JP4698505B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP4698505B2
JP4698505B2 JP2006177042A JP2006177042A JP4698505B2 JP 4698505 B2 JP4698505 B2 JP 4698505B2 JP 2006177042 A JP2006177042 A JP 2006177042A JP 2006177042 A JP2006177042 A JP 2006177042A JP 4698505 B2 JP4698505 B2 JP 4698505B2
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
double oxide
ceo
cubic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006177042A
Other languages
Japanese (ja)
Other versions
JP2008006337A (en
Inventor
知広 本田
智明 浦井
良太 藤本
秀治 岩国
明秀 高見
龍也 古谷
誠治 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Toda Kogyo Corp
Original Assignee
Mazda Motor Corp
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Toda Kogyo Corp filed Critical Mazda Motor Corp
Priority to JP2006177042A priority Critical patent/JP4698505B2/en
Publication of JP2008006337A publication Critical patent/JP2008006337A/en
Application granted granted Critical
Publication of JP4698505B2 publication Critical patent/JP4698505B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、排気ガス浄化用触媒に関する。     The present invention relates to an exhaust gas purification catalyst.

自動車の排気ガス中のHC(炭化水素)、CO(一酸化炭素)及びNOx(窒素酸化物)を同時に浄化する三元触媒に関し、担体上の触媒層にCeとZrとを含有する中空状複酸化物粒子を含ませることは知られている(特許文献1参照)。その中空状複酸化物粒子は、中空殻を構成する一次粒子の結晶格子又は原子間に触媒金属としてRhが配置されたものである。このような中空状複酸化物粒子は、中実の塊状粒子に比べて、その中空殻表面に露出する一次粒子が多くなるととともに、排気ガスが殻壁を拡散して通り抜け易くなることから、排気ガスとRhとが接触し易くなり、排気ガス浄化性能の向上に有利に働く。この特許文献1では、噴霧熱分解法によって中空状複酸化物粒子を製造すること、その際に原料溶液を噴霧する加熱炉の温度を1000℃とすること、また、中空状複酸化物粒子のCeO/ZrO質量比を22/68とすることが開示されている。
特開2005−334791号公報
A three-way catalyst that simultaneously purifies HC (hydrocarbon), CO (carbon monoxide), and NOx (nitrogen oxide) in the exhaust gas of an automobile, and a hollow composite containing Ce and Zr in the catalyst layer on the carrier. It is known to include oxide particles (see Patent Document 1). The hollow double oxide particles are those in which Rh is disposed as a catalyst metal between crystal lattices or atoms of primary particles constituting the hollow shell. Such hollow double oxide particles have more primary particles exposed on the surface of the hollow shell than solid massive particles, and the exhaust gas easily diffuses through the shell wall. The gas and Rh can easily come into contact with each other, which is advantageous for improving the exhaust gas purification performance. In this patent document 1, the hollow double oxide particles are produced by the spray pyrolysis method, the temperature of the heating furnace for spraying the raw material solution at that time is set to 1000 ° C., It is disclosed that the CeO 2 / ZrO 2 mass ratio is 22/68.
JP 2005-334791 A

上記中空状複酸化物粒子では中空状になっているから、それら粒子が多数集合した状態になっても、その一次粒子同士の接触が少なく、シンタリングを生じ難い、すなわち、耐熱性が高いということができる。しかし、それでも、例えば1000℃を越えるような高温雰囲気に晒されると、結晶子(ないしは一次粒子)の粗大化を招き、中空構造の維持が困難になる。その際に、当該中空状粒子に担持されている触媒金属がシンタリングし、或いは中空殻表面に露出していた触媒金属が粗大化した粒子の内部に埋没し、触媒の排気ガス浄化性能が低下する。     Since the hollow complex oxide particles are hollow, even if they are in a state of aggregation, there is little contact between the primary particles, and sintering hardly occurs, that is, heat resistance is high. be able to. However, when exposed to a high-temperature atmosphere exceeding 1000 ° C., for example, crystallites (or primary particles) are coarsened, making it difficult to maintain a hollow structure. At that time, the catalyst metal supported on the hollow particles is sintered, or the catalyst metal exposed on the hollow shell surface is buried inside the coarsened particles, and the exhaust gas purification performance of the catalyst is lowered. To do.

本発明は、このような中空状複酸化物粒子の構造破壊を抑制することができるようにして、触媒の耐熱性の向上を図ることを課題とする。     It is an object of the present invention to improve the heat resistance of a catalyst so as to suppress the structural breakdown of such hollow multi-oxide particles.

本発明は、中空状複酸化物粒子を構成する立方晶を所定の割合にすることによって、上記課題を解決するようにした。     In the present invention, the above-described problems are solved by setting the cubic crystals constituting the hollow double oxide particles to a predetermined ratio.

すなわち、本発明は、CeとZrとを含有する中空状複酸化物粒子が担体上の触媒層に含まれている排気ガス浄化用触媒において、
上記複酸化物は、CeO/ZrO質量比が50/50以上、すなわち、CeO/(CeO+ZrO)比が50質量%以上であって、立方晶を含む複数種の結晶相が混在し、該複数種の結晶相中の立方晶の質量分率が74%以上82%以下であることを特徴とする。
That is, the present invention provides an exhaust gas purification catalyst in which hollow double oxide particles containing Ce and Zr are included in a catalyst layer on a carrier.
The complex oxide has a CeO 2 / ZrO 2 mass ratio of 50/50 or more, that is, a CeO 2 / (CeO 2 + ZrO 2 ) ratio of 50 mass% or more, and a plurality of types of crystal phases including cubic crystals. It is mixed, and the mass fraction of cubic crystals in the plurality of types of crystal phases is 74% or more and 82% or less.

上記中空状複酸化物粒子の立方晶の質量分率が上述の如き範囲になると、触媒が長時間にわたって高温雰囲気下におかれても、排気ガス浄化性能の低下が少なくなる。つまり、触媒の耐熱性が高くなる。そのことは、中空状複酸化物粒子の構造破壊が抑制されていることを意味する。その理由は定かではないが、複酸化物粒子を構成する立方晶以外の結晶相が立体障害となって、多量に存在する立方晶結晶子の粗大化を抑制すると考えられるところ、当該質量分率によってその立体障害としての働きが顕著になっていると推測される。     When the cubic mass fraction of the hollow double oxide particles is in the above-described range, the exhaust gas purification performance is less deteriorated even if the catalyst is placed in a high temperature atmosphere for a long time. That is, the heat resistance of the catalyst is increased. This means that structural destruction of the hollow double oxide particles is suppressed. The reason for this is not clear, but it is considered that the crystal phase other than the cubic crystals constituting the double oxide particles becomes a steric hindrance and suppresses the coarsening of a large amount of cubic crystallites. It is speculated that the action as a steric hindrance is remarkable.

上記CeとZrとを含有する複酸化物においては、立方晶以外の結晶相として正方晶を生じ易い。この場合は、この正方晶が上記立方晶の粗大化を妨げる立体障害として働くことになる。     In the double oxide containing Ce and Zr, tetragonal crystals are likely to be generated as crystal phases other than cubic crystals. In this case, this tetragonal crystal acts as a steric hindrance that prevents the cubic crystal from coarsening.

ところで、CeOが立方晶を作ることは知られているが、CeとZrとを含有する複酸化物においては、必ずしもCeO/ZrO質量比が大きくなるほど立方晶の上記質量分率が大きくなるというものではない。後述の実施例で明らかになるが、CeO/ZrO質量比が65/35であっても、その質量比が75/25のものよりも立方晶の上記質量分率が大きくなるケースがある。本発明者は、実験研究の結果、上記CeO/ZrO質量比を70/30以上80/20以下(CeO/(CeO+ZrO)比を70質量%以上80質量%以下)としたときに、立方晶の上記質量分率を上述の如き範囲にすることにより耐熱性の高い触媒が得られることを見いだした。但し、CeO/ZrO質量比が50/50未満になると、立方晶の生成に不利になる。 By the way, it is known that CeO 2 forms a cubic crystal. However, in a double oxide containing Ce and Zr, the mass fraction of the cubic crystal is necessarily increased as the CeO 2 / ZrO 2 mass ratio is increased. It's not to be. As will be apparent from the examples described later, even when the CeO 2 / ZrO 2 mass ratio is 65/35, there is a case where the mass fraction of the cubic crystal is larger than that of the mass ratio of 75/25. . As a result of experimental research, the present inventor set the CeO 2 / ZrO 2 mass ratio to 70/30 or more and 80/20 or less (CeO 2 / (CeO 2 + ZrO 2 ) ratio is 70 to 80 mass%). At times, it has been found that a catalyst having high heat resistance can be obtained by setting the mass fraction of cubic crystals in the above range. However, when the CeO 2 / ZrO 2 mass ratio is less than 50/50, it is disadvantageous for the formation of cubic crystals.

上記排気ガス浄化用触媒は、自動車エンジンの排気ガス中のHC、CO及びNOxを浄化する三元触媒として、或いは自動車エンジンのリーン燃焼運転時にその排気ガス(酸素過剰雰囲気)中のNOxを吸収しエンジンの空燃比が理論空燃比又はリッチ側に変化したときにその吸収したNOxを還元浄化するリーンNOx触媒として好適に用いることができる。     The exhaust gas purification catalyst absorbs NOx in the exhaust gas (oxygen-excess atmosphere) as a three-way catalyst for purifying HC, CO and NOx in the exhaust gas of the automobile engine or during the lean combustion operation of the automobile engine. When the air-fuel ratio of the engine changes to the stoichiometric air-fuel ratio or the rich side, it can be suitably used as a lean NOx catalyst that reduces and purifies the absorbed NOx.

以上のように、本発明によれば、CeとZrとを含有する中空状複酸化物粒子が触媒層に含まれている排気ガス浄化用触媒に関し、上記複酸化物のCeO/ZrO質量比を50/50以上として、立方晶の質量分率を74%以上82%以下としたから、触媒が長時間にわたって高温雰囲気下におかれても、排気ガス浄化性能の低下が少なくなり、触媒の耐熱性向上に有利になる。 As described above, according to the present invention, the exhaust gas purification catalyst in which the hollow double oxide particles containing Ce and Zr are included in the catalyst layer, the CeO 2 / ZrO 2 mass of the double oxide is described. The ratio is 50/50 or more, and the mass fraction of the cubic crystal is 74% or more and 82% or less. Therefore, even if the catalyst is left in a high temperature atmosphere for a long time, the exhaust gas purification performance is less deteriorated. It is advantageous for improving the heat resistance.

以下、本発明の実施形態を図面に基づいて説明する。     Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の実施形態に係る排気ガス浄化用触媒は、自動車エンジンの排気ガス中のHC、CO及びNOxを浄化する三元触媒や、エンジンのリーン燃焼運転時にその排気ガス(酸素過剰雰囲気)中のNOxを吸収しエンジンの空燃比が理論空燃比又はリッチ側に変化したときにその吸収したNOxを還元浄化するリーンNOx触媒とすることに適したものであって、触媒層がコージェライト等の無機多孔質によって形成されたハニカム形状等の担体上に形成されている。触媒層は次に説明する酸素吸蔵材として働く中空状複酸化物粒子及び触媒金属を含有する。     The exhaust gas purifying catalyst according to the embodiment of the present invention includes a three-way catalyst that purifies HC, CO, and NOx in the exhaust gas of an automobile engine, and the exhaust gas (oxygen-excess atmosphere) in the lean combustion operation of the engine. It is suitable for a lean NOx catalyst that absorbs NOx and reduces and purifies the absorbed NOx when the air-fuel ratio of the engine changes to the stoichiometric air-fuel ratio or rich side, and the catalyst layer is inorganic such as cordierite It is formed on a carrier having a honeycomb shape or the like formed of a porous material. The catalyst layer contains hollow double oxide particles and a catalyst metal that function as an oxygen storage material described below.

上記複酸化物は、Ce及びZrを金属元素として含有するCe−Zr系複酸化物である。そのCeO/ZrO質量比は50/50以上であって、立方晶と正方晶とが混在し、該複酸化物における立方晶の質量分率は74%以上82%以下である。この複酸化物は中空の略球状の殻及びその破片のいずれかの形態になって上記触媒層に含まれる。 The complex oxide is a Ce-Zr complex oxide containing Ce and Zr as metal elements. The CeO 2 / ZrO 2 mass ratio is 50/50 or more, cubic crystals and tetragonal crystals are mixed, and the mass fraction of cubic crystals in the double oxide is 74% or more and 82% or less. This double oxide is included in the catalyst layer in the form of a hollow, substantially spherical shell or a fragment thereof.

<三元触媒に関する実施例及び比較例>
−触媒調製法−
上記中空状複酸化物粒子は噴霧熱分解法によって調製することができる。すなわち、オキシ硝酸ジルコニウム、硝酸セリウム及び硫酸マグネシウムの各所定量を水に溶解させることにより、上記複酸化物の原料溶液を調製する。ここで、硫酸マグネシウムは、中空状複合酸化物粒子を製造する際の結晶子のシンタリングを抑制する、結晶子同士の接触点を減らしつつ中空構造に導く、という作用を有するものとして、各種添加化合物の中から選定されたものであり、その添加量、濃度等は適宜決定することができる。次いで、上記原料溶液を、空気をキャリアガスとして噴霧することにより、液滴化させて加熱炉に供給する。加熱炉の炉室温度は1000℃を超え且つ1150℃以下が好ましく、より好ましいのは1010℃以上1100℃以下である。加熱炉を出た粒子はバグフィルターによって捕集し、これを水洗後、乾燥させることにより、当該中空状複酸化物粒子を得ることができる。
<Examples and comparative examples regarding three-way catalysts>
-Catalyst preparation method-
The hollow double oxide particles can be prepared by spray pyrolysis. That is, a raw material solution of the complex oxide is prepared by dissolving predetermined amounts of zirconium oxynitrate, cerium nitrate, and magnesium sulfate in water. Here, magnesium sulfate is added in various ways as having an action of suppressing sintering of crystallites when producing hollow composite oxide particles and leading to a hollow structure while reducing contact points between crystallites. The compound is selected from the compounds, and the addition amount, concentration, and the like thereof can be appropriately determined. Next, the raw material solution is atomized by spraying air as a carrier gas, and supplied to the heating furnace. The furnace chamber temperature of the heating furnace exceeds 1000 ° C. and is preferably 1150 ° C. or less, more preferably 1010 ° C. or more and 1100 ° C. or less. The particles exiting the heating furnace are collected by a bag filter, washed with water, and then dried to obtain the hollow double oxide particles.

上記中空状複酸化物粒子に触媒貴金属としてRhを担持する。その担持には減圧脱気法を採用した。即ち、上記中空状複酸化物粒子、貴金属溶液(硝酸ロジウム溶液)及び水の所定量を容器に入れて攪拌することにより懸濁液とし、この懸濁液を攪拌しながら、容器内圧力を20kPaに減圧・脱気しつつ70〜80℃に加熱することにより、水分を蒸発させる。しかる後、Rhを担持した中空状複酸化物粒子を500℃×2時間の条件で焼成する。     Rh is supported as a catalyst noble metal on the hollow double oxide particles. A vacuum degassing method was adopted for the loading. That is, a predetermined amount of the hollow double oxide particles, the noble metal solution (rhodium nitrate solution) and water are put into a container and stirred to form a suspension, and the pressure in the container is set to 20 kPa while stirring the suspension. The water is evaporated by heating to 70-80 ° C. while reducing the pressure and degassing. Thereafter, the hollow double oxide particles carrying Rh are fired under conditions of 500 ° C. × 2 hours.

次に得られた中空状複酸化物粒子とγ−アルミナ粉末とを混合してこれにZrOバインダ及び水を加えてスラリーを調製し、このスラリーを例えばコージェライト製のハニカム担体にコーティングし、乾燥工程、500℃×2時間の焼成工程を経て三元触媒を得る。 Next, the obtained hollow double oxide particles and γ-alumina powder are mixed, and a ZrO 2 binder and water are added thereto to prepare a slurry, and this slurry is coated on, for example, a cordierite honeycomb carrier, A three-way catalyst is obtained through a drying step and a firing step at 500 ° C. for 2 hours.

ハニカム担体1L当たりの中空状複酸化物粒子担持量は93g以上116g以下が好ましい。その担持量が少なすぎると、充分な量の貴金属を高分散に担持することが難しくなり、また、その担持量が多すぎると、ハニカム担体の目詰まりを生じ易くなるからである。また、ハニカム担体1L当たりのγ−アルミナ粉末の担持量は43g以上51g以下が好ましい。γ−アルミナ粉末は、触媒が高温に加熱されたときの中空状複酸化物粒子の粒成長を抑制する働きがあり、その担持量が少なすぎると、当該粒成長の抑制効果が充分に得られず、また、その担持量が多すぎると、ハニカム担体の目詰まりを生じ易くなるからである。     The amount of hollow double oxide particles supported per liter of honeycomb carrier is preferably 93 g or more and 116 g or less. This is because if the supported amount is too small, it becomes difficult to support a sufficient amount of noble metal in a highly dispersed state, and if the supported amount is too large, the honeycomb carrier is likely to be clogged. The supported amount of γ-alumina powder per liter of honeycomb carrier is preferably 43 g or more and 51 g or less. The γ-alumina powder has a function of suppressing the growth of hollow double oxide particles when the catalyst is heated to a high temperature. If the amount of the supported particles is too small, the effect of suppressing the growth of the particles can be sufficiently obtained. In addition, if the amount is too large, the honeycomb carrier is likely to be clogged.

−実施例1−5及び比較例1,2に係る触媒−
上記調製法によって実施例1−5及び比較例1,2に係る触媒を調製した。まず、実施例1−3及び比較例1,2の各触媒は、中空状複合酸化物粒子を調製するときの上記加熱炉の炉室温度を互いに異なる温度にしたものであり、他の調製条件は同じである。すなわち、炉室温度を、比較例1は950℃、比較例2は1000℃(特許文献1と同じ炉室温度)、実施例1は1025℃、実施例2は1050℃、実施例3は1100℃とした。また、実施例1−3及び比較例1,2の各触媒はいずれも、中空状複酸化物粒子のCeO/ZrO質量比は75/25であり、ハニカム担体1L当たりの中空状複酸化物粒子の担持量は103g/L、同じくγ−アルミナ粉末の担持量は47g/L、同じくRh担持量は約0.13g/Lであり、ハニカム担体は1平方インチ(約6.54cm)当たりのセル数400、相隣るセルを隔てる壁厚4ミル(約0.10mm)のものである。
-Catalysts according to Example 1-5 and Comparative Examples 1 and 2-
Catalysts according to Example 1-5 and Comparative Examples 1 and 2 were prepared by the above preparation method. First, each catalyst of Example 1-3 and Comparative Examples 1 and 2 was obtained by changing the furnace chamber temperature of the heating furnace when preparing the hollow composite oxide particles to different temperatures, and other preparation conditions. Are the same. That is, the furnace chamber temperature was 950 ° C. in Comparative Example 1, 1000 ° C. in Comparative Example 2 (the same furnace chamber temperature as in Patent Document 1), 1025 ° C. in Example 1, 1050 ° C. in Example 2, and 1100 in Example 3. C. Further, in each of the catalysts of Example 1-3 and Comparative Examples 1 and 2, the hollow double oxide particles had a CeO 2 / ZrO 2 mass ratio of 75/25, and the hollow double oxide per 1 L of the honeycomb carrier. The amount of the support particles is 103 g / L, the amount of the γ-alumina powder is 47 g / L, the amount of Rh is about 0.13 g / L, and the honeycomb carrier is 1 square inch (about 6.54 cm 2 ). The number of cells per cell is 400, and the wall thickness separating adjacent cells is 4 mils (about 0.10 mm).

実施例4,5に係る触媒は、上記炉室温度はいずれも1050℃とし、CeO/ZrO質量比を、実施例4では65/35とし、実施例5では85/15としたものであり、他は上記実施例1−3及び比較例1,2と同じ条件で調製した。 In the catalysts according to Examples 4 and 5, the furnace chamber temperature was 1050 ° C., and the CeO 2 / ZrO 2 mass ratio was 65/35 in Example 4 and 85/15 in Example 5. The others were prepared under the same conditions as in Examples 1-3 and Comparative Examples 1 and 2 above.

−物性評価−
上記実施例1−5及び比較例1,2の各触媒の中空状複酸化物粒子について、1000℃の大気雰囲気に24時間保持するエージングを行なった後、X線回折装置によりXRDパターンを求めた。そして、解析プログラムRIETAN-2000を用いて、それらXRDパターンのリートベルト解析を行なうことにより、各々の立方晶(及び正方晶)の質量分率、それら立方晶及び正方晶各々におけるCe及びZr各元素の占有率を求めた。結果を表1及び表2に示す。表1は、CeO/ZrO質量比が同じく75/25であって炉室温度が相異なる実施例1,3及び比較例1,2の中空状複酸化物粒子に関するものであり、表2は、炉室温度が同じく1050℃であってCeO/ZrO質量比が相異なる実施例2,4,5の中空状複酸化物粒子に関するものである。
-Physical property evaluation-
The hollow double oxide particles of the catalysts of Examples 1-5 and Comparative Examples 1 and 2 were subjected to aging that was maintained in an air atmosphere at 1000 ° C. for 24 hours, and then an XRD pattern was obtained using an X-ray diffractometer. . Then, by performing Rietveld analysis of these XRD patterns using the analysis program RIETAN-2000, the mass fraction of each cubic crystal (and tetragonal crystal), and each element of Ce and Zr in each of these cubic crystals and tetragonal crystals The occupancy rate was calculated. The results are shown in Tables 1 and 2. Table 1 relates to the hollow double oxide particles of Examples 1 and 3 and Comparative Examples 1 and 2 having different CeO 2 / ZrO 2 mass ratios of 75/25 and different furnace chamber temperatures. Relates to the hollow double oxide particles of Examples 2, 4 and 5 having the same furnace chamber temperature of 1050 ° C. and different CeO 2 / ZrO 2 mass ratios.

Figure 0004698505
Figure 0004698505

Figure 0004698505
Figure 0004698505

表1によれば、炉室温度が高くなるほど、立方晶の質量分率が小さくなり、また、立方晶及び正方晶各々におけるCeの占有率が大きくなっている。表2によれば、CeO/ZrO質量比が75/25の実施例2では、その質量比が65/35の実施例4及び85/15の実施例5よりも、立方晶の質量分率が小さくなっている。また、CeO/ZrO質量比が大きくなるほど、立方晶及び正方晶各々におけるCeの占有率が大きくなっている。 According to Table 1, the higher the furnace chamber temperature, the smaller the mass fraction of cubic crystals, and the larger the occupation ratio of Ce in each of cubic crystals and tetragonal crystals. According to Table 2, in Example 2 where the CeO 2 / ZrO 2 mass ratio is 75/25, the mass fraction of cubic crystals is higher than in Example 4 where the mass ratio is 65/35 and Example 5 where 85/15. The rate is getting smaller. Further, as the CeO 2 / ZrO 2 mass ratio increases, the occupation ratio of Ce in each of the cubic and tetragonal crystals increases.

−排気ガス浄化性能評価−
上記実施例1−5及び比較例1,2の各触媒について、1000℃の大気雰囲気に24時間保持するエージングを行なった後、モデルガス流通反応装置及び排気ガス分析装置を用いて排気ガス浄化性能を調べた。すなわち、空燃比リッチのモデルガス(温度600℃)を空間速度SV=120000h−1で20分間流す前処理を行なった後、浄化性能評価用モデルガスを用いて、HC、CO及びNOxの浄化に関するライトオフ温度T50及び高温浄化率C500を測定した。T50は、触媒に流入するモデルガス温度を常温から漸次上昇させていき、浄化率が50%に達したときの触媒入口のガス温度である。C500は触媒入口ガス温度が500℃のときの浄化率である。浄化性能評価用モデルガスは、A/F=14.7±0.9とした。すなわち、A/F=14.7のメインストリームガスを定常的に流しつつ、所定量の変動用ガスを1Hzでパルス状に添加することにより、A/Fを±0.9の振幅で強制的に振動させた。浄化性能評価用モデルガスの組成は表3のとおりである。また、触媒入口ガス温度は100℃から500℃まで昇温速度で30℃/分で上昇させた。空間速度SVは60000h−1とした。
−Evaluation of exhaust gas purification performance−
About each catalyst of the said Example 1-5 and the comparative examples 1 and 2, after performing the aging which hold | maintains to 1000 degreeC air | atmosphere for 24 hours, exhaust gas purification performance using a model gas circulation reaction apparatus and an exhaust gas analyzer I investigated. That is, after performing pretreatment for flowing an air-fuel ratio rich model gas (temperature 600 ° C.) at a space velocity SV = 120,000 h −1 for 20 minutes, the purification performance evaluation model gas is used to purify HC, CO, and NOx. The light-off temperature T50 and the high temperature purification rate C500 were measured. T50 is the gas temperature at the catalyst inlet when the temperature of the model gas flowing into the catalyst is gradually increased from room temperature and the purification rate reaches 50%. C500 is the purification rate when the catalyst inlet gas temperature is 500 ° C. The model gas for purification performance evaluation was A / F = 14.7 ± 0.9. That is, the A / F is forced at an amplitude of ± 0.9 by adding a predetermined amount of fluctuation gas in a pulse form at 1 Hz while constantly flowing the main stream gas of A / F = 14.7. Vibrated. Table 3 shows the composition of the model gas for purification performance evaluation. Further, the catalyst inlet gas temperature was increased from 100 ° C. to 500 ° C. at a rate of temperature increase of 30 ° C./min. The space velocity SV was 60000h- 1 .

Figure 0004698505
Figure 0004698505

T50の結果を図1乃至図3に示し、C500の結果を図4乃至図6に示す。まず、図1乃至図3(T50)をみると、中空状複酸化物粒子における立方晶の質量分率によってT50が変化することがわかる。同図によれば、炉室温度1050℃の実施例2(立方晶の質量分率=77.1%)のときに、T50が最も低くなり、それよりも当該質量分率が大きくなるとき及び小さくなるときのいずれもT50が高くなっている。また、図4乃至図6(C500)をみると、立方晶の質量分率によってC500が変化しており、炉室温度1050℃の実施例2(立方晶の質量分率=77.1%)でC500が最も高く、その質量分率が大きくなるほどC500が低下している。     The results of T50 are shown in FIGS. 1 to 3, and the results of C500 are shown in FIGS. First, when FIG. 1 thru | or FIG. 3 (T50) is seen, it turns out that T50 changes with the mass fraction of the cubic crystal in a hollow double oxide particle. According to the figure, in Example 2 (cubic mass fraction = 77.1%) at a furnace chamber temperature of 1050 ° C., T50 is the lowest and the mass fraction is larger than that. T50 is high in every case of decreasing. Moreover, when FIG. 4 thru | or FIG. 6 (C500) is seen, C500 is changing with the mass fraction of the cubic crystal, Example 2 (mass fraction of a cubic crystal = 77.1%) of furnace chamber temperature 1050 degreeC. C500 is the highest, and C500 decreases as the mass fraction increases.

以上から、上記立方晶の質量分率を炉室温度1000℃の比較例2よりも小さい82%以下とすることにより、そして、当該質量分率を74%以上とすることにより、触媒の耐熱性が向上し、エージング後でも優れた低温活性及び高温活性が得られることがわかる。     From the above, by making the mass fraction of the cubic crystal 82% or less, which is smaller than that of Comparative Example 2 at a furnace chamber temperature of 1000 ° C., and by making the mass fraction 74% or more, the heat resistance of the catalyst It can be seen that excellent low temperature activity and high temperature activity can be obtained even after aging.

図7は、上記実施例1−3及び比較例1,2のHC浄化に関するT50の結果を、中空状複酸化物粒子における立方晶中のCe占有率との関係でグラフ化したものである。同図によれば、立方晶中のCe占有率が75mol%以上83mol%以下であるときに、耐熱性が高くなる、つまりエージング後も良好な低温活性を示すということができる。これは、表1に示したように、立方晶中のCe占有率が75mol%未満(比較例1及び比較例2)の場合、立方晶に対する正方晶の割合、すなわち、立方晶と正方晶との合計に対する正方晶の分率が小さく、正方晶が立体障害となって立方晶結晶子の粗大化を抑制する効果が小さくなるが、立方晶中のCe占有率が75mol%以上83mol%以下(実施例1〜3)では、正方晶の上記分率が増加するため、該正方晶が立体障害となって立方晶結晶子の粗大化を抑制する効果が大きくなったものと推察する。     FIG. 7 is a graph showing the results of T50 relating to HC purification in Examples 1-3 and Comparative Examples 1 and 2 in relation to the Ce occupancy in the cubic crystals in the hollow double oxide particles. According to the figure, it can be said that when the Ce occupancy in the cubic crystal is 75 mol% or more and 83 mol% or less, the heat resistance is increased, that is, good low temperature activity is exhibited even after aging. As shown in Table 1, when the Ce occupation ratio in the cubic crystal is less than 75 mol% (Comparative Example 1 and Comparative Example 2), the ratio of the tetragonal crystal to the cubic crystal, that is, the cubic and tetragonal crystals, The proportion of tetragonal crystals relative to the total of these is small, and the effect of suppressing the coarsening of cubic crystallites due to tetragonal crystals becomes steric hindrance, but the Ce occupancy in the cubic crystals is 75 mol% or more and 83 mol% or less ( In Examples 1 to 3), since the above-mentioned fraction of tetragonal crystals is increased, it is presumed that the tetragonal crystals became steric hindrance and the effect of suppressing the coarsening of the cubic crystallites was increased.

図8は炉室温度を1050℃としてCeO/ZrO質量比を変化させた、表2に示す実施例2,4,5のT50の結果に基いて、CeO/(CeO+ZrO)比とT50との関係をグラフ化したものである。同図から、CeO/(CeO+ZrO)比を70質量%以上80質量%以下にすると、すなわち、CeO/ZrO質量比を70/30以上80/20以下にすると、耐熱性が高くなる、つまりエージング後も良好な低温活性を示すということができる。 FIG. 8 shows the results of T50 of Examples 2, 4, and 5 shown in Table 2 in which the CeO 2 / ZrO 2 mass ratio was changed at a furnace chamber temperature of 1050 ° C., and CeO 2 / (CeO 2 + ZrO 2 ). The relationship between the ratio and T50 is graphed. From the figure, when the CeO 2 / (CeO 2 + ZrO 2 ) ratio is 70% by mass or more and 80% by mass or less, that is, when the CeO 2 / ZrO 2 mass ratio is 70/30 or more and 80/20 or less, the heat resistance is improved. It can be said that it becomes high, that is, it exhibits good low-temperature activity even after aging.

<リーンNOx触媒に関する実施例及び比較例>
−触媒調製法−
Ce−Zr系の中空状複酸化物粒子(貴金属担持なし)、γ−アルミナ粉末、貴金属溶液(ジニトロジアミン白金硝酸溶液及び硝酸ロジウム溶液)、NOx吸蔵材(酢酸バリウム、酢酸ストロンチウム)及び水の各所定量を容器に入れ攪拌しながら、100℃まで加熱することにより、水分を蒸発させる。得られた乾固物を粉砕して粉末状にし、これを500℃の温度に2時間加熱保持する焼成を行なうことにより、上記中空状複酸化物粒子及びγ−アルミナ粉末をサポート材として、これに貴金属及びNOx吸蔵材が担持された触媒粉末を得る。
<Examples and comparative examples regarding lean NOx catalysts>
-Catalyst preparation method-
Ce-Zr-based hollow double oxide particles (no noble metal supported), γ-alumina powder, noble metal solution (dinitrodiamine platinum nitrate solution and rhodium nitrate solution), NOx storage material (barium acetate, strontium acetate) and water Water is evaporated by heating to 100 ° C. while stirring the fixed amount in a container. The dried product thus obtained is pulverized into a powder form, and this is heated and held at a temperature of 500 ° C. for 2 hours, thereby using the hollow double oxide particles and γ-alumina powder as a support material. A catalyst powder carrying a precious metal and a NOx occlusion material is obtained.

次に上記触媒粉末を塩基性Zrバインダ及び水と混合してスラリーとし、このスラリーにハニカム担体を浸漬して引き上げ、余分なスラリーをエアブローで吹き飛ばす。次いで、コート層を乾燥させた後、500℃の温度に2時間加熱保持する焼成を行なうことにより、リーンNOx触媒を得る。     Next, the catalyst powder is mixed with a basic Zr binder and water to form a slurry, the honeycomb carrier is immersed in the slurry and pulled up, and excess slurry is blown off by air blow. Next, after the coating layer is dried, a lean NOx catalyst is obtained by performing firing by heating and holding at a temperature of 500 ° C. for 2 hours.

ハニカム担体1L当たりの中空状複酸化物粒子担持量は30g以上200g以下が好ましく、同じくγ−アルミナ粉末の担持量は30g以上200g以下が好ましい。これらは貴金属(Pt,Rh)及びNOx吸蔵材(Ba,Sr)のサポート材となるものであり、各々の担持量が少なすぎると、充分な量の貴金属及びNOx吸蔵材を高分散に担持することが難しくなり、また、その担持量が多すぎると、ハニカム担体の目詰まりを生じ易くなるからである。     The amount of hollow double oxide particles supported per liter of honeycomb carrier is preferably 30 g to 200 g, and the amount of γ-alumina powder supported is preferably 30 g to 200 g. These serve as support materials for the noble metal (Pt, Rh) and the NOx storage material (Ba, Sr). When the supported amount is too small, a sufficient amount of the noble metal and the NOx storage material are supported in a highly dispersed manner. This is because it becomes difficult, and if the amount of the carrier supported is too large, the honeycomb carrier is likely to be clogged.

ハニカム担体1L当たりのPt担持量は0.05g以上20g以下が好ましく、同じくRh担持量は0.05g以上20g以下が好ましい。これらはNOの浄化(酸化還元)に働くところ、その担持量が少なすぎると、NOの酸化還元反応が充分に行なわれず、また、その担持量が多すぎても、凝集を起こし易くなるだけで、浄化性能の向上にはあまり働かず、かえってコスト高になるからである。     The amount of Pt supported per liter of honeycomb carrier is preferably 0.05 to 20 g, and the amount of Rh supported is preferably 0.05 to 20 g. These work for NO purification (oxidation and reduction). If the loading amount is too small, the oxidation / reduction reaction of NO is not performed sufficiently, and if the loading amount is too large, aggregation is easily caused. This is because it does not work very much to improve the purification performance, but rather increases the cost.

ハニカム担体1L当たりのBa担持量は5g以上60g以下が好ましく、同じくSr担持量は5g以上60g以下が好ましい。これらはNOxを吸蔵するところ、その担持量が少なすぎると、NOxの吸蔵が不十分になり、また、その担持量が多すぎても、凝集を起こし易くなるだけで、NOx吸蔵量はそれほど増大せず、かえってコスト高になるからである。     The amount of Ba supported per liter of honeycomb carrier is preferably 5 g or more and 60 g or less, and the amount of Sr supported is preferably 5 g or more and 60 g or less. These occlude NOx. If the amount of NOx is too small, the amount of NOx occludes becomes insufficient, and if the amount is too much, the NOx occlusion amount increases so much that it only causes aggregation. This is because the cost is rather high.

−実施例A,B,E,F,G及び比較例C,Dに係る触媒−
上記調製法によって実施例A,B,E,F,G及び比較例C,Dに係る触媒を調製した。これら触媒では、その中空状複酸化物粒子として、上記<三元触媒に関する実施例及び比較例>で説明した炉室温度又はCeO/ZrO質量比が相異なるものを採用した。
-Catalysts according to Examples A, B, E, F, G and Comparative Examples C, D-
Catalysts according to Examples A, B, E, F, G and Comparative Examples C and D were prepared by the above preparation method. In these catalysts, those having different furnace chamber temperatures or CeO 2 / ZrO 2 mass ratios described in the above <Examples and comparative examples relating to three-way catalysts> were used as the hollow double oxide particles.

すなわち、表4に示すように、実施例A,B,E及び比較例C,Dの中空状複酸化物粒子はいずれも、CeO/ZrO質量比が75/25であり、炉室温度が、実施例Aは1025℃のもの、実施例Bは1050℃のもの、実施例Eは1100℃のもの、比較例Cは950℃のもの、比較例Dは1000℃のものである。実施例Fの中空状複酸化物粒子は、CeO/ZrO質量比65/35で炉室温度1050℃のものであり、実施例Gの中空状複酸化物粒子は、CeO/ZrO質量比85/15で炉室温度1050℃のものである。 That is, as shown in Table 4, all of the hollow double oxide particles of Examples A, B, and E and Comparative Examples C and D had a CeO 2 / ZrO 2 mass ratio of 75/25, and the furnace chamber temperature. However, Example A is at 1025 ° C, Example B is at 1050 ° C, Example E is at 1100 ° C, Comparative Example C is at 950 ° C, and Comparative Example D is at 1000 ° C. The hollow double oxide particles of Example F are those having a CeO 2 / ZrO 2 mass ratio of 65/35 and a furnace chamber temperature of 1050 ° C., and the hollow double oxide particles of Example G are CeO 2 / ZrO 2. The mass ratio is 85/15 and the furnace chamber temperature is 1050 ° C.

ハニカム担体1L当たりの中空状複酸化物粒子の担持量は80g/L、γ−アルミナ担持量は80g/L、Pt担持量は3.5g/L、Rh担持量は0.3g/L、Ba担持量は35g/L、Sr担持量5g/Lである。     The amount of hollow double oxide particles supported per liter of honeycomb carrier is 80 g / L, the amount of γ-alumina supported is 80 g / L, the amount of Pt supported is 3.5 g / L, the amount of Rh supported is 0.3 g / L, Ba The supported amount is 35 g / L, and the Sr supported amount is 5 g / L.

Figure 0004698505
Figure 0004698505

−排気ガス浄化性能評価−
上記実施例A,B,E,F,G及び比較例C,Dの各触媒について、750℃の大気雰囲気に24時間保持するエージングを行なった後、モデルガス流通反応装置及び排気ガス分析装置を用いてリーンNOx浄化性能を調べた。すなわち、A/Fリーンのモデル排気ガスを60秒間流し、次にガス組成をA/Fリッチのモデル排気ガスに切り換えてこれを60秒間流す、というサイクルを数回繰り返した後、ガス組成をA/FリッチからA/Fリーンに切り換えた時点から60秒間のNOx浄化率(リーンNOx浄化率)を測定した。触媒入口ガス温度は250℃とした。A/Fリーンのモデル排気ガス及びA/Fリッチのモデル排気ガスの組成は表5に示すとおりである。
−Evaluation of exhaust gas purification performance−
The catalysts of Examples A, B, E, F, G and Comparative Examples C and D were aged for 24 hours in an air atmosphere at 750 ° C., and then the model gas flow reactor and the exhaust gas analyzer were used. Used to examine the lean NOx purification performance. That is, after repeating the cycle of flowing the A / F lean model exhaust gas for 60 seconds, then switching the gas composition to the A / F rich model exhaust gas and flowing it for 60 seconds, the gas composition was changed to A The NOx purification rate (lean NOx purification rate) was measured for 60 seconds from the time of switching from / F rich to A / F lean. The catalyst inlet gas temperature was 250 ° C. The compositions of the A / F lean model exhaust gas and the A / F rich model exhaust gas are shown in Table 5.

Figure 0004698505
Figure 0004698505

図9は上記実施例A,B,E及び比較例C,Dの各触媒のリーンNOx浄化率を示す。実施例A,B,Eは比較例C,DよりもリーンNOx浄化率が高くなっている。従って、リーンNOx触媒の場合も、上記中空状複酸化物粒子の立方晶の質量分率を74%以上82%以下にすることが好ましい。特に75%以上82%以下に、さらには76%以上82%以下にすることが好ましい。     FIG. 9 shows the lean NOx purification rates of the catalysts of Examples A, B, E and Comparative Examples C, D. In Examples A, B, and E, the lean NOx purification rate is higher than in Comparative Examples C and D. Therefore, also in the case of a lean NOx catalyst, it is preferable that the cubic mass fraction of the hollow double oxide particles be 74% or more and 82% or less. In particular, it is preferably 75% or more and 82% or less, and more preferably 76% or more and 82% or less.

図10は炉室温度を1050℃としてCeO/ZrO質量比を変化させた実施例B,F,Gの評価結果に基いて、CeO/(CeO+ZrO)比とリーンNOx浄化率との関係をグラフ化したものである。同図から、CeO/(CeO+ZrO)比を70質量%以上80質量%以下にすると、すなわち、CeO/ZrO質量比を70/30以上80/20以下にすると、耐熱性が高くなる、つまりエージング後も良好なリーンNOx浄化性能を示すということができる。 FIG. 10 shows the CeO 2 / (CeO 2 + ZrO 2 ) ratio and the lean NOx purification rate based on the evaluation results of Examples B, F, and G in which the furnace chamber temperature was 1050 ° C. and the CeO 2 / ZrO 2 mass ratio was changed. Is a graph of the relationship. From the figure, when the CeO 2 / (CeO 2 + ZrO 2 ) ratio is 70% by mass or more and 80% by mass or less, that is, when the CeO 2 / ZrO 2 mass ratio is 70/30 or more and 80/20 or less, the heat resistance is improved. It can be said that a high lean NOx purification performance is exhibited even after aging.

三元触媒における中空状複酸化物粒子の立方晶質量分率とHC浄化に関するライトオフ温度との関係を示すグラフ図である。It is a graph which shows the relationship between the cubic mass fraction of the hollow double oxide particle in a three-way catalyst, and the light-off temperature regarding HC purification | cleaning. 三元触媒における中空状複酸化物粒子の立方晶質量分率とCO浄化に関するライトオフ温度との関係を示すグラフ図である。It is a graph which shows the relationship between the cubic mass fraction of the hollow double oxide particle in a three-way catalyst, and the light-off temperature regarding CO purification | cleaning. 三元触媒における中空状複酸化物粒子の立方晶質量分率とNOx浄化に関するライトオフ温度との関係を示すグラフ図である。It is a graph which shows the relationship between the cubic mass fraction of the hollow double oxide particle in a three-way catalyst, and the light-off temperature regarding NOx purification. 三元触媒における中空状複酸化物粒子の立方晶質量分率とHC浄化率との関係を示すグラフ図である。It is a graph which shows the relationship between the cubic mass fraction of the hollow double oxide particle in a three-way catalyst, and HC purification | cleaning rate. 三元触媒における中空状複酸化物粒子の立方晶質量分率とCO浄化率との関係を示すグラフ図である。It is a graph which shows the relationship between the cubic mass fraction of the hollow double oxide particle in a three-way catalyst, and CO purification | cleaning rate. 三元触媒における中空状複酸化物粒子の立方晶質量分率とNOx浄化率との関係を示すグラフ図である。It is a graph which shows the relationship between the cubic mass fraction of the hollow double oxide particle in a three-way catalyst, and a NOx purification rate. 三元触媒における中空状複酸化物粒子の立方晶中のCe元素占有率とHC浄化に関するライトオフ温度との関係を示すグラフ図である。It is a graph which shows the relationship between the Ce element occupation rate in the cubic of the hollow double oxide particle in a three-way catalyst, and the light-off temperature regarding HC purification | cleaning. 三元触媒における中空状複酸化物粒子のCeO質量比とHC浄化に関するライトオフ温度との関係を示すグラフ図である。It is a graph showing the relationship between the light-off temperature for CeO 2 weight ratio of the hollow double oxide particles and the HC purification in the three-way catalyst. リーンNOx触媒における中空状複酸化物粒子の立方晶質量分率とリーンNOx浄化率との関係を示すグラフ図である。It is a graph which shows the relationship between the cubic mass fraction of the hollow double oxide particle in a lean NOx catalyst, and a lean NOx purification rate. リーンNOx触媒における中空状複酸化物粒子のCeO質量比とリーCeO 2 mass ratio and Lee of hollow double oxide particles in lean NOx catalyst

符号の説明Explanation of symbols

なし     None

Claims (4)

CeとZrとを含有する中空状複酸化物粒子が担体上の触媒層に含まれている排気ガス浄化用触媒において、
上記複酸化物は、CeO/ZrO質量比が50/50以上であって、立方晶を含む複数種の結晶相が混在し、該複数種の結晶相中の立方晶の質量分率が74%以上82%以下であることを特徴とする排気ガス浄化用触媒。
In the exhaust gas purifying catalyst in which the hollow double oxide particles containing Ce and Zr are included in the catalyst layer on the carrier,
The double oxide has a CeO 2 / ZrO 2 mass ratio of 50/50 or more, and a plurality of types of crystal phases including cubic crystals are mixed, and the mass fraction of the cubic crystals in the plurality of types of crystal phases is An exhaust gas purifying catalyst characterized by being 74% or more and 82% or less.
請求項1において、
上記複酸化物は、上記立方晶の他に正方晶を含むことを特徴とする排気ガス浄化用触媒。
In claim 1,
The double oxide contains a tetragonal crystal in addition to the cubic crystal.
請求項1又は請求項2において、
上記CeO/ZrO質量比が70/30以上80/20以下であることを特徴とする排気ガス浄化用触媒。
In claim 1 or claim 2,
The exhaust gas purification catalyst, wherein the CeO 2 / ZrO 2 mass ratio is 70/30 or more and 80/20 or less.
請求項1乃至請求項3のいずれか一において、
自動車の排気ガスを浄化する三元触媒又はリーンNOx触媒として用いられることを特徴とする排気ガス浄化用触媒。
In any one of Claim 1 thru | or 3,
An exhaust gas purification catalyst characterized by being used as a three-way catalyst or a lean NOx catalyst for purifying automobile exhaust gas.
JP2006177042A 2006-06-27 2006-06-27 Exhaust gas purification catalyst Expired - Fee Related JP4698505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006177042A JP4698505B2 (en) 2006-06-27 2006-06-27 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006177042A JP4698505B2 (en) 2006-06-27 2006-06-27 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2008006337A JP2008006337A (en) 2008-01-17
JP4698505B2 true JP4698505B2 (en) 2011-06-08

Family

ID=39065039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006177042A Expired - Fee Related JP4698505B2 (en) 2006-06-27 2006-06-27 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP4698505B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111396179A (en) * 2020-03-31 2020-07-10 潍柴动力股份有限公司 Method and device for determining urea crystal amount in engine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080120970A1 (en) * 2006-11-29 2008-05-29 Marcus Hilgendorff NOx Storage Materials and Traps Resistant to Thermal Aging

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873221A (en) * 1994-07-01 1996-03-19 Toyota Central Res & Dev Lab Inc Production of multiple oxide powder
JPH09202607A (en) * 1996-01-25 1997-08-05 Toyota Central Res & Dev Lab Inc Production of oxide powder
JPH11165067A (en) * 1997-12-03 1999-06-22 Kinya Adachi Production of ceria-zirconia compound oxide for exhaust gas purifying auxiliary catalyst
JP2001348223A (en) * 2000-06-01 2001-12-18 Kcm Corp Ceria-zirconia solid-solution particulate and method for manufacturing the same
JP2005224707A (en) * 2004-02-13 2005-08-25 Toyota Central Res & Dev Lab Inc Ceria oxide assistant catalyst
JP2005334791A (en) * 2004-05-28 2005-12-08 Toda Kogyo Corp Catalyst for cleaning exhaust gas and oxygen storage material for the catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873221A (en) * 1994-07-01 1996-03-19 Toyota Central Res & Dev Lab Inc Production of multiple oxide powder
JPH09202607A (en) * 1996-01-25 1997-08-05 Toyota Central Res & Dev Lab Inc Production of oxide powder
JPH11165067A (en) * 1997-12-03 1999-06-22 Kinya Adachi Production of ceria-zirconia compound oxide for exhaust gas purifying auxiliary catalyst
JP2001348223A (en) * 2000-06-01 2001-12-18 Kcm Corp Ceria-zirconia solid-solution particulate and method for manufacturing the same
JP2005224707A (en) * 2004-02-13 2005-08-25 Toyota Central Res & Dev Lab Inc Ceria oxide assistant catalyst
JP2005334791A (en) * 2004-05-28 2005-12-08 Toda Kogyo Corp Catalyst for cleaning exhaust gas and oxygen storage material for the catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111396179A (en) * 2020-03-31 2020-07-10 潍柴动力股份有限公司 Method and device for determining urea crystal amount in engine

Also Published As

Publication number Publication date
JP2008006337A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
JP5376261B2 (en) Exhaust gas purification catalyst
JP5996538B2 (en) Catalyst for lean-burn gasoline engines with improved NO oxidation activity
JP4950365B2 (en) Mixed phase ceramic oxide ternary alloy catalyst formulation and method for producing the catalyst
JP4959129B2 (en) Exhaust gas purification catalyst
JP5910833B2 (en) Exhaust gas purification catalyst
JP2006334490A (en) Catalyst for cleaning exhaust gas
WO2013022958A1 (en) Palladium solid solution castalyst and methods of making
WO2014183005A1 (en) Zpgm catalytic converters (twc application)
JP4826337B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
EP2611536A1 (en) Catalyst for gasoline lean burn engines with improved nh3-formation activity
JP6567168B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification apparatus using the same
WO2008091004A1 (en) Exhaust gas purification catalyst, and catalytic honey-comb structure for exhaust gas purification
JP4831753B2 (en) Exhaust gas purification catalyst
US9724644B2 (en) Exhaust gas purifying catalyst
JP2007098200A (en) Exhaust gas purification catalyst and manufacturing method of the same
JP2007185588A (en) Catalyst for exhaust gas purification
JP2005028334A (en) Catalyst for cleaning exhaust gas
JP2007136419A (en) Exhaust gas purification catalyst
JP4698505B2 (en) Exhaust gas purification catalyst
US9849441B2 (en) Exhaust gas purifying catalyst
JP6050703B2 (en) Exhaust gas purification catalyst
JP5196656B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2007136420A (en) Exhaust gas purification catalyst and method of fabricating the same
US7696127B2 (en) Exhaust gas purifying catalyst
JP2007301471A (en) Catalyst for cleaning exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110301

R150 Certificate of patent or registration of utility model

Ref document number: 4698505

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees