JPH08175808A - Production of oxide powder - Google Patents

Production of oxide powder

Info

Publication number
JPH08175808A
JPH08175808A JP6336320A JP33632094A JPH08175808A JP H08175808 A JPH08175808 A JP H08175808A JP 6336320 A JP6336320 A JP 6336320A JP 33632094 A JP33632094 A JP 33632094A JP H08175808 A JPH08175808 A JP H08175808A
Authority
JP
Japan
Prior art keywords
alumina
oxide sol
specific surface
surface area
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6336320A
Other languages
Japanese (ja)
Inventor
Michio Taguchi
教夫 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP6336320A priority Critical patent/JPH08175808A/en
Publication of JPH08175808A publication Critical patent/JPH08175808A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE: To grow the particles in the secondary dimensional direction on firing and prevent the particles from reducing their specific surface area by precipitating a lamella structure in which an oxide sol is oriented between platelet crystals in the secondary dimension from a mixed solution of a specific oxide sol and a solution of an organic substance forming platelet crystals and firing the lamella structure. CONSTITUTION: An oxide sol at an aspect ratio of 5 or more and a solution of an organic substance forming platelet crystals are mixed at a weight ratio of 100/15-100/5 the sol/the substance to prepare a mixed solution. This solution is cooled down under stirring to precipitate out the organic platelet crystals and give a lamella structure in which the oxide sol is secondarily oriented between the platelet crystals. The lamella structure is fired in an oxidative atmosphere to combust off the organic substance and grow particles of the oxide sol.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸化物粉末の製造方法に
関し、詳しくは粒子が二次元的に成長した積層構造をな
し比表面積が大きな酸化物粉末の製造方法に関する。本
発明により得られた酸化物粉末は、排ガス浄化用触媒の
担体などに有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an oxide powder, and more particularly to a method for producing an oxide powder having a laminated structure in which particles are two-dimensionally grown and having a large specific surface area. The oxide powder obtained by the present invention is useful as a carrier for an exhaust gas purifying catalyst.

【0002】[0002]

【従来の技術】例えば排ガス浄化用触媒の担体の原料と
しては、比表面積が大きく吸着性に優れたアルミナ粉末
が一般に用いられている。このアルミナ粉末は、通常ア
ルミナ水和物を熱処理することで製造されているが、ア
ルミナは完全脱水されたα型の他に熱処理段階で生じる
準安定な7種の結晶形態をもつ。アルミナの比表面積
は、水和物の種類にも依存するが、300〜800℃で
焼成するとき数百m2 /g程度の最大比表面積をもつ。
2. Description of the Related Art For example, as a raw material for a carrier for an exhaust gas purifying catalyst, alumina powder having a large specific surface area and excellent adsorbability is generally used. This alumina powder is usually produced by heat treating alumina hydrate. Alumina has not only completely dehydrated α-type but also seven metastable crystal forms generated in the heat treatment step. The specific surface area of alumina depends on the kind of hydrate, but has a maximum specific surface area of about several hundred m 2 / g when calcined at 300 to 800 ° C.

【0003】焼成温度が800℃以上になると、比表面
積が次第に減少し、α相アルミナに完全変態した状態で
は比表面積は数m2 /g程度まで減少する。さらに10
00℃以上の焼成により、小さな細孔が完全に消滅す
る。このようにアルミナは、γ相からα相に結晶形態が
変化する1000℃近傍で、比表面積が急激に低下する
傾向を示す。
When the firing temperature is 800 ° C. or higher, the specific surface area gradually decreases, and in the state where the α phase alumina is completely transformed, the specific surface area decreases to about several m 2 / g. 10 more
The small pores are completely extinguished by firing at a temperature of 00 ° C or higher. As described above, alumina has a tendency that the specific surface area thereof rapidly decreases in the vicinity of 1000 ° C. where the crystal form changes from the γ phase to the α phase.

【0004】そこで比表面積の低下を抑制するために、
アルミナにBaOやSrOなどの不純物を添加すること
が知られている。このような不純物が添加されたアルミ
ナを焼成すると、ヘキサアルミネート相が形成され、そ
れにより比表面積の低下が抑制される。また特開平5−
238728号公報には、分子の両端に極性基と疎水基
をもつ両親媒性化合物とアルミナゾルとを混合し、それ
を基板上に展開して溶媒を除去することで比表面積の大
きなアルミナ薄膜を製造する方法が開示されている。
Therefore, in order to suppress the decrease in specific surface area,
It is known to add impurities such as BaO and SrO to alumina. When alumina containing such impurities is fired, a hexaaluminate phase is formed, thereby suppressing a decrease in specific surface area. In addition, Japanese Patent Laid-Open No. 5-
No. 238728 discloses that an alumina thin film having a large specific surface area is produced by mixing an amphipathic compound having a polar group and a hydrophobic group at both ends of a molecule and an alumina sol, developing the mixture on a substrate and removing the solvent. A method of doing so is disclosed.

【0005】[0005]

【発明が解決しようとする課題】従来の水和物を熱処理
する方法では、アルミナの粒子相互が三次元的に焼結し
た形態となり、結晶成長も三次元的に進行する。そのた
め得られたアルミナ粉末の一次粒子は略球状であり、焼
成時には三次元的に粒子相互が結合するため比表面積の
低下をまねく。
In the conventional method of heat-treating a hydrate, the alumina particles are sintered in a three-dimensional manner, and the crystal growth also proceeds in a three-dimensional manner. Therefore, the primary particles of the obtained alumina powder are substantially spherical, and the particles are three-dimensionally bonded to each other during firing, which causes a decrease in the specific surface area.

【0006】そこでBaOなどの不純物を添加してヘキ
サアルミネート相を形成して粒成長を抑制する方法が行
われている。しかしこの方法によって耐熱性が向上され
たアルミナ粉末であっても焼成時にある程度の粒成長は
避けられず、1000℃で焼成された場合には比表面積
が100〜150m2 /g程度に低下してしまう。また
含まれる不純物による不具合(界面での固相反応による
耐熱性の低下など)が発現する場合もあり、高温触媒な
どの用途には不向きである。
Therefore, a method has been carried out in which impurities such as BaO are added to form a hexaaluminate phase to suppress grain growth. However, even with alumina powder having improved heat resistance by this method, some grain growth is inevitable during firing, and when fired at 1000 ° C., the specific surface area decreases to about 100 to 150 m 2 / g. I will end up. In addition, impurities contained therein may cause defects (such as a decrease in heat resistance due to a solid-phase reaction at the interface), which is not suitable for applications such as high-temperature catalysts.

【0007】また上記公報に開示されたいわゆる分子鋳
型法によって形成されるアルミナ薄膜は、粒子の配向に
異方性が生じ、1000℃で焼成しても比表面積は20
0m2 /gと高い値を維持できる。しかしながら、用い
られる分子鋳型は特殊な高分子材料であり極めて高価で
ある。また薄膜を形成することを目的とした方法であ
り、アルミナ粉末を製造するには不向きである。
Further, the alumina thin film formed by the so-called molecular template method disclosed in the above publication has anisotropy in the orientation of particles and has a specific surface area of 20 even when fired at 1000 ° C.
A high value of 0 m 2 / g can be maintained. However, the molecular template used is a special polymer material and is extremely expensive. Further, it is a method for forming a thin film and is not suitable for producing alumina powder.

【0008】本発明はこのような事情に鑑みてなされた
ものであり、焼成時には二次元方向に粒成長させて比表
面積の低下を防止することを目的とする。
The present invention has been made in view of such circumstances, and it is an object of the present invention to prevent a decrease in specific surface area by growing grains in a two-dimensional direction during firing.

【0009】[0009]

【課題を解決するための手段】上記課題を解決する本発
明の酸化物粉末の製造方法は、アスペクト比(縦/横)
が5以上の酸化物ゾルと板状結晶を形成する有機物の溶
液とを混合して混合溶液を調製する第1工程と、混合溶
液から有機物の板状結晶を析出させるとともに板状結晶
どうしの間に酸化物ゾルが二次元的に配向した積層体を
形成する第2工程と、積層体を酸化性雰囲気中で焼成し
て有機物を燃焼除去するとともに酸化物ゾルを粒成長さ
せる第3工程と、からなることを特徴とする。
The oxide powder manufacturing method of the present invention for solving the above-mentioned problems has an aspect ratio (vertical / horizontal).
A first step of preparing a mixed solution by mixing an oxide sol having a ratio of 5 or more with a solution of an organic substance forming a plate crystal, and precipitating a plate crystal of an organic compound from the mixed solution and between plate crystals. A second step of forming a laminated body in which the oxide sol is two-dimensionally oriented, and a third step of firing the laminated body in an oxidizing atmosphere to burn and remove organic substances and grain-growing the oxide sol. It is characterized by consisting of.

【0010】[0010]

【作用】第1工程では、酸化物ゾルと有機物の溶液とが
混合され、混合溶液が調製される。混合溶液中では、有
機物は溶媒に溶解した状態にあり、その溶液に酸化物ゾ
ルの微粒子が均一に分散している。第2工程では、混合
溶液から有機物の板状結晶が析出され、それぞれの板状
結晶は積み重なろうとする。このとき酸化物ゾルは、ア
スペクト比(縦/横)が5以上であるために、板状結晶
の間で板状結晶と平行に二次元的に配向した状態で挟み
込まれ、板状結晶と二次元的に配向した酸化物ゾル層と
からなる積層体が形成される。
In the first step, the oxide sol and the organic material solution are mixed to prepare a mixed solution. In the mixed solution, the organic matter is dissolved in the solvent, and the fine particles of the oxide sol are uniformly dispersed in the solution. In the second step, plate crystals of an organic substance are precipitated from the mixed solution, and the plate crystals tend to be stacked. At this time, since the oxide sol has an aspect ratio (longitudinal / horizontal) of 5 or more, it is sandwiched between the plate-like crystals in a two-dimensional orientation parallel to the plate-like crystals, and the oxide sol is separated from the plate-like crystals. A laminate comprising a three-dimensionally oriented oxide sol layer is formed.

【0011】第3工程では、酸化性雰囲気中での焼成に
より有機物の板状結晶は燃焼除去される。一方、それぞ
れの酸化物ゾル層では、各粒子が二次元的に配向してい
るので、粒成長も二次元的に層状に成長する。したがっ
て複数の層が積層された層構造の酸化物粉末が得られ、
三次元的に粒成長した従来の酸化物粉末に比べて比表面
積が高くなる。
In the third step, plate crystals of an organic material are burned and removed by firing in an oxidizing atmosphere. On the other hand, in each oxide sol layer, since the particles are two-dimensionally oriented, the grain growth also two-dimensionally grows in a layered form. Therefore, a layered oxide powder in which a plurality of layers are laminated is obtained,
The specific surface area is higher than that of the conventional oxide powder that is three-dimensionally grain-grown.

【0012】[0012]

【実施例】【Example】

〔発明の具体例〕本発明にいう酸化物としては、アルミ
ナを始めとして、シリカ、チタニア、ジルコニア、シリ
カ・アルミナ、シリカ・チタニア、アルミナ・ジルコニ
アなどが例示され、ゾルのアスペクト比(縦/横)が5
以上のものが用いられる。ゾルのアスペクト比が5未満
であると、第2工程で板状結晶の間に二次元的に配向す
るのが困難となり、三次元的に配向する成分が現れて比
表面積の低下をまねく。
[Specific Examples of the Invention] Examples of the oxide according to the present invention include alumina, silica, titania, zirconia, silica-alumina, silica-titania, alumina-zirconia, and the like. ) Is 5
The above is used. If the aspect ratio of the sol is less than 5, it becomes difficult to two-dimensionally orientate between the plate-like crystals in the second step, and a component that three-dimensionally orients appears, leading to a decrease in the specific surface area.

【0013】板状結晶を生成する有機物としては、パラ
フィンワックス、アントラセン、ナフタリンなどが例示
される。また溶媒としては、溶解した有機物から板状結
晶を容易に析出させることができるものが望ましく、有
機物の種類に応じて各種有機溶媒又は水から選択して用
いることができる。加熱時に有機物を溶解し、冷却時に
有機物を析出させるような、貧溶媒が特に望ましい。
Paraffin wax, anthracene, naphthalene and the like are exemplified as the organic substance which forms the plate crystal. As the solvent, those capable of easily precipitating plate-like crystals from the dissolved organic substance are desirable, and various organic solvents or water can be selected and used according to the type of organic substance. A poor solvent that dissolves organic matter when heated and precipitates organic matter when cooled is particularly desirable.

【0014】酸化物ゾルと有機物との混合比率として
は、重量比で酸化物ゾル:有機物=100:15〜10
0:5の範囲が望ましい。酸化物ゾルがこの範囲より多
すぎると二次元配向が困難となり比表面積が低下する。
また有機物がこの範囲より多すぎると、有機物どうしの
凝集により酸化物ゾルの配向が乱れ、比表面積が低下す
る場合がある。 〔実施例〕以下、実施例により具体的に説明する。 (実施例1) (1)第1工程 アルミナ含有量10重量%のアルミナゾル水溶液(「A
S200」日産化学(株)製、アスペクト比10)2k
gを80℃に加熱しながらアスピレータで減圧乾燥して
500gまで濃縮した後、1.5リットルのエタノール
を加えて充分攪拌した。
The mixing ratio of the oxide sol and the organic substance is, by weight ratio, oxide sol: organic substance = 100: 15 to 10
The range of 0: 5 is desirable. If the oxide sol is more than this range, two-dimensional orientation becomes difficult and the specific surface area decreases.
On the other hand, if the amount of the organic substances is more than this range, the orientation of the oxide sol may be disturbed due to the aggregation of the organic substances and the specific surface area may decrease. [Examples] Hereinafter, specific examples will be described. (Example 1) (1) First step Alumina sol aqueous solution ("A
S200 "Nissan Chemical Co., Ltd., aspect ratio 10) 2k
While heating g to 80 ° C., it was dried under reduced pressure with an aspirator and concentrated to 500 g, and 1.5 liter of ethanol was added and sufficiently stirred.

【0015】そこへパラフィンワックス(融点56〜5
8℃)20gを添加し、70℃に加熱し1時間攪拌して
パラフィンワックスを完全に溶解させた。 (2)第2工程 得られた混合溶液を攪拌しながら、降温速度10℃/h
にて15℃まで冷却した。これによりパラフィンワック
スの板状結晶が析出した。さらに恒温・恒湿槽中で15
℃・湿度60RH%にて6日間保持し、板状結晶を成長
させるとともにエタノールを乾燥させた。 (3)第3工程 得られた粉末を1000℃の炉中に投入し、大気中で1
0時間加熱して焼成を行ってアルミナ粉末を得た。得ら
れたアルミナ粉末は、190m2 /gと極めて高い比表
面積を有していた。
There, paraffin wax (melting point 56-5
(8 ° C.) 20 g was added, the mixture was heated to 70 ° C. and stirred for 1 hour to completely dissolve the paraffin wax. (2) Second step While stirring the obtained mixed solution, the temperature decreasing rate is 10 ° C./h
It was cooled to 15.degree. As a result, plate-like crystals of paraffin wax were deposited. 15 in a constant temperature / humidity tank
The temperature was maintained at 60 ° C. and humidity of 60 RH% for 6 days to grow plate crystals and dry ethanol. (3) Third step The obtained powder was put into a furnace at 1000 ° C.
Alumina powder was obtained by heating and firing for 0 hours. The obtained alumina powder had a very high specific surface area of 190 m 2 / g.

【0016】なお、得られたアルミナ粉末の結晶構造を
示す顕微鏡写真を図1(約2cmが6.0μmに相当)
及び図2(約2cmが600nmに相当)に示す。図1
及び図2より、実施例1で得られたアルミナ粉末は層状
の結晶構造をもっていることがわかり、一次粒子が微細
な板状の形状となっていることがわかる。 (実施例2)パラフィンワックスに代えてナフタリン
(融点80.5℃)を20g用いたこと以外は実施例1
と同様にして、アルミナ粉末を製造した。得られたアル
ミナ粉末は、180m2 /gと極めて高い比表面積を有
していた。 (実施例3)パラフィンワックス又はナフタリンの添加
量を、アルミナゾルに対して1重量%〜20重量%まで
の間で数水準選択し、それぞれ実施例1と同様にしてア
ルミナ粉末を製造した。そして得られたアルミナ粉末の
比表面積をそれぞれ測定し、結果を図5に示す。
A micrograph showing the crystal structure of the obtained alumina powder is shown in FIG. 1 (about 2 cm corresponds to 6.0 μm).
2 and FIG. 2 (about 2 cm corresponds to 600 nm). FIG.
Also, from FIG. 2, it is found that the alumina powder obtained in Example 1 has a layered crystal structure, and the primary particles have a fine plate-like shape. Example 2 Example 1 except that 20 g of naphthalene (melting point 80.5 ° C.) was used instead of the paraffin wax.
Alumina powder was produced in the same manner as in. The obtained alumina powder had an extremely high specific surface area of 180 m 2 / g. (Example 3) The addition amount of paraffin wax or naphthalene was selected in several levels from 1% by weight to 20% by weight based on the alumina sol, and alumina powder was produced in the same manner as in Example 1. The specific surface areas of the obtained alumina powders were measured, and the results are shown in FIG.

【0017】図5より、アルミナゾルに対する有機物の
添加量が5〜15重量%の範囲で、製造されるアルミナ
粉末は高い比表面積を有していることがわかる。有機物
の添加量が5重量%より少なくても、15重量%より多
くても、比表面積が急激に低下している。これは、5重
量%より少ないと板状結晶が少なく、板状結晶の間に入
りきれないアルミナゾルの配向が乱れたためと考えられ
る。また15重量%より多くなると、有機物どうしの凝
集が生じてアルミナゾルの配向が乱れたためと考えられ
る。 (比較例1)実施例1で用いたアルミナゾルを乾燥し、
実施例1と同様に1000℃の炉中に投入し、大気中で
10時間加熱して焼成を行ってアルミナ粉末を得た。得
られたアルミナ粉末は、110m2 /gと低い比表面積
を有していた。
From FIG. 5, it can be seen that the alumina powder produced has a high specific surface area when the amount of the organic substance added to the alumina sol is in the range of 5 to 15% by weight. The specific surface area is drastically reduced when the amount of the organic substance added is less than 5% by weight or more than 15% by weight. This is presumably because when the amount is less than 5% by weight, the number of plate-like crystals is small and the orientation of the alumina sol that cannot fit between the plate-like crystals is disturbed. If the amount is more than 15% by weight, it is considered that the organic substances aggregate to disturb the orientation of the alumina sol. (Comparative Example 1) The alumina sol used in Example 1 was dried,
It was placed in a furnace at 1000 ° C. in the same manner as in Example 1 and heated in the air for 10 hours for firing to obtain an alumina powder. The obtained alumina powder had a low specific surface area of 110 m 2 / g.

【0018】なお、得られたアルミナ粉末の結晶構造を
示す顕微鏡写真を図3(約2cmが3.0μmに相当)
及び図4(約2cmが600nmに相当)に示す。図3
及び図4より、比較例1で得られたアルミナ粉末は略球
状の粒状の結晶構造をもっていることがわかり、図1及
び図2とは明らかに異なっている。 (比較例2)アスペクト比が2〜4のアルミナゾルを用
いたこと以外は実施例1と同様にして、アルミナ粉末を
製造した。得られたアルミナ粉末は、110m2 /gと
実施例1より低い比表面積を有していた。したがってア
スペクト比は5以上とすることが必要である。 (実用例)実施例1、実施例2及び比較例1で得られた
アルミナ粉末を用い、それぞれ排ガス浄化用触媒の担体
として使用した場合の浄化性能を調査した。
A micrograph showing the crystal structure of the obtained alumina powder is shown in FIG. 3 (about 2 cm corresponds to 3.0 μm).
And FIG. 4 (about 2 cm corresponds to 600 nm). FIG.
4 and FIG. 4, it is clear that the alumina powder obtained in Comparative Example 1 has a substantially spherical granular crystal structure, which is clearly different from FIGS. 1 and 2. (Comparative Example 2) An alumina powder was produced in the same manner as in Example 1 except that an alumina sol having an aspect ratio of 2 to 4 was used. The obtained alumina powder had a specific surface area of 110 m 2 / g, which was lower than that in Example 1. Therefore, it is necessary to set the aspect ratio to 5 or more. (Practical Example) Using the alumina powders obtained in Example 1, Example 2 and Comparative Example 1, the purification performance was examined when each was used as a carrier for an exhaust gas purification catalyst.

【0019】先ず実施例1で得られたアルミナ粉末10
0重量部に、濃度40重量%の硝酸アルミニウム水溶液
45重量部と、アルミナ含有量10重量%のアルミナゾ
ル3重量部及び水100重量部を混合しスラリーを調製
した。このスラリーに容積1.5Lのコージェライト製
ハニカム担体基材を浸漬し、引き上げて余分なスラリー
を吹き払った後、120℃で乾燥し500℃で2時間焼
成してコート層を形成した。そして所定濃度のジニトロ
ジアンミン白金水溶液に浸漬し、引き上げて余分な水分
を吹き払った後、250℃で1時間乾燥してPtを担持
した。さらに所定濃度の硝酸ロジウム溶液を用い同様に
してRhを担持した。それぞれの触媒金属の担持量は、
担体基材1L当たりPtが2g、Rhが0.2gであ
る。
First, the alumina powder 10 obtained in Example 1
A slurry was prepared by mixing 0 part by weight of 45 parts by weight of an aqueous solution of aluminum nitrate having a concentration of 40% by weight, 3 parts by weight of an alumina sol having an alumina content of 10% by weight, and 100 parts by weight of water. A cordierite honeycomb carrier substrate having a volume of 1.5 L was immersed in this slurry, pulled up to blow off excess slurry, dried at 120 ° C., and baked at 500 ° C. for 2 hours to form a coat layer. Then, it was immersed in a dinitrodiammine platinum aqueous solution of a predetermined concentration, pulled up to blow off excess water, and then dried at 250 ° C. for 1 hour to support Pt. Further, Rh was similarly loaded using a rhodium nitrate solution having a predetermined concentration. The supported amount of each catalytic metal is
Pt is 2 g and Rh is 0.2 g per 1 L of the carrier substrate.

【0020】実施例2及び比較例1で得られたアルミナ
粉末についても、同様にスラリー化してコート層を形成
し、同様にしてそれぞれの排ガス浄化用触媒を調製し
た。得られた3種類の排ガス浄化用触媒について、表1
に示すA/F=16相当の耐久モデルガスを、空間速度
50000h-1の条件で10時間流す耐久試験をそれぞ
れ行った。入りガス温度は600℃、800℃及び10
00℃の3水準である。
The alumina powders obtained in Example 2 and Comparative Example 1 were similarly slurried to form a coat layer, and each exhaust gas-purifying catalyst was prepared in the same manner. Table 1 shows the obtained three types of exhaust gas-purifying catalysts.
The A / F = 16 equivalent durability model gas shown in went each durability test flow 10 hours under the conditions of a space velocity 50000h -1. Inlet gas temperature is 600 ° C, 800 ° C and 10
Three levels of 00 ° C.

【0021】次に、耐久試験後の各排ガス浄化用触媒に
ついて、表1に示すA/F=14.5相当の評価モデル
ガスを、A/F=14.5±1、周期0.1Hzの条件
で変動させながら、かつ入りガス温度を低温〜高温まで
変化させながら流し、炭化水素(HC)浄化率が50%
になる時の温度(T50)を測定した。結果を図6に示
す。
Next, for each exhaust gas purifying catalyst after the durability test, the evaluation model gas corresponding to A / F = 14.5 shown in Table 1 was used at A / F = 14.5 ± 1 and a cycle of 0.1 Hz. Flowing while changing the inlet gas temperature from low temperature to high temperature while changing the conditions, the hydrocarbon (HC) purification rate is 50%
The temperature (T 50 ) at which FIG. 6 shows the results.

【0022】[0022]

【表1】 図6より、実施例のアルミナ粉末を用いた排ガス浄化用
触媒は比較例に比べてT50が低く初期活性に優れ、しか
も耐久試験の温度が高いほどその差が大きいことがわか
る。つまり、実施例のアルミナ粉末は、排ガス浄化用触
媒の担体として用いた場合にも耐久性に極めて優れてい
ることが明らかである。
[Table 1] It can be seen from FIG. 6 that the exhaust gas-purifying catalyst using the alumina powder of the example has a lower T 50 and is excellent in the initial activity as compared with the comparative example, and the difference is larger as the temperature of the durability test is higher. That is, it is clear that the alumina powders of the examples have extremely excellent durability even when used as a carrier for an exhaust gas purifying catalyst.

【0023】[0023]

【発明の効果】すなわち本発明の酸化物粉末の製造方法
によれば、層状で比表面積の大きな酸化物粉末を、容易
にしかも安定して安価に製造することができる。
That is, according to the method for producing an oxide powder of the present invention, a layered oxide powder having a large specific surface area can be produced easily and stably at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例で得られたアルミナ粉末の結
晶構造を示す顕微鏡写真である。
FIG. 1 is a micrograph showing a crystal structure of alumina powder obtained in one example of the present invention.

【図2】本発明の一実施例で得られたアルミナ粉末の結
晶構造を示す顕微鏡写真である。
FIG. 2 is a micrograph showing a crystal structure of an alumina powder obtained in one example of the present invention.

【図3】本発明の一比較例で得られたアルミナ粉末の結
晶構造を示す顕微鏡写真である。
FIG. 3 is a micrograph showing a crystal structure of an alumina powder obtained in a comparative example of the present invention.

【図4】本発明の一比較例で得られたアルミナ粉末の結
晶構造を示す顕微鏡写真である。
FIG. 4 is a micrograph showing a crystal structure of an alumina powder obtained in a comparative example of the present invention.

【図5】本発明の一実施例において有機物の添加量と得
られたアルミナ粉末の比表面積との関係を示すグラフで
ある。
FIG. 5 is a graph showing the relationship between the added amount of organic substances and the specific surface area of the obtained alumina powder in one example of the present invention.

【図6】本発明の実用例における耐久処理温度とHC5
0%浄化温度との関係を示すグラフである。
FIG. 6 is a durability processing temperature and HC5 in a practical example of the present invention.
It is a graph which shows the relationship with 0% purification temperature.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 アスペクト比(縦/横)が5以上の酸化
物ゾルと、板状結晶を形成する有機物の溶液とを混合し
て混合溶液を調製する第1工程と、 該混合溶液から該有機物の該板状結晶を析出させるとと
もに該板状結晶どうしの間に該酸化物ゾルが二次元的に
配向した積層体を形成する第2工程と、 該積層体を酸化性雰囲気中で焼成して該有機物を燃焼除
去するとともに該酸化物ゾルを粒成長させる第3工程
と、からなることを特徴とする酸化物粉末の製造方法。
1. A first step of preparing a mixed solution by mixing an oxide sol having an aspect ratio (longitudinal / horizontal) of 5 or more and a solution of an organic substance that forms a plate crystal, and a step of preparing the mixed solution from the mixed solution. A second step of precipitating the plate crystals of an organic substance and forming a laminate in which the oxide sol is two-dimensionally oriented between the plate crystals; and firing the laminate in an oxidizing atmosphere. And a third step of burning and removing the organic matter and growing the particles of the oxide sol.
JP6336320A 1994-12-22 1994-12-22 Production of oxide powder Withdrawn JPH08175808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6336320A JPH08175808A (en) 1994-12-22 1994-12-22 Production of oxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6336320A JPH08175808A (en) 1994-12-22 1994-12-22 Production of oxide powder

Publications (1)

Publication Number Publication Date
JPH08175808A true JPH08175808A (en) 1996-07-09

Family

ID=18297907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6336320A Withdrawn JPH08175808A (en) 1994-12-22 1994-12-22 Production of oxide powder

Country Status (1)

Country Link
JP (1) JPH08175808A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102223A (en) * 2007-10-25 2009-05-14 Samsung Electro-Mechanics Co Ltd Method of manufacturing vanadium oxide nanoparticles
CN112978775A (en) * 2021-04-19 2021-06-18 陕西科技大学 Method for preparing flake alumina with high aspect ratio by taking lotus roots as template

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009102223A (en) * 2007-10-25 2009-05-14 Samsung Electro-Mechanics Co Ltd Method of manufacturing vanadium oxide nanoparticles
CN112978775A (en) * 2021-04-19 2021-06-18 陕西科技大学 Method for preparing flake alumina with high aspect ratio by taking lotus roots as template

Similar Documents

Publication Publication Date Title
EP2452750B1 (en) Exhaust gas purifying catalyst and method for producing same
JPS63162043A (en) Catalyst for cleaning exhaust gas
EP0355231B1 (en) Heat-resistant catalyst carrier moldings and catalysts for combustion
WO2013161167A1 (en) Exhaust gas cleaning catalyst material, and exhaust gas cleaning catalyst containing said catalyst material
JPH10249198A (en) Catalyst for purifying exhaust gas and production thereof
JPH07300315A (en) Complex, catalyst body using the same and its production
JPS61242644A (en) Production of catalyst for purifying exhaust gas
WO2017150350A1 (en) Exhaust gas purification catalyst
JP3275356B2 (en) Method for producing exhaust gas purifying catalyst
JPH05168926A (en) Catalyst excellent in heat resistance for purifying exhaust gas of internal combustion engine and production thereof
JPH08175808A (en) Production of oxide powder
JP2001347167A (en) Exhaust gas cleaning catalyst
JP3722060B2 (en) Catalyst body, method for producing catalyst body, and exhaust gas purification catalyst using the catalyst body
JPH064132B2 (en) Integrated catalyst carrier for exhaust gas purification
JP2002219361A (en) Carrier of catalyst for cleaning exhaust gas, its preparing method and catalyst
JP2007136420A (en) Exhaust gas purification catalyst and method of fabricating the same
JPH0582258B2 (en)
JPS6050491B2 (en) Method for producing exhaust gas purification catalyst having rare earth-containing porous film
CN111375416B (en) Monolithic catalyst having perovskite oxide skeleton and method for producing same
JP6167834B2 (en) Exhaust gas purification catalyst
JPS61245850A (en) Preparation of catalyst structure
JP2007185618A (en) Exhaust gas purifying catalyst
JP4698505B2 (en) Exhaust gas purification catalyst
JPH08155302A (en) Catalyst for purifying exhaust gas and its production
JPS63270544A (en) Production of catalyst for cleaning exhaust gas

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040205