生
産性の高い竪型溶融金属還元炉の操業方法を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION In view of such circumstances, the present invention prevents the melt, dust, coke, etc. from circulating in the furnace, blows out the gas in the furnace, and prevents coke particles from falling. It is an object of the present invention to provide a method for operating a vertical molten metal reduction furnace which promotes vaporization and dephosphorization by passing all around the upper tuyeres and has a stable gas flow distribution and high productivity.

【0009】[0009]

【課題を解決するための手段】発明者は、上記目的を達
成するため、羽口先の所謂レースウエイの大きさ、形状
等に関し鋭意検討を行い、本発明を想案するに至した。
すなわち、本発明は、炭素系固体還元剤の充填層が形成
され、該充填層の下部に配設された複数の羽口から酸素
含有熱風を吹き込むとともに、金属酸化物を含有する粉
粒状鉱石類及び/又はダストを炉内に吹き込み該金属酸
化物を溶融還元して溶融金属を製造する竪型溶融金属還
元炉の操業方法において、上記酸素含有熱風の炉内への
吹込みを、羽口取付け高さで炉の半径方向に対して一定
角度偏向して行い、上記金属酸化物を溶融還元すること
を特徴とする竪型溶融金属還元炉の操業方法である。ま
た、本発明は、上記一定角度が10〜45度の範囲にあ
ることを特徴とする竪型溶融金属還元炉の操業方法であ
り、さらに、熱風吹込みが、炉円周で少なくとも2ケ所
から行われることを特徴とする竪型溶融金属還元炉の操
業方法でもある。
In order to achieve the above-mentioned object, the inventor has earnestly studied the size and shape of the so-called raceway at the tuyere, and has come up with the present invention.
That is, the present invention, a packed bed of carbon-based solid reducing agent is formed, while blowing oxygen-containing hot air from a plurality of tuyere arranged in the lower part of the packed bed, powdery ore containing metal oxides And / or dust is blown into the furnace to melt and reduce the metal oxide to produce a molten metal. In the operating method of a vertical molten metal reduction furnace, the blowing of the oxygen-containing hot air into the furnace is performed by tuyere attachment. A vertical molten metal reduction furnace operating method is characterized in that the metal oxide is melt-reduced by being deflected at a certain angle with respect to the radial direction of the furnace. Further, the present invention is a method for operating a vertical molten metal reduction furnace, wherein the constant angle is in the range of 10 to 45 degrees, and further, hot air blowing is performed from at least two locations on the circumference of the furnace. It is also a method of operating a vertical molten metal reduction furnace characterized by being performed.

【0010】この場合、金属酸化物を含有する原料は、
上記以外でも焼結鉱粉とかスラグ粉であっても良い。ま
た、熱風の吹込み箇所は、本発明の目的から2ケ所以上
であるが、炉内容積を有効に利用する観点から4ケ所が
好ましい。
In this case, the raw material containing the metal oxide is
Other than the above, sintered ore powder or slag powder may be used. The hot air is blown into two or more locations for the purpose of the present invention, but is preferably four locations from the viewpoint of effectively utilizing the furnace internal volume.

【0011】[0011]

【作用】本発明では、炭素系固体還元剤の充填層が形成
され、該充填層の下部に配設された複数の羽口から酸素
含有熱風を吹き込むとともに、金属酸化物を含有する粉
粒状鉱石類及び/又はダストを炉内に吹き込み該金属酸
化物を溶融還元して溶融金属を製造する竪型溶融金属還
元炉の操業方法において、上記酸素含有熱風の炉内への
吹込みを、羽口取付け高さで炉の半径方向に対して一定
角度偏向して行い、上記金属酸化物を溶融還元するよう
にしたので、羽口先に形成されるレースウエイの周辺が
溶融スラグの壁で仕切られるようになる。その結果、炉
円周方向の複数箇所から送風する構造の竪型溶融金属還
元炉であっても、各レースウエイ毎に独立した高温領域
が確保できるようになり、コークス粒子からの気化脱燐
が安定して行えるだけでなく、炉内ガス流分布の安定
化、所謂吹抜け限界の上昇等が達成できるようになる。
また、本発明では、上記一定角度が10〜45度の範囲
にあるようにしたり、さらに、熱風吹込みが、炉円周で
少なくとも2ケ所から行うようにしたので、上記効果が
一層確実になり、生産性も向上した。
In the present invention, the packed bed of the carbon-based solid reducing agent is formed, and the oxygen-containing hot air is blown from the plurality of tuyere arranged at the lower part of the packed bed, and the granular ore containing the metal oxide. In a method for operating a vertical molten metal reduction furnace in which a metal and / or dust is blown into the furnace to melt and reduce the metal oxide to produce molten metal, the blowing of the oxygen-containing hot air into the furnace is performed by tuyere. The metal oxide is melted and reduced by deflecting it at a fixed height with respect to the radial direction of the furnace at the installation height, so that the periphery of the raceway formed at the tuyere is partitioned by the wall of the molten slag. become. As a result, even in a vertical molten metal reduction furnace with a structure in which air is blown from multiple locations in the circumferential direction of the furnace, an independent high temperature region can be secured for each raceway, and vaporization and dephosphorization from coke particles can be achieved. Not only can it be performed stably, but the stabilization of the gas flow distribution in the furnace, the so-called rise of blow-through limit, etc. can be achieved.
Further, in the present invention, the above-mentioned constant angle is set within the range of 10 to 45 degrees, and further, hot air blowing is performed from at least two locations on the circumference of the furnace, so the above-mentioned effect is further ensured. , Productivity has also improved.

【0012】以下、図2〜3に基づき、本発明の内容を
補足する。まず、コークス粒子からの気化脱燐について
であるが、本発明の実施で図3(c)に示すように、レ
ースウエイ7周辺に溶融スラグの壁で囲まれた1800
℃以上の高温領域ができる。そして、炉内を降下するコ
ークス粒子はすべて炉円周方向のいずれかに形成された
該高温領域を通過するため、以下の反応により気化脱燐
が行われる。なお、該高温領域は、通常、レースウェイ
7空間及びその周辺500mm以内である。
The contents of the present invention will be supplemented below with reference to FIGS. First, regarding vaporization and dephosphorization from coke particles, as shown in FIG. 3 (c) in the practice of the present invention, 1800 surrounded by a wall of molten slag around raceway 7 was formed.
A high temperature region above ℃ can be created. Then, all coke particles descending in the furnace pass through the high temperature region formed in any of the circumferential direction of the furnace, and therefore vaporization dephosphorization is performed by the following reaction. The high temperature region is generally within 500 mm of the raceway 7 space and its periphery.

【0013】レースウェイ部分での反応は、 2Ca328 (コークス中)+5C→3CaO+2P+5CO…(1) また、SiO2 が存在すると、上記コークス中燐酸カル
シウムのガス及び固体還元剤による還元は下記式に従い
一層容易になる。 2Ca328 +3SiO2 +10C →3Ca2 SiO4 +4P+10CO …(2) 2Ca328 +3SiO2 +10CO →3Ca2 SiO4 +4P+10CO2 …(3) そこで、上段羽口から金属酸化物を含む原料を吹込むに
際し、該原料中のSiO2 濃度を大きくし、上段羽口前
のSiO2 濃度を大きくし、(2)、(3)の反応を促
進させ、より脱燐反応を起こり易くする。上記(1)〜
(3)式で還元された燐は、炉内ガスと共に炉内を上昇
するが、温度の低下にともない一部はダストなどに付着
し、また一部はPN、PS、POなどの化合物になり炉
頂から抜け出す。つまり、コークス中の燐は、以上述べ
たようにしてレースウェイ近傍で還元されるので、レー
スウェイ7より下部に存在するコークスは燐濃度が低下
しているのである。
The reaction in the raceway part is as follows: 2Ca 3 P 2 O 8 (in coke) + 5C → 3CaO + 2P + 5CO (1) When SiO 2 is present, the reduction of calcium phosphate in the coke by the gas and the solid reducing agent It becomes easier according to the following formula. 2Ca 3 P 2 O 8 + 3SiO 2 + 10C → 3Ca 2 SiO 4 + 4P + 10CO ... (2) 2Ca 3 P 2 O 8 + 3SiO 2 + 10CO → 3Ca 2 SiO 4 + 4P + 10CO 2 ... (3) Therefore, comprises a metal oxide from the top tuyeres upon blown raw material, to increase the SiO 2 concentration in the raw material, to increase the SiO 2 concentration in the upper tuyere, (2), to accelerate the reaction of (3), which tends to occur more dephosphorization reaction . Above (1)
The phosphorus reduced by the formula (3) rises in the furnace together with the gas in the furnace, but as the temperature decreases, part of it adheres to dust and the like, and part of it becomes compounds such as PN, PS, and PO. Get out of the furnace top. That is, since the phosphorus in the coke is reduced in the vicinity of the raceway as described above, the coke existing below the raceway 7 has a reduced phosphorus concentration.

【0014】一方、金属酸化物原料中に含まれている燐
も次の反応により一部取り除かれる。 2Fe3 (PO42 +16CO→3Fe2 P+P+16CO2 …(4) 羽口から吹き込まれた該金属酸化物原料は、レースウェ
イ近傍で溶融し、上記(4)の反応で一部の燐と分離
し、該気体状の燐は炉内ガスと共に上昇し、生成した溶
融金属はコークス間を滴下しながら還元され銑鉄とな
る。前記のように、炉下部に存在するコークス中の燐濃
度は低下しているため、滴下する間に溶融金属がコーク
ス中の燐を吸収する量は少なく、銑中の燐濃度も低くな
る。また、レースウェイ周辺500mm以内の領域の温
度が1800℃以上の場合、燐と金属酸化物が共存する
レースウェイ近傍の温度も十分高温なので、上記気体状
の燐は速やかに炉内を上昇し、また溶融金属も粘性が小
さいため滴下が早く、該溶融金属中に該気体状燐がトラ
ップされることはほとんどないのである。
On the other hand, phosphorus contained in the metal oxide raw material is also partially removed by the following reaction. 2Fe 3 (PO 4 ) 2 + 16CO → 3Fe 2 P + P + 16CO 2 (4) The metal oxide raw material blown from the tuyere melts in the vicinity of the raceway and is separated from a part of phosphorus by the reaction of (4). Then, the gaseous phosphorus rises with the gas in the furnace, and the generated molten metal is reduced while dropping between the cokes to become pig iron. As described above, since the phosphorus concentration in the coke existing in the lower part of the furnace is low, the amount of the molten metal absorbing phosphorus in the coke during the dropping is small, and the phosphorus concentration in the pig iron is also low. Further, when the temperature in the area within 500 mm around the raceway is 1800 ° C. or higher, the temperature in the vicinity of the raceway where phosphorus and metal oxide coexist is sufficiently high, so that the above-mentioned gaseous phosphorus rapidly rises in the furnace, Further, since the molten metal also has a low viscosity, the dropping is quick and the gaseous phosphorus is hardly trapped in the molten metal.

【0015】なお、吹込む金属酸化物原料の粒径が細か
ければ細かいほど、個々の粒子の中心までの伝熱が速い
ため、短時間で昇温し、上記(4)の反応がよりスムー
ズに行われる。また、高温なほど粘性が小さくなるの
で、上記気体状燐と溶融金属との共存時間が短くなり、
銑中の燐濃度が低下する。さらに、レースウェイ近傍で
は、吹込まれた金属酸化物原料が溶融し、吸熱反応の還
元が起きるので、その周辺の温度が低下するようにな
る。吹込まれた金属酸化物原料として不純物の少ないも
のを用い、不純物の昇温のための無駄な熱量を小さくし
たり、吸熱量の小さい金属酸化物原料を用いたりするこ
とにより、溶銑中の燐濃度の低下を促進させることも可
能である。
The finer the particle size of the metal oxide raw material to be blown, the faster the heat transfer to the center of each particle, so the temperature rises in a short time, and the reaction in (4) above becomes smoother. To be done. Further, since the viscosity becomes smaller as the temperature becomes higher, the coexistence time of the above-mentioned gaseous phosphorus and molten metal becomes shorter,
The phosphorus concentration in the pig iron decreases. Further, in the vicinity of the raceway, the blown metal oxide raw material is melted, and the endothermic reaction is reduced, so that the temperature around it is lowered. The concentration of phosphorus in the hot metal can be reduced by using a metal oxide raw material that has a small amount of impurities as blown in to reduce the amount of heat that is wasted to raise the temperature of the impurities and by using a metal oxide raw material that has a small endothermic amount. It is also possible to accelerate the decrease of

【0016】次に、気化脱燐以外の現象に関して説明す
るが、従来の複数羽口のレースウェイは、羽口が炉の中
心軸に向かって取り付けられていたので、ガス流量を増
やして行くと、図2(b)及び図3(b)に示すよう
に、炉の中心部で他の羽口が形成するレースウェイと干
渉し合い炉中心部で炉内ガスの吹抜けを起こし易い。そ
れが、本発明では図2(c)及び図3(c)に示すよう
に,溶融スラグの壁によって他の羽口が形成するレース
ウェイ同士の干渉がなくなり、該吹抜け条件が緩和され
るようになる。また、大きさや形状の安定した複数のレ
ースウエイが確保できるようになったので、炉内でのガ
ス流分布が一定になり、つまり下段羽口ガスが上段羽口
に直接到達するようになり、炉内の溶融金属温度の上
昇、ひいてはその生産量の増加が達成できるようにな
る。
Next, a phenomenon other than vaporization and dephosphorization will be described. In the conventional multi-tuyere raceway, the tuyere was attached toward the central axis of the furnace. Therefore, when the gas flow rate was increased. As shown in FIGS. 2 (b) and 3 (b), it interferes with the raceway formed by other tuyere at the center of the furnace and is likely to cause blow-through of the gas in the furnace at the center of the furnace. However, in the present invention, as shown in FIGS. 2 (c) and 3 (c), the walls of the molten slag eliminate interference between raceways formed by other tuyere, and the blow-through condition is eased. become. Also, since it became possible to secure multiple raceways of stable size and shape, the gas flow distribution in the furnace became constant, that is, the lower tuyeres gas reached the upper tuyeres directly, An increase in the temperature of the molten metal in the furnace, and thus an increase in the production amount, can be achieved.

【0017】最後に、本発明に係る竪型溶融金属還元炉
の操業方法を実施する際の好適条件について説明する。
本発明のポイントは、炉内への熱風吹込み方向を変更し
て、溶融スラグの壁に囲まれそれぞれ独立した高温領域
を形成することにあるから、隣同士のレースウエイが接
触しないことが好ましい条件である。そのためには、炉
径(L)と羽口先に形成されるレースウエイ深度(D
r )との関係が、下記式を満足することが必要である。
Finally, suitable conditions for carrying out the method for operating a vertical molten metal reduction furnace according to the present invention will be described.
Since the point of the present invention is to change the hot air blowing direction into the furnace to form independent high temperature regions surrounded by the wall of the molten slag, it is preferable that adjacent raceways do not contact each other. It is a condition. To do this, the diameter of the furnace (L) and the depth of the raceway (D
The relation with r ) must satisfy the following formula.

【0018】L−(2×Dr ) > N×π×√Dr ここで、√Dr :レースウエイの幅 また、吹抜けが起きない条件としては、下記の2式を同
じに満足することである。 0.4L ≧ Dr 22.5×π×L2 >BV×273/(BT+273) ここで、BV:炉内への総送風量(Nm3 /min) BT:送風温度(℃) N:羽口数 さらに、熱風の吹込み角度を10〜45°に限定した理
由は、10°以下だとスラグ壁の形成が十分でなく、4
5°以上ではレースウエイが炉壁に掛かり、炉壁耐火物
を損傷する恐れがあるからである。また、吹込み箇所を
2ケ所以上としたのは、1ケ所では炉の内容積が無駄に
なり、生産性を阻害するからであり、さらに一対になっ
た上段と下段の羽口は常に同じ向きであるのが好まし
い。
L- (2 × D r )> N × π × √D r where √D r : width of raceway Further, as a condition that no blow-through occurs, the following two expressions must be satisfied in the same manner. Is. 0.4L ≧ D r 22.5 × π × L 2 > BV × 273 / (BT + 273) where BV: total air flow into furnace (Nm 3 / min) BT: air temperature (° C) N: blade Further, the reason why the blowing angle of the hot air is limited to 10 to 45 ° is that if the angle is 10 ° or less, the formation of the slag wall is not sufficient.
If the angle is 5 ° or more, the raceway may get caught in the furnace wall and damage the furnace wall refractory. In addition, the reason why there are two or more blowing points is that the internal volume of the furnace is wasted at one location and productivity is impaired. Furthermore, the pair of tuyeres in the upper and lower stages are always in the same direction. Is preferred.

【0019】[0019]

【実施例】図1に示した竪型溶融金属還元炉で、下記鉄
鉱石粉を原料にしてクロムを含有した銑鉄(溶融金属)
の製造試験を実施した。その際、本発明に係る操業方法
を適用し、送風角度を種々変更した。なお、試験に供し
た溶融還元炉の仕様は以下の通りである。
[Examples] In the vertical molten metal reduction furnace shown in Fig. 1, pig iron (molten metal) containing chromium from the following iron ore powder as a raw material
The manufacturing test was conducted. At that time, the operation method according to the present invention was applied, and the blowing angle was variously changed. The specifications of the smelting reduction furnace used in the test are as follows.

【0020】 炉内径: 1200mmφ 炉高: 4000mm 炭材層高: 3000mm 羽口数: 上段4本、下段4本 羽口径: 25mm 上下羽口間隔: 1.0m 原料吹込み量: 2t/hr また、上段羽口より吹込んだ鉄鉱石粉原料の組成は、
C:4.7重量%、T.Fe:62.4重量%(Fe
O:31.8重量%)、SiO2 :0.8重量%、T.
Cr:6.2重量%、MnO:4重量%、Al23
1.1重量%、その他の酸化物:20.6重量%であ
り、この他にCaO、SiO2 からなる造滓材を0.3
t/hrの条件で同時に吹き込んだ。送風条件は表1
に、製造した銑鉄の組成とスラグの組成を表2に示す。
Furnace inner diameter: 1200 mm φ Furnace height: 4000 mm Carbonaceous material layer height: 3000 mm Number of tuyeres: 4 upper and 4 lower tiers Tubing diameter: 25 mm Upper and lower tuyer spacing: 1.0 m Raw material injection rate: 2 t / hr Also, upper tier The composition of the iron ore powder raw material blown from the tuyere is
C: 4.7% by weight, T.I. Fe: 62.4 wt% (Fe
O: 31.8% by weight), SiO 2 : 0.8% by weight, T.I.
Cr: 6.2 wt%, MnO: 4 wt%, Al 2 O 3 :
1.1% by weight, other oxides: 20.6% by weight, and 0.3% by weight of slag material made of CaO and SiO 2.
It was blown at the same time under the condition of t / hr. Table 1 shows the ventilation conditions
Table 2 shows the composition of the produced pig iron and the composition of the slag.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】各羽口からの送風角度は、炉半径方向に対
して0〜50度までの範囲で7段階変えたが、それぞれ
の操業成績を表3に一括して整理した。表3によると、
従来通りの送風角度、つまり0度の成績が他の角度の場
合に比べて劣り、本発明に係る操業方法の有効であるこ
とが確認できた。燐の低下状況は図4に示しておく。
The blast angle from each tuyere was changed in seven steps in the range of 0 to 50 degrees in the radial direction of the furnace, and the operation results of each were summarized in Table 3. According to Table 3,
The conventional blowing angle, that is, the result of 0 degree was inferior to the case of other angles, and it was confirmed that the operating method according to the present invention was effective. The state of phosphorus reduction is shown in FIG.

【0024】[0024]

【表3】 [Table 3]

【0025】なお、炉半径方向に対して、送風角度を5
0度以上にすると炉壁耐火物を損傷するためか、レース
ウエイが接触していると思われる部分の炉壁温度が他の
部分に比べて高くなった。また、本実施例では、クロム
を含有した銑鉄を製造したが、本発明の適用できる溶融
金属は、銑鉄に限らず、銅、アルミ、亜鉛等の非鉄金属
であっても良い。
The air blowing angle is 5 with respect to the furnace radial direction.
If the temperature is higher than 0 degree, the furnace wall temperature of the part where the raceway seems to be in contact is higher than that of other parts, probably because the furnace wall refractory is damaged. Further, in the present example, pig iron containing chromium was produced, but the molten metal to which the present invention is applicable is not limited to pig iron, but may be non-ferrous metals such as copper, aluminum and zinc.

【0026】[0026]

【発明の効果】以上述べたように、本発明により、固体
還元材を充填した所謂竪型溶融金属還元炉の操業におい
て、炉内ガスの吹抜限界流速が大きくなったり、ガス流
分布の安定化、溶融金属温度の上昇が図れた。また、コ
ークス粒子の降下を羽口近傍の高温領域に集中させるこ
とで、炉内からの気化脱燐を活発にし、低燐の溶融金属
を安価で且つ容易に大量生産することが可能となった。
As described above, according to the present invention, in the operation of a so-called vertical molten metal reduction furnace filled with a solid reducing material, the blowout limit flow velocity of the gas in the furnace is increased and the gas flow distribution is stabilized. It was possible to raise the temperature of the molten metal. Also, by focusing the fall of coke particles in the high temperature region near the tuyere, vaporization and dephosphorization from the furnace was activated, and it became possible to mass-produce low-phosphorus molten metal inexpensively and easily. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る竪型溶融金属還元炉の操業方法を
実施した炉の概略を示す縦断面図である。
FIG. 1 is a vertical sectional view showing an outline of a furnace in which a method for operating a vertical molten metal reduction furnace according to the present invention is carried out.

【図2】竪型溶融金属還元炉の炉内状況を説明する縦断
面図であり、(a)は上下1対の羽口のみを使用する場
合、(b)は従来の複数羽口の場合、(c)は本発明を
実施した複数羽口の場合を示す。
FIG. 2 is a vertical cross-sectional view for explaining the internal condition of a vertical molten metal reduction furnace, in which (a) uses only a pair of upper and lower tuyere, and (b) shows a conventional multiple tuyere. , (C) show the case of a plurality of tuyere in which the present invention is implemented.

【図3】図2の水平断面図であり、(a)は上下1対の
羽口のみを使用する場合、(b)は従来の4本羽口の場
合、(c)は本発明に係る4本羽口の場合を示す。
FIG. 3 is a horizontal sectional view of FIG. 2, where (a) is a case where only a pair of upper and lower tuyere is used, (b) is a conventional four-tuyere, and (c) is related to the present invention. The case of four tuyere is shown.

【図4】羽口からの送風角度と製造した銑鉄中燐濃度と
の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the blowing angle from the tuyere and the phosphorus concentration in the produced pig iron.

【符号の説明】[Explanation of symbols]

1 竪型溶融金属還元炉 2 高温空気(酸素を含有した熱風) 3 固体還元材(炭材又はコークス)の装入経路 4 上段羽口 5 下段羽口 6 炭材の充填層 7 レースウエイ 8 フラックス 9 粉状の鉱石原料 10 粉粒体の輸送経路 11 コークス粒子旋回域 12 出銑口 13 排ガス 14 原料ホッパ群 1 Vertical molten metal reduction furnace 2 High temperature air (hot air containing oxygen) 3 Charging route for solid reducing material (carbon material or coke) 4 Upper stage tuyeres 5 Lower stage tuyeres 6 Carbon material packed layer 7 Raceway 8 Flux 9 powdered ore raw material 10 transportation route of powder and granules 11 coke particle swirl area 12 tapping hole 13 exhaust gas 14 raw material hopper group

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炭素系固体還元剤の充填層が形成され、
該充填層の下部に配設された複数の羽口から酸素含有熱
風を吹き込むとともに、金属酸化物を含有する粉粒状鉱
石類及び/又はダストを炉内に吹き込み該金属酸化物を
溶融還元して溶融金属を製造する竪型溶融金属還元炉の
操業方法において、 上記酸素含有熱風の炉内への吹込みを、羽口取付け高さ
で炉の半径方向に対して一定角度偏向して行い、上記金
属酸化物を溶融還元することを特徴とする竪型溶融金属
還元炉の操業方法。
1. A packed bed of a carbon-based solid reducing agent is formed,
While blowing oxygen-containing hot air from a plurality of tuyere arranged in the lower part of the packed bed, and blowing powdery ore and / or dust containing metal oxide into the furnace to melt and reduce the metal oxide. In the operation method of the vertical type molten metal reduction furnace for producing molten metal, the blowing of the oxygen-containing hot air into the furnace is performed by deflecting a certain angle with respect to the radial direction of the furnace at the tuyere mounting height, and A method for operating a vertical molten metal reduction furnace, which comprises melting and reducing a metal oxide.
【請求項2】 上記一定角度が10〜45度の範囲にあ
ることを特徴とする請求項1記載の竪型溶融金属還元炉
の操業方法。
2. The method for operating a vertical molten metal reduction furnace according to claim 1, wherein the constant angle is in the range of 10 to 45 degrees.
【請求項3】 熱風吹込みが、炉円周で少なくとも2ケ
所から行われることを特徴とする請求項1又は2記載の
竪型溶融金属還元炉の操業方法。
3. The method for operating a vertical molten metal reduction furnace according to claim 1, wherein the hot air blowing is performed from at least two locations on the circumference of the furnace.
JP31842994A 1994-12-21 1994-12-21 Operation of vertical type metal smelting reduction furnace Withdrawn JPH08176631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31842994A JPH08176631A (en) 1994-12-21 1994-12-21 Operation of vertical type metal smelting reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31842994A JPH08176631A (en) 1994-12-21 1994-12-21 Operation of vertical type metal smelting reduction furnace

Publications (1)

Publication Number Publication Date
JPH08176631A true JPH08176631A (en) 1996-07-09

Family

ID=18099059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31842994A Withdrawn JPH08176631A (en) 1994-12-21 1994-12-21 Operation of vertical type metal smelting reduction furnace

Country Status (1)

Country Link
JP (1) JPH08176631A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136762A (en) * 2010-12-28 2012-07-19 Kubota Corp Shaft furnace and method for producing molten pig iron using the same
EP3992145A4 (en) * 2019-06-25 2022-08-17 JFE Steel Corporation Method for removing phosphorus from phosphorus-containing substance, method for producing starting material for metal smelting or starting material for metal refining, and method for producing metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012136762A (en) * 2010-12-28 2012-07-19 Kubota Corp Shaft furnace and method for producing molten pig iron using the same
EP3992145A4 (en) * 2019-06-25 2022-08-17 JFE Steel Corporation Method for removing phosphorus from phosphorus-containing substance, method for producing starting material for metal smelting or starting material for metal refining, and method for producing metal

Similar Documents

Publication Publication Date Title
JP5574060B2 (en) Converter steelmaking method
AU776002B2 (en) Method and facilities for metal smelting
US4396421A (en) Method of, and arrangement for, producing molten pig iron or steel pre-material
EP2210959B1 (en) Process for producing molten iron
JP5471151B2 (en) Converter steelmaking method
CA1213928A (en) Method of carrying out metallurgical or chemical processes in a shaft furnace, and a low shaft furnace therefor
JPH08176631A (en) Operation of vertical type metal smelting reduction furnace
JP6729073B2 (en) Reduction/dissolution method of iron raw material containing iron oxide
JPH0256407B2 (en)
JPS5918452B2 (en) Method for producing molten metal from powdered ore
JP2990925B2 (en) Method for rapid reduction of ore or metal oxide
JP3236737B2 (en) Operating method of vertical iron scrap melting furnace
JPH0351992B2 (en)
JP3852128B2 (en) Method for producing molten metal using carbonized material packed bed smelting reduction furnace
JP4513340B2 (en) Hot metal dephosphorization method
JPH11117010A (en) Operation of vertical type furnace
JPH11209810A (en) Operation of vertical furnace
JPH07197114A (en) Coke packing layer type vertical smelting furnace
JPH07146072A (en) Cupola type scrap melting furnace
JP4005683B2 (en) Vertical furnace operation method for treating powdered waste
SU1731818A1 (en) Method of producing high-silicon hot metal
JPH08295913A (en) Production of low phosphorus pig iron by smelting reduction furnace
JPH09324205A (en) Method for blowing powdery iron ore through two-step tuyere of blast furnace
JPH10204511A (en) Operation of blast furnace for powder blowing
JPH09203584A (en) Method for loading raw fuel such as dust block ore, self-reducing ore block, iron slug and solid fuel or the like into vertical furnace

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020305