JPH0817548A - Discharge type guide absorbing device and manufacture thereof - Google Patents

Discharge type guide absorbing device and manufacture thereof

Info

Publication number
JPH0817548A
JPH0817548A JP16994294A JP16994294A JPH0817548A JP H0817548 A JPH0817548 A JP H0817548A JP 16994294 A JP16994294 A JP 16994294A JP 16994294 A JP16994294 A JP 16994294A JP H0817548 A JPH0817548 A JP H0817548A
Authority
JP
Japan
Prior art keywords
discharge
dielectric layer
lead wires
airtight container
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16994294A
Other languages
Japanese (ja)
Other versions
JP2745386B2 (en
Inventor
Seiichiro Oda
征一郎 小田
Junichi Ida
順一 井田
Akio Mukai
昭雄 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okaya Electric Industry Co Ltd
Original Assignee
Okaya Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okaya Electric Industry Co Ltd filed Critical Okaya Electric Industry Co Ltd
Priority to JP6169942A priority Critical patent/JP2745386B2/en
Priority to DE19523338A priority patent/DE19523338A1/en
Priority to CN95107780A priority patent/CN1046600C/en
Priority to US08/496,363 priority patent/US5694284A/en
Publication of JPH0817548A publication Critical patent/JPH0817548A/en
Application granted granted Critical
Publication of JP2745386B2 publication Critical patent/JP2745386B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To enhance response characteristics to surge by arranging a defective part formed by removing part of a dielectric layer between lead wires of a discharge type surge absorbing device. CONSTITUTION:In a discharge type surge absorbing device 10, a pair of discharge electrodes 14, 14 connected with lead wires 12, 12 to one end of them are placed in parallel at specified intervals, and a discharge space 16 is formed between the electrodes 14, 14. Discharge gas such as noble gas is sealed in a gastight container 18, and a dielectric layer 20 with high surface discharge characteristics such as nickel oxide is formed inside the container 18. A large number of auxiliary electrodes 22 comprising particles or blocks of metal with high discharge characteristics are scatteringly arranged at least between the lead wires on the surface of the dielectric layer 20. By irradiating YAG laser and evaporating the irradiated part, a defective part 26 is formed in a part of the dielectric layer 20. By the defective part 26, drop in insulating resistance of the dielectric layer caused when surge is applied is prevented, and arc discharge is preferably generated in a discharge gap.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、気密容器内に封入し
た放電間隙における放電現象を利用してサージを吸収す
る放電型サージ吸収素子及びその製造方法に係り、特
に、放電間隙における気中放電に対するトリガ手段とし
て、誘電体層表面における沿面コロナ放電及び補助放電
間隙における気中放電を用いることにより、対サージ応
答性能の向上を図った放電型サージ吸収素子及びその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discharge type surge absorbing element which absorbs a surge by utilizing a discharge phenomenon in a discharge gap enclosed in an airtight container and a method for manufacturing the same, and more particularly to an air discharge in the discharge gap. The present invention relates to a discharge type surge absorbing element having improved surge response performance by using a creeping corona discharge on the surface of a dielectric layer and an air discharge in an auxiliary discharge gap as a trigger means, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、電子機器に侵入する過渡的な異常
電圧や誘導雷等のサージから電子回路素子を保護するた
め、気密容器内に封入した放電間隙における放電現象を
利用した放電型サージ吸収素子が用いられている。この
ような放電型サージ吸収素子は、主放電たるアーク放電
を用いてサージを吸収するものであるため、電流耐量が
大きいという利点を備えている一方、対サージ応答性能
に劣るという欠点がある。このため、沿面放電特性が良
好な誘電体を放電間隙に並列接続し、該誘電体表面にお
ける沿面コロナ放電を放電間隙における主放電のトリガ
として利用することで、対サージ応答性能の向上を図る
技術が存在している(特公平5−7835号、特公平5−87
36号)。
2. Description of the Related Art Conventionally, in order to protect an electronic circuit element from a surge such as a transient abnormal voltage intruding into an electronic device or an induced lightning, a discharge type surge absorption utilizing a discharge phenomenon in a discharge gap enclosed in an airtight container. The element is used. Since such a discharge type surge absorbing element absorbs a surge by using arc discharge which is a main discharge, it has an advantage that it has a large current withstanding capability, but has a drawback that it has poor surge response performance. Therefore, a technique for improving surge response performance by connecting a dielectric having good creeping discharge characteristics in parallel to the discharge gap and using the creeping corona discharge on the surface of the dielectric as a trigger for the main discharge in the discharge gap. Exists (Japanese Patent Publication No. 5-7835, Japanese Patent Publication No. 5-87)
No. 36).

【0003】図4に示すように、この放電型サージ吸収
素子50は、ニッケルや銅、鉄等の放電特性の良好な金属
材料より成る電極基体52aの表面に、酸化バリウムや六
硼化ランタン等のエミッタ物質より成るエミッタ層52b
を被着させて成る棒状の放電電極52,52を、所定の放電
間隙54を隔てて互いに平行するよう配置し、これをガラ
ス管を加工して形成した気密容器56内に所定の放電ガス
と共に封入し、両放電電極52,52の下端に接続されたリ
ード線58,58を気密容器56外に導出させると共に、上記
気密容器56の内面における少なくともリード線58,58間
に、沿面放電特性が良好な誘電体層60を被着形成して成
る。上記放電間隙54と誘電体層60とは、リード線58,58
を介して並列接続されている。
As shown in FIG. 4, this discharge type surge absorbing element 50 has barium oxide, lanthanum hexaboride and the like on the surface of an electrode base 52a made of a metal material having good discharge characteristics such as nickel, copper and iron. Emitter layer 52b composed of the emitter material of
The rod-shaped discharge electrodes 52 and 52 formed by adhering are arranged in parallel with each other with a predetermined discharge gap 54 therebetween, and this is put together with a predetermined discharge gas in an airtight container 56 formed by processing a glass tube. The lead wires 58, 58 that are enclosed and connected to the lower ends of both discharge electrodes 52, 52 are led out to the outside of the airtight container 56, and at the same time at least between the lead wires 58, 58 on the inner surface of the airtight container 56, the creeping discharge characteristic It is formed by depositing a good dielectric layer 60. The discharge gap 54 and the dielectric layer 60 form the lead wires 58, 58.
Are connected in parallel via.

【0004】リード線58,58と気密容器56との接続部分
の拡大図である図5に示すように、誘電体層60の表面か
らは、ニッケルや銅、鉄等の導電材料より成る粒状ある
いは塊状の補助放電電極62が多数突出しており、リード
線58と補助放電電極62との間、及び各補助放電電極62間
には、上記放電間隙54よりも格段に狭小な補助放電間隙
64が形成されている。
As shown in FIG. 5, which is an enlarged view of the connecting portion between the lead wires 58, 58 and the airtight container 56, from the surface of the dielectric layer 60, a granular or conductive material such as nickel, copper, iron or the like is formed. A large number of lump-shaped auxiliary discharge electrodes 62 are projected, and an auxiliary discharge gap much smaller than the above-mentioned discharge gap 54 is provided between the lead wire 58 and the auxiliary discharge electrodes 62 and between each auxiliary discharge electrode 62.
64 are formed.

【0005】しかして、上記リード線58,58を介してこ
の放電型サージ吸収素子50にサージが印加されると、直
ちに、リード線58,58間の誘電体層60表面において沿面
コロナ放電が発生してサージ吸収が開始される。そし
て、この沿面コロナ放電に伴って放出された電子及びイ
オンのプライミング効果によって、まず幅の狭い補助放
電間隙64に気中放電が生成される。次いで、この補助放
電間隙64における気中放電は、放電電極52,52間の放電
間隙54へ転移し、最終的にはアーク放電の大電流を通じ
てサージが吸収される。
However, when a surge is applied to the discharge type surge absorbing element 50 through the lead wires 58, 58, a creeping corona discharge is immediately generated on the surface of the dielectric layer 60 between the lead wires 58, 58. Then the surge absorption is started. Then, due to the priming effect of electrons and ions emitted along with this creeping corona discharge, an air discharge is first generated in the narrow auxiliary discharge gap 64. Next, the air discharge in the auxiliary discharge gap 64 is transferred to the discharge gap 54 between the discharge electrodes 52, 52, and finally the surge is absorbed through the large current of the arc discharge.

【0006】このように、この放電型サージ吸収素子50
は、対サージ応答性に優れる沿面コロナ放電をトリガ放
電として利用することにより、対サージ応答性能を高め
ると共に、沿面コロナ放電と放電間隙54における主放電
との間に、補助放電間隙64における気中放電を介在させ
ることにより、主放電の生成をより円滑化している。
As described above, this discharge type surge absorbing element 50
Uses the creeping corona discharge, which is excellent in surge response, as the trigger discharge to improve the surge response performance, and at the same time, the air in the auxiliary discharge gap 64 between the creeping corona discharge and the main discharge in the discharge gap 54. The generation of the main discharge is made smoother by interposing the discharge.

【0007】[0007]

【発明が解決しようとする課題】ところで、上記誘電体
層60及び補助放電電極62は、放電電極52の電極基体52a
やエミッタ層52b、あるいはリード線58を構成する金属
を材料に形成される。例えば、ニッケル製の電極基体52
aを気密容器56内に挿入し、気密容器56内の排気工程に
伴う減圧雰囲気中において該電極基体52aに高周波加熱
を施し、電極基体52a表面のニッケルを溶融・飛散させ
て気密容器56の内面に付着させる。上記排気工程の初期
においては気密容器56内に空気が残存しており、溶融飛
散したニッケルは途中で酸化されるため、気密容器56の
内面には、まず絶縁性の酸化ニッケルより成る誘電体層
60が形成される。つぎに、上記排気工程の進展に伴って
気密容器56内に空気がなくなると、溶融飛散したニッケ
ルは酸化されないまま誘電体層60の表面に付着し、導電
性を備えた粒状あるいは塊状の補助放電電極62が形成さ
れることとなる。このように、誘電体層60と補助放電電
極62を、電極基体52aを構成する金属を材料にして形成
すれば、特別な装置や材料を別途用意する必要がなくな
り、製造過程の簡素化を実現できるという利点がある。
By the way, the dielectric layer 60 and the auxiliary discharge electrode 62 are the electrode base 52a of the discharge electrode 52.
The emitter layer 52b or the metal forming the lead wire 58 is used as a material. For example, the nickel electrode base 52
a is inserted into the airtight container 56, and the electrode base 52a is subjected to high-frequency heating in a depressurized atmosphere associated with the evacuation process in the airtight container 56 to melt and scatter nickel on the surface of the electrode base 52a to form an inner surface of the airtight container 56. To adhere to. At the beginning of the exhaust process, air remains in the airtight container 56, and the molten and scattered nickel is oxidized on the way.Therefore, on the inner surface of the airtight container 56, first, a dielectric layer made of an insulating nickel oxide is formed.
60 is formed. Next, when air disappears in the airtight container 56 as the exhaust process progresses, the molten and scattered nickel adheres to the surface of the dielectric layer 60 without being oxidized, and a granular or lumped auxiliary discharge having conductivity is formed. The electrode 62 will be formed. In this way, if the dielectric layer 60 and the auxiliary discharge electrode 62 are formed by using the metal forming the electrode base 52a as a material, it is not necessary to separately prepare a special device or material, and the manufacturing process can be simplified. There is an advantage that you can.

【0008】しかしながら、電極基体52aを構成する金
属の溶融・飛散工程を精密に制御することは困難である
ため、本来誘電体層60の表面にのみ点在させるべき金属
粒66の一部が、どうしても誘電体層60内部に埋没・混入
してしまい、その結果、誘電体層60自体の絶縁抵抗が低
下することとなる。そして、このように誘電体層60の絶
縁抵抗が低下すると、サージが印加された場合に、リー
ド線58,58間における沿面コロナ放電が持続状態とな
り、上記放電間隙54における主放電に移行できなくな
る。また、この沿面コロナ放電の持続によって、甚だし
い場合には誘電体層60が剥離したり、発熱のため部分的
に溶融・飛散することとなり、次のサージが印加されて
もトリガー放電が発生せず、上記放電間隙54においては
放電遅れのため主放電に移行できず、アーク放電を利用
した大電流の吸収が不可能となる危険性も生じる。もち
ろん、極めて微量の金属粒66が混入するだけなら問題な
いが、補助放電間隙64における気中放電を実現するに
は、ある程度以上の密度で補助放電電極62を誘電体層60
の表面に分布させる必要があり、結果的に無視できない
量の金属粒66が誘電体層60内部に埋没・混入することと
なる。
However, it is difficult to precisely control the melting / scattering process of the metal forming the electrode substrate 52a, so that some of the metal particles 66 that should originally be scattered only on the surface of the dielectric layer 60 are It is buried and mixed in the dielectric layer 60 inevitably, and as a result, the insulation resistance of the dielectric layer 60 itself is lowered. Then, when the insulation resistance of the dielectric layer 60 is lowered in this way, when a surge is applied, the creeping corona discharge between the lead wires 58, 58 becomes a continuous state, and it becomes impossible to shift to the main discharge in the discharge gap 54. . Also, due to the continuation of this creeping corona discharge, the dielectric layer 60 may be peeled off in some cases, or partially melted and scattered due to heat generation, and trigger discharge does not occur even when the next surge is applied. In the discharge gap 54, the discharge cannot be transferred to the main discharge due to the discharge delay, and there is a risk that the large current cannot be absorbed by using the arc discharge. Of course, if only a very small amount of metal particles 66 are mixed in, there is no problem, but in order to realize air discharge in the auxiliary discharge gap 64, the auxiliary discharge electrode 62 should be formed on the dielectric layer 60 with a certain density or more.
Must be distributed on the surface of the dielectric layer 60, and as a result, a non-negligible amount of metal particles 66 will be buried / mixed inside the dielectric layer 60.

【0009】この発明は、上記従来の問題に鑑みてなさ
れたものであり、補助放電電極を気密容器内に収納され
た部材を構成する金属を用いて形成する場合であって
も、リード線間における沿面コロナ放電が持続状態とな
ることを有効に防止でき、したがって放電間隙にアーク
放電を確実に生成させることができる放電型サージ吸収
素子の実現を目的としており、さらに、このような放電
型サージ吸収素子を簡単に製造できる製造方法を得るこ
とを目的とするものである。
The present invention has been made in view of the above-mentioned conventional problems, and even when the auxiliary discharge electrode is formed by using the metal constituting the member housed in the airtight container, the inter-lead wires are formed. The purpose of the present invention is to realize a discharge type surge absorbing element that can effectively prevent a creeping corona discharge in a continuous state from occurring, and therefore can reliably generate an arc discharge in the discharge gap. It is an object of the present invention to obtain a manufacturing method capable of easily manufacturing an absorbing element.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
め、この発明に係る放電型サージ吸収素子は、放電ガス
を充填した気密容器内に、リード線を接続した複数本の
放電電極を対向配置して各放電電極間に放電間隙を形成
し、各放電電極のリード線を上記気密容器の外部に導出
すると共に、上記気密容器内面の少なくとも上記リード
線間に沿面放電特性が良好な誘電体層を形成し、該誘電
体層の少なくとも表面に、該気密容器内に収納された部
材を構成している金属を材料として形成した多数の補助
放電電極を散点状に配置して、上記放電間隙よりも狭小
な補助放電間隙を上記リード線間に形成して成る放電型
サージ吸収素子において、上記気密容器内面の少なくと
も上記リード線間に、上記誘電体層の一部を除去して成
る欠損部を介在させたことを特徴とする。
In order to achieve the above object, a discharge type surge absorbing element according to the present invention has a plurality of discharge electrodes connected with lead wires facing each other in an airtight container filled with discharge gas. A discharge gap is formed between the respective discharge electrodes, the lead wires of the respective discharge electrodes are led out to the outside of the airtight container, and a dielectric having good creeping discharge characteristics at least between the lead wires on the inner surface of the airtight container. A plurality of auxiliary discharge electrodes formed by using a metal forming a member housed in the hermetic container as a material on at least the surface of the dielectric layer to form a discharge layer. In a discharge type surge absorbing element formed by forming an auxiliary discharge gap smaller than the gap between the lead wires, a defect formed by removing a part of the dielectric layer at least between the lead wires on the inner surface of the hermetic container. Intervening part Characterized in that was.

【0011】上記欠損部は、例えば、リード線間を横切
る幅50〜300μmの帯状に形成される。また、上記
気密容器内面における上記欠損部に対応する部分に、凹
部を形成するよう構成してもよい。上記欠損部は、例え
ば、ガラス製の気密容器の外部からレーザー光線を照射
して、気密容器内面に形成された誘電体層の一部を蒸発
させることによって形成される。
The defective portion is formed, for example, in a band shape having a width of 50 to 300 μm that crosses between the lead wires. Further, a recess may be formed in a portion of the inner surface of the airtight container corresponding to the defective portion. The defective portion is formed, for example, by irradiating a laser beam from the outside of the glass airtight container to evaporate a part of the dielectric layer formed on the inner surface of the airtight container.

【0012】[0012]

【作用】上記のように構成した放電型サージ吸収素子に
サージが印加されると、直ちに、リード線間の誘電体層
表面において沿面コロナ放電が発生してサージ吸収が開
始される。この沿面コロナ放電はトリガ放電として作用
し、この放電によって放出された電子及びイオンのプラ
イミング効果により、先ず放電電極間の放電間隙よりも
誘電体層表面からの距離が短く、かつ間隙長も狭い補助
放電間隙において、速やかに気中放電が生成される。つ
ぎに、この補助放電間隙における気中放電は、該放電に
よって放出された多量の電子及びイオンのプライミング
効果により、極めて短時間の中に放電電極間の放電間隙
に転移する。この結果、放電間隙にグロー放電を経てア
ーク放電が生成され、このアーク放電の大電流を通じて
サージが吸収される。
When a surge is applied to the discharge type surge absorbing element constructed as described above, creeping corona discharge is immediately generated on the surface of the dielectric layer between the lead wires to start surge absorption. This creeping corona discharge acts as a trigger discharge, and due to the priming effect of electrons and ions emitted by this discharge, the distance from the surface of the dielectric layer is shorter than the discharge gap between the discharge electrodes and the gap length is narrower. In the discharge gap, an air discharge is promptly generated. Next, the air discharge in the auxiliary discharge gap is transferred to the discharge gap between the discharge electrodes within an extremely short time due to the priming effect of a large amount of electrons and ions emitted by the discharge. As a result, an arc discharge is generated in the discharge gap through the glow discharge, and the surge is absorbed through the large current of the arc discharge.

【0013】上記リード線間には、上記誘電体層の一部
を除去して形成した欠損部を介在させているため、例え
補助放電電極形成時に誘電体層内に金属粒が混入し、誘
電体層自体の絶縁抵抗が低下したとしても、リード線間
の絶縁性は維持される。したがって、サージ印加の際に
リード線間で沿面コロナ放電が持続してしまい、放電間
隙にアーク放電を生成できないといった問題は生じな
い。
Between the lead wires, since a defective portion formed by removing a part of the dielectric layer is interposed, metal particles are mixed in the dielectric layer during formation of the auxiliary discharge electrode, which causes a dielectric loss. Even if the insulation resistance of the body layer itself is reduced, the insulation between the lead wires is maintained. Therefore, when the surge is applied, the creeping corona discharge is maintained between the lead wires, and the problem that the arc discharge cannot be generated in the discharge gap does not occur.

【0014】[0014]

【実施例】以下、添付図面に基づき、本発明の実施例を
説明する。図1は本発明の一実施例に係る放電型サージ
吸収素子10を示す縦断面図であり、図2はそのA−A断
面図である。この放電型サージ吸収素子10は、一端にリ
ード線12,12を接続して成る一対の放電電極14,14を所
定の距離を隔てて平行に配置し、両電極間に放電間隙16
を形成すると共に、これをガラス管を加工して形成した
気密容器18内に封入し、各放電電極14のリード線12を気
密容器18外に導出して成る。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a vertical sectional view showing a discharge type surge absorber 10 according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along line AA. In this discharge type surge absorbing element 10, a pair of discharge electrodes 14, 14 having lead wires 12, 12 connected at one end are arranged in parallel at a predetermined distance, and a discharge gap 16 is provided between both electrodes.
Is formed, and is enclosed in an airtight container 18 formed by processing a glass tube, and the lead wire 12 of each discharge electrode 14 is led out of the airtight container 18.

【0015】上記放電電極14は、ニッケルや銅あるいは
鉄等、放電特性の良好な金属材料を棒状や板状に加工し
た電極基体14aの表面に、酸化バリウムや六硼化ランタ
ン等のエミッタ物質より成るエミッタ層14bを被着して
成る。また、上記リード線12は、デュメット線(銅被覆
鉄ニッケル合金線)や42−6合金線等より成る。
The discharge electrode 14 is made of a metal material having good discharge characteristics, such as nickel, copper or iron, which is processed into a rod or plate shape on the surface of an electrode substrate 14a, and is made of an emitter material such as barium oxide or lanthanum hexaboride. It is formed by depositing an emitter layer 14b. The lead wire 12 is made of Dumet wire (copper-coated iron-nickel alloy wire), 42-6 alloy wire, or the like.

【0016】上記気密容器18内には、希ガスや窒素ガス
あるいは六弗化硫黄ガス等より成る放電ガスが封入され
ると共に、該気密容器18の内面には、酸化ニッケルなど
沿面放電特性が良好な誘電体層20が形成されている。こ
の誘電体層20の表面における少なくともリード線12,12
間には、図3に示すように、銅やニッケルあるいは鉄
等、放電特性の良好な金属の粒や塊より成る多数の補助
放電電極22が、散点状に配置されている。また、各リー
ド線12と補助放電電極22間、及び補助放電電極22相互間
には、上記放電電極14,14間の放電間隙16よりも格段に
狭小な補助放電間隙24が多数形成されている。
A discharge gas composed of a rare gas, a nitrogen gas, a sulfur hexafluoride gas, or the like is enclosed in the airtight container 18, and the inner surface of the airtight container 18 has good creeping discharge characteristics such as nickel oxide. The dielectric layer 20 is formed. At least the lead wires 12, 12 on the surface of the dielectric layer 20
In the meantime, as shown in FIG. 3, a large number of auxiliary discharge electrodes 22 made of particles or lumps of metal having good discharge characteristics such as copper, nickel or iron are arranged in a scattered manner. A large number of auxiliary discharge gaps 24, which are much smaller than the discharge gaps 16 between the discharge electrodes 14 and 14, are formed between the lead wires 12 and the auxiliary discharge electrodes 22, and between the auxiliary discharge electrodes 22. .

【0017】さらに、上記気密容器18内面には、上記誘
電体層20を部分的に除去して形成した欠損部26が存在し
ている。この欠損部26は、幅が50〜300μm程度の
帯状と成されており、図3に示すように、両リード線1
2,12間に配置された誘電体層20は、この欠損部26によ
って分断されている。また、気密容器18内面における該
欠損部26に対応した部分には、深さが20μm以下の微
細な凹部28が形成されている。
Further, on the inner surface of the airtight container 18, there is a defective portion 26 formed by partially removing the dielectric layer 20. The defect portion 26 is formed in a strip shape having a width of about 50 to 300 μm, and as shown in FIG.
The dielectric layer 20 arranged between 2 and 12 is divided by the missing portion 26. A fine recess 28 having a depth of 20 μm or less is formed in a portion of the inner surface of the airtight container 18 corresponding to the defective portion 26.

【0018】つぎに、この放電型サージ吸収素子10の製
造方法の一例について説明する。まず、リード線12,12
を接続したニッケルより成る電極基体14a,14aの表面
に、該電極基体14a,14aの表面の一部が露出するよう
に炭酸バリウムより成るエミッタ材料を付着させる。そ
して、上記リード線12,12を同一方向に揃えて整列治具
によって保持して、電極基体14a,14aを所定間隔で対
向させ、これを両端が開口したガラス管内に挿入して、
上記リード線12,12の下端部がガラス管の一端開口から
外部へ突出するように収納する。さらに、ガラス管の一
端をガス炎によって加熱して溶融させ、溶融部分をピン
チャーによって内方向へ圧潰して封着し、リード線12,
12の中途部をガラス管の封着部に固定すると共に、該リ
ード線12,12の下端部をガラス管の外部に導出する。こ
の際、上記ガラス管の加熱を空気中で行うことにより、
電極基体14a,14a表面の露出部分が酸化されて酸化ニ
ッケルが形成される。
Next, an example of a method of manufacturing the discharge type surge absorber 10 will be described. First, the lead wires 12, 12
An emitter material made of barium carbonate is adhered to the surfaces of the electrode bases 14a, 14a made of nickel connected to each other so as to expose a part of the surfaces of the electrode bases 14a, 14a. Then, the lead wires 12, 12 are aligned in the same direction and held by an aligning jig, the electrode base bodies 14a, 14a are opposed to each other at a predetermined interval, and this is inserted into a glass tube having both ends open,
The lead wires 12, 12 are housed so that the lower end portions of the lead wires 12 and 12 project outside from one end opening of the glass tube. Further, one end of the glass tube is heated by a gas flame to be melted, and the melted portion is crushed inward by a pincher to seal the lead wire 12,
The middle part of 12 is fixed to the sealing part of the glass tube, and the lower ends of the lead wires 12 and 12 are led out of the glass tube. At this time, by heating the glass tube in the air,
The exposed portions of the surfaces of the electrode bases 14a, 14a are oxidized to form nickel oxide.

【0019】ついで、ガラス管の他端に排気装置を接続
し、これを高周波コイル内に配置して高周波加熱を施す
と共に、該ガラス管内を排気すれば、エミッタ材料の炭
酸バリウムが熱分解して電極基体14a,14aの表面に酸
化バリウムより成るエミッタ層14b,14bが形成されて
放電電極14が完成する。同時に、電極基体14a,14a表
面の露出部分が溶融して、排気に伴うガラス管内の減圧
によって飛散を開始する。排気工程当初においては、ガ
ラス管内の残留空気濃度が高いため、電極基体14a,14
aを構成するニッケルが飛散中に酸化されて酸化ニッケ
ルとなり、前工程で電極基体14a,14aの表面に形成さ
れていた酸化ニッケルと共にガラス管の内面に層状に被
着し、沿面放電特性が良好な酸化ニッケルより成る誘電
体層20が形成される。
Next, an exhaust device is connected to the other end of the glass tube, which is placed in a high-frequency coil for high-frequency heating, and when the glass tube is evacuated, barium carbonate as an emitter material is thermally decomposed. The discharge layers 14 are completed by forming emitter layers 14b, 14b made of barium oxide on the surfaces of the electrode bases 14a, 14a. At the same time, the exposed parts of the surfaces of the electrode bases 14a, 14a are melted and start to scatter due to the pressure reduction in the glass tube accompanying the exhaust. At the beginning of the evacuation process, since the residual air concentration in the glass tube is high, the electrode bases 14a, 14
Nickel composing a is oxidized during scattering to become nickel oxide, which is layered on the inner surface of the glass tube together with the nickel oxide formed on the surfaces of the electrode substrates 14a, 14a in the previous step, and the creeping discharge characteristic is excellent. A dielectric layer 20 of nickel oxide is formed.

【0020】その後、排気作業の進行に伴ってガラス管
内の残留空気濃度が低下し、遂には飛散したニッケルが
酸化されない状態となる。従って、この酸化されないニ
ッケルが上記誘電体層20の表面に散点状に付着した時点
でこの操作を終了すれば、粒状あるいは塊状の補助放電
電極22が形成される。この補助放電電極22は、リード線
12やエミッタ層14bを構成する金属(銅やバリウム)を
溶融・飛散させ、誘電体層20の表面に散点状に付着させ
ることによっても形成できる。
After that, as the exhaust work progresses, the concentration of residual air in the glass tube decreases, and finally the scattered nickel is not oxidized. Therefore, if this operation is finished at the time when the non-oxidized nickel adheres to the surface of the dielectric layer 20 in a scattered manner, the granular or massive auxiliary discharge electrode 22 is formed. The auxiliary discharge electrode 22 is a lead wire.
It can also be formed by melting and scattering the metal (copper or barium) that constitutes 12 or the emitter layer 14b and adhering them to the surface of the dielectric layer 20 in a scattered manner.

【0021】つぎに、上記排気作業によって、残留空
気、炭酸バリウム分解による二酸化炭素、並びにガラス
管自身やガラス管内に収納された部材から放出される不
純ガスを除去してガラス管内を高真空状態とした後、放
電ガスを充填し、さらに上記ガラス管の他端を加熱し、
これを溶融させて封じ切り、気密容器18を形成する。
Next, the exhausting operation removes residual air, carbon dioxide by the decomposition of barium carbonate, and impure gas emitted from the glass tube itself or a member housed in the glass tube to bring the inside of the glass tube into a high vacuum state. After that, fill the discharge gas, and further heat the other end of the glass tube,
This is melted and sealed off to form the airtight container 18.

【0022】最後に、上記気密容器18の外部からYAG
レーザーを照射すると、レーザー光線がガラスを透過し
て気密容器18内面の誘電体層20に到達し、これを蒸発さ
せる。このレーザー光線の照射位置を、所定パターンに
沿って移動させることにより、帯状の欠損部26が形成さ
れる。なお、レーザー光線自体はガラスを透過するが、
レーザー光線を吸収して発熱・溶融した誘電体層20の影
響で、気密容器18の内面が溶融して凹む結果、気密容器
18内面における上記欠損部26に対応する部分に、該欠損
部26に対応したパターンの凹部28が略同時に形成され
る。
Finally, from the outside of the airtight container 18, YAG is applied.
When a laser is applied, the laser beam passes through the glass and reaches the dielectric layer 20 on the inner surface of the airtight container 18 to evaporate it. By moving the irradiation position of this laser beam along a predetermined pattern, the band-shaped defective portion 26 is formed. Although the laser beam itself passes through the glass,
Due to the influence of the dielectric layer 20 that absorbs the laser beam and generates heat and melts, the inner surface of the airtight container 18 is melted and recessed, resulting
A recess 28 having a pattern corresponding to the defective portion 26 is formed at substantially the same time on a portion of the inner surface 18 corresponding to the defective portion 26.

【0023】この製造方法によれば、加熱温度や加熱時
間、あるいは排気速度等の条件、及び各部材を構成する
材料の溶融温度や分解温度あるいは酸化速度等を適宜選
定し、最適条件を設定することにより、特別な材料や工
程を用意することなく、誘電体層20及び補助放電電極22
を形成することができ、製造の簡易化が図れる。その反
面、上記補助放電電極22の形成に際し、補助放電電極22
の材料となる金属粒30が不可避的に誘電体層20中に埋没
・混入することとなるが、上記のようにリード線12,12
間を横切る欠損部26を形成しているため、リード線12,
12間の絶縁性を維持することができる。
According to this manufacturing method, conditions such as heating temperature, heating time, or exhaust speed, and melting temperature or decomposition temperature or oxidation rate of the material forming each member are appropriately selected and optimum conditions are set. This allows the dielectric layer 20 and the auxiliary discharge electrode 22 to be prepared without preparing any special material or process.
Can be formed, and the manufacturing can be simplified. On the other hand, in forming the auxiliary discharge electrode 22, the auxiliary discharge electrode 22
The metal particles 30, which are the material of, are inevitably buried and mixed in the dielectric layer 20, but as described above, the lead wires 12, 12
Since the defect portion 26 that crosses the gap is formed, the lead wire 12,
The insulation between the 12 can be maintained.

【0024】また、この欠損部26が微小間隙を形成する
こととなり、結果的にさらなる対サージ応答性能の向上
をもたらす効果も生じる。すなわち、誘電体層20の内部
に導電性の金属粒30が混入する結果、誘電体層20自体は
ある程度の導電性を帯びることとなるため、サージ印加
時には欠損部26(微小間隙)における電界強度が極めて
高くなり、多量の電子やイオンが放出される。そして、
これがトリガとして機能するため、補助放電間隙24にお
ける気中放電の早期生成、ひいては放電間隙16における
アーク放電の早期生成が実現されることとなる。
Further, the defective portion 26 forms a minute gap, and as a result, the effect of further improving the surge response performance is produced. That is, since the conductive metal particles 30 are mixed in the dielectric layer 20, the dielectric layer 20 itself becomes conductive to some extent, and therefore the electric field strength in the defect portion 26 (small gap) at the time of applying a surge. Becomes extremely high, and a large amount of electrons and ions are emitted. And
Since this functions as a trigger, the early generation of the air discharge in the auxiliary discharge gap 24 and the early generation of the arc discharge in the discharge gap 16 are realized.

【0025】さらに、気密容器18内面における、上記欠
損部26に対応した部分に凹部28が形成され、その分リー
ド線12,12間の沿面距離が長くなる結果、繰り返しサー
ジ印加に対する寿命特性の向上も図れる。
Further, a concave portion 28 is formed in a portion of the inner surface of the airtight container 18 corresponding to the defective portion 26, and the creepage distance between the lead wires 12 and 12 is increased by that much, resulting in improvement of life characteristics against repeated surge application. Can be achieved.

【0026】なお、上記欠損部26は必ずしもレーザー光
線の照射によって形成する必要はなく、切削や食刻等の
手段を用いて誘電体層20の一部を除去することによって
も形成できる。また、欠損部26は少なくともリード線1
2,12間に介在されれば足り、必ずしも図1及び図2に
示す如き広範囲に亘って形成する必要はない。
The defective portion 26 does not necessarily have to be formed by irradiating a laser beam, but can be formed by removing a part of the dielectric layer 20 using a means such as cutting or etching. Further, the defective portion 26 is at least the lead wire 1.
It suffices if it is interposed between 2 and 12, and it is not always necessary to form it over a wide range as shown in FIGS. 1 and 2.

【0027】[0027]

【発明の効果】本発明に係る放電型サージ吸収素子にあ
っては、上記のように気密容器内面の少なくともリード
線間に、誘電体層の一部を除去して形成した欠損部を介
在させているため、例え補助放電電極形成時に誘電体層
内に金属粒が埋没・混入して誘電体層自体の絶縁抵抗が
低下しても、リード線間の絶縁性は維持される。したが
って、サージ印加時において、誘電体層の絶縁抵抗の低
下が原因でリード線間に沿面コロナ放電が持続してしま
い、結果として放電間隙にアーク放電を生成できないと
いう、従来技術が抱えていた問題を有効に解消できる。
As described above, in the discharge type surge absorbing element according to the present invention, the defective portion formed by removing a part of the dielectric layer is interposed at least between the lead wires on the inner surface of the hermetic container. Therefore, even if metal particles are buried and mixed in the dielectric layer at the time of forming the auxiliary discharge electrode and the insulation resistance of the dielectric layer itself is lowered, the insulation between the lead wires is maintained. Therefore, when a surge is applied, the creeping corona discharge is maintained between the lead wires due to the decrease in the insulation resistance of the dielectric layer, and as a result, arc discharge cannot be generated in the discharge gap, which is a problem that the conventional technology has. Can be effectively resolved.

【0028】また、本発明に係る放電型サージ吸収素子
の製造方法によれば、ガラス管等を封止して気密容器を
形成した後に、外部からレーザー光線を照射して上記気
密容器内面に形成された誘電体層の一部を蒸発させるよ
う構成したため、上記欠損部を極めて容易に形成するこ
とができ、特に、既存の放電型サージ吸収素子に対して
も欠損部の形成が可能であり、ストックの有効活用に寄
与できる。
Further, according to the method of manufacturing a discharge type surge absorber of the present invention, after forming a hermetic container by sealing a glass tube or the like, a laser beam is irradiated from the outside to form on the inner surface of the hermetic container. Since it is configured to evaporate a part of the dielectric layer, it is possible to form the defect portion very easily, and particularly, it is possible to form the defect portion even for the existing discharge type surge absorbing element. Can contribute to effective utilization of.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る放電型サージ吸収素子の一実施例
を示す縦断面図である。
FIG. 1 is a vertical sectional view showing an embodiment of a discharge type surge absorber according to the present invention.

【図2】図1のA−A断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】上記放電型サージ吸収素子のリード線間を示す
拡大図である。
FIG. 3 is an enlarged view showing a space between lead wires of the discharge type surge absorber.

【図4】従来の放電型サージ吸収素子を示す縦断面図で
ある。
FIG. 4 is a vertical sectional view showing a conventional discharge type surge absorber.

【図5】従来の放電型サージ吸収素子のリード線間を示
す拡大図である。
FIG. 5 is an enlarged view showing a space between lead wires of a conventional discharge type surge absorbing element.

【符号の説明】[Explanation of symbols]

10 放電型サージ吸収素子 12 リード線 14 放電電極 16 放電間隙 18 気密容器 20 誘電体層 22 補助放電電極 24 補助放電間隙 26 欠損部 28 凹部 10 Discharge type surge absorber 12 Lead wire 14 Discharge electrode 16 Discharge gap 18 Airtight container 20 Dielectric layer 22 Auxiliary discharge electrode 24 Auxiliary discharge gap 26 Defect 28 Depression

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 放電ガスを充填した気密容器内に、リー
ド線を接続した複数本の放電電極を対向配置して各放電
電極間に放電間隙を形成し、各放電電極のリード線を上
記気密容器の外部に導出すると共に、上記気密容器内面
の少なくとも上記リード線間に沿面放電特性が良好な誘
電体層を形成し、該誘電体層の少なくとも表面に、該気
密容器内に収納された部材を構成している金属を材料と
して形成した多数の補助放電電極を散点状に配置して、
上記放電間隙よりも狭小な補助放電間隙を上記リード線
間に形成して成る放電型サージ吸収素子において、上記
気密容器内面の少なくとも上記リード線間に、上記誘電
体層の一部を除去して成る欠損部を介在させたことを特
徴とする放電型サージ吸収素子。
1. A plurality of discharge electrodes connected to lead wires are arranged to face each other in an airtight container filled with a discharge gas to form a discharge gap between the discharge electrodes, and the lead wires of each discharge electrode are hermetically sealed. A member housed in the airtight container, which is led out to the outside of the container, forms a dielectric layer having good creeping discharge characteristics between at least the lead wires on the inner surface of the airtight container, and at least the surface of the dielectric layer. A large number of auxiliary discharge electrodes formed by using the metal forming the
In a discharge-type surge absorbing element, wherein an auxiliary discharge gap smaller than the discharge gap is formed between the lead wires, a part of the dielectric layer is removed at least between the lead wires on the inner surface of the hermetic container. Discharge type surge absorbing element, characterized in that a defective portion is interposed.
【請求項2】 上記気密容器内面における上記欠損部に
対応する部分を、凹部と成したことを特徴とする請求項
1に記載の放電型サージ吸収素子。
2. The discharge type surge absorber according to claim 1, wherein a portion of the inner surface of the airtight container corresponding to the defective portion is a recess.
【請求項3】 上記欠損部が、上記リード線間を横切る
幅50〜300μmの帯状に形成されたことを特徴とす
る請求項1または2に記載の放電型サージ吸収素子。
3. The discharge type surge absorber according to claim 1, wherein the defective portion is formed in a band shape having a width of 50 to 300 μm that crosses between the lead wires.
【請求項4】 放電ガスを充填した気密容器内に、リー
ド線を接続した複数本の放電電極を対向配置して各放電
電極間に放電間隙を形成し、各放電電極のリード線を上
記気密容器の外部に導出すると共に、上記気密容器内面
の少なくとも上記リード線間に沿面放電特性が良好な誘
電体層を形成し、該誘電体層の少なくとも表面に、該気
密容器内に収納された部材を構成している金属を材料と
して形成した多数の補助放電電極を散点状に配置して、
上記放電間隙よりも狭小な補助放電間隙を上記リード線
間に形成し、さらに上記気密容器内面の少なくとも上記
リード線間に、上記誘電体層の一部を除去して形成した
欠損部を介在させて成る放電型サージ吸収素子の製造方
法であって、上記気密容器をガラスによって構成すると
共に、該気密容器の外部からレーザー光線を照射して気
密容器内面に形成された上記誘電体層の一部を蒸発さ
せ、以って上記欠損部を形成することを特徴とする放電
型サージ吸収素子の製造方法。
4. A plurality of discharge electrodes connected to lead wires are arranged to face each other in an airtight container filled with discharge gas to form a discharge gap between the discharge electrodes, and the lead wires of each discharge electrode are hermetically sealed. A member housed in the airtight container, which is led out to the outside of the container, forms a dielectric layer having good creeping discharge characteristics between at least the lead wires on the inner surface of the airtight container, and at least the surface of the dielectric layer. A large number of auxiliary discharge electrodes formed by using the metal forming the
An auxiliary discharge gap smaller than the discharge gap is formed between the lead wires, and a defect formed by removing a part of the dielectric layer is interposed between at least the lead wires on the inner surface of the airtight container. A method of manufacturing a discharge type surge absorbing element comprising: a hermetic container made of glass, and a part of the dielectric layer formed on the inner surface of the hermetic container by irradiating a laser beam from the outside of the hermetic container. A method of manufacturing a discharge type surge absorbing element, characterized in that the defect portion is formed by evaporation.
JP6169942A 1994-06-29 1994-06-29 Method of manufacturing discharge type surge absorbing element Expired - Fee Related JP2745386B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6169942A JP2745386B2 (en) 1994-06-29 1994-06-29 Method of manufacturing discharge type surge absorbing element
DE19523338A DE19523338A1 (en) 1994-06-29 1995-06-27 Discharge type overvoltage protection device for protection of electronic circuits
CN95107780A CN1046600C (en) 1994-06-29 1995-06-28 Electric discharge type for surge absorption element and manufacturing method for the same
US08/496,363 US5694284A (en) 1994-06-29 1995-06-29 Discharge type surge absorbing element and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6169942A JP2745386B2 (en) 1994-06-29 1994-06-29 Method of manufacturing discharge type surge absorbing element

Publications (2)

Publication Number Publication Date
JPH0817548A true JPH0817548A (en) 1996-01-19
JP2745386B2 JP2745386B2 (en) 1998-04-28

Family

ID=15895760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6169942A Expired - Fee Related JP2745386B2 (en) 1994-06-29 1994-06-29 Method of manufacturing discharge type surge absorbing element

Country Status (1)

Country Link
JP (1) JP2745386B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010095019A (en) * 2000-03-30 2001-11-03 오무라 쇼지로우 Protector device
US8238069B2 (en) 2008-02-05 2012-08-07 Murata Manufacturing Co., Ltd. ESD protection device
US8437114B2 (en) 2008-11-26 2013-05-07 Murata Manufacturing Co., Ltd. ESD Protection Device
US8717730B2 (en) 2010-05-20 2014-05-06 Murata Manufacturing Co., Ltd. ESD protection device and method for producing the same
US8760830B2 (en) 2010-05-20 2014-06-24 Murata Manufacturing Co., Ltd. ESD protection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54102555A (en) * 1978-01-31 1979-08-13 Nippon Telegr & Teleph Corp <Ntt> Lightning arresting tube
JPS58198884A (en) * 1982-05-14 1983-11-18 三菱鉱業セメント株式会社 Surge absorbing element
JPH057836A (en) * 1991-07-03 1993-01-19 Material Sci Kk Metal product provided with protective coating

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54102555A (en) * 1978-01-31 1979-08-13 Nippon Telegr & Teleph Corp <Ntt> Lightning arresting tube
JPS58198884A (en) * 1982-05-14 1983-11-18 三菱鉱業セメント株式会社 Surge absorbing element
JPH057836A (en) * 1991-07-03 1993-01-19 Material Sci Kk Metal product provided with protective coating

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010095019A (en) * 2000-03-30 2001-11-03 오무라 쇼지로우 Protector device
US8238069B2 (en) 2008-02-05 2012-08-07 Murata Manufacturing Co., Ltd. ESD protection device
US8437114B2 (en) 2008-11-26 2013-05-07 Murata Manufacturing Co., Ltd. ESD Protection Device
US8717730B2 (en) 2010-05-20 2014-05-06 Murata Manufacturing Co., Ltd. ESD protection device and method for producing the same
US8760830B2 (en) 2010-05-20 2014-06-24 Murata Manufacturing Co., Ltd. ESD protection device

Also Published As

Publication number Publication date
JP2745386B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
JP2648320B2 (en) How to make a fuse
JPH0817548A (en) Discharge type guide absorbing device and manufacture thereof
JPH02278681A (en) Electronic device
JP2819388B2 (en) Discharge type surge absorbing element and method of manufacturing the same
EP0677862B1 (en) Circuit protectors
US5694284A (en) Discharge type surge absorbing element and method for making the same
JP3668391B2 (en) Arc tube for discharge lamp device and manufacturing method thereof
JPH01311585A (en) Discharge type surge absorbing element
KR100723572B1 (en) Chip type surge absorber and method of manufacturing the same
JPH08138828A (en) Manufacture of discharge type surge absorbing element and discharge type surge absorbing element
JPH057836B2 (en)
CN108305822B (en) Gas discharge tube, overvoltage protection device, and method for manufacturing gas discharge tube
JPH08111131A (en) Manufacture of contact for vacuum circuit breaker
US3147361A (en) Vacuum tight joint and method of making such joint
US1983743A (en) Electric discharge tube
JP2534954B2 (en) Discharge type surge absorber and method for manufacturing the same
JP2701052B2 (en) Surge absorbing element
JPH054230Y2 (en)
JP3405761B2 (en) Vacuum circuit breaker and manufacturing method thereof
KR19990063033A (en) Fluorescent lamp, manufacturing method of fluorescent lamp and fluorescent lamp device
JP2022138781A (en) Surge protection element and manufacturing method thereof
JPH0536460A (en) Discharge type surge absorbing element
JP3963143B2 (en) Fluorescent lamp
KR100462774B1 (en) Manufacturing method of stem in mount
JPS63141226A (en) Vacuum valve

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees