JPH0817452A - Flat plate type fuel cell - Google Patents

Flat plate type fuel cell

Info

Publication number
JPH0817452A
JPH0817452A JP6147327A JP14732794A JPH0817452A JP H0817452 A JPH0817452 A JP H0817452A JP 6147327 A JP6147327 A JP 6147327A JP 14732794 A JP14732794 A JP 14732794A JP H0817452 A JPH0817452 A JP H0817452A
Authority
JP
Japan
Prior art keywords
air
fuel
flat plate
fuel cell
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6147327A
Other languages
Japanese (ja)
Inventor
Fumio Umemura
文夫 梅村
Koji Amano
耕治 天野
Atsushi Kimura
敦 木村
Kenichiro Kosaka
健一郎 小阪
Seiji Takatsuki
誠治 高月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP6147327A priority Critical patent/JPH0817452A/en
Publication of JPH0817452A publication Critical patent/JPH0817452A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a solid electrolyte fuel cell of flat plate type which prevents decreasing an output by providing distribution in supplying air and uniformizing oxygen consumption rate in each part of each cell. CONSTITUTION:A fuel cell has a cell structure of flat plate type arranging a fuel electrode 12 and an air electrode 13 respectively in both surfaces of a solid electrolyte 11 also arranging an interconnector 15, having a flow path 17 as a fluid supply groove of supplying a fluid to these electrodes, respectively in surfaces of these electrodes, to place supplying fuel and air orthogonal to each other. Air, supplied to the interconnector 15 on the air electrode 13 side, is supplied so as to gradually decrease toward the downstream in a flow direction of fuel flowing in a direction orthogonal to the air.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は空気の供給に分布を持た
せて各セル各部において酸素消費率を均一化させ、出力
の低下を防止する平板型の固体電解質燃料電池(SOF
C:Solid Oxide Fuel Cell )に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat plate type solid electrolyte fuel cell (SOF) which has a distribution of air supply to make the oxygen consumption rate uniform in each cell and to prevent the output from decreasing.
C: Solid Oxide Fuel Cell).

【0002】[0002]

【従来の技術】図5に従来の固体電解質(例えば「イッ
トリア安定化ジルコニア(YSZ)」等)を用いた平板
型燃料電池の一例を示す。同図に示すように、固体電解
質11の両面にはそれぞれ燃料極(例えば、Ni/YS
Zサーメット材料等)12と、空気極(例えば、LaS
rMnO3 系材料等)13とを接着させてセルプレート
14を構成し、更にその両面にインタコネクタ(例え
ば、LaMgCrO3 系材料あるいは耐熱合金等)15
を挟み重ねて接合体16を構成している。 このインタ
コネクタ15には、燃料(H2 )又は空気(酸素:
2 )等の流体供給用の溝状の燃料及び空気の流路17
が複数形成されており、ガス又は空気が溝方向に各々流
れるようになっている。
2. Description of the Related Art FIG. 5 shows an example of a flat plate type fuel cell using a conventional solid electrolyte (eg, "yttria-stabilized zirconia (YSZ)"). As shown in the figure, a fuel electrode (for example, Ni / YS) is formed on each side of the solid electrolyte 11.
Z cermet material, etc. 12 and an air electrode (for example, LaS)
rMnO 3 based material, etc.) 13 to form a cell plate 14, and interconnectors (eg, LaMgCrO 3 based material or heat resistant alloy) 15 on both sides thereof.
Are sandwiched and stacked to form a bonded body 16. The interconnector 15 has fuel (H 2 ) or air (oxygen:
Groove-shaped fuel and air flow path 17 for supplying fluid such as O 2 ).
Are formed in plurality, and gas or air flows in the groove direction.

【0003】また、該インタコネクタ15は、セル14
から電流を取り出すと共に、接合体16を積層し燃料電
池スタックを構成する場合に、上下の接合体16同士を
電気的に接続し、燃料及び空気の混合を防止している。
The interconnector 15 is a cell 14
When a fuel cell stack is formed by stacking the joined bodies 16 while taking out current from the above, the upper and lower joined bodies 16 are electrically connected to each other to prevent mixing of fuel and air.

【0004】図6に平板型燃料電池スタックの基本構造
の斜視図を示す。同図に示すように、一般にはインタコ
ネクタ15に形成されている燃料(H2)又は空気(酸
素:O2 )等の流体を供給するための各流路17は、そ
れぞれ直交するように形成されており、燃料及び空気の
供給・排気を効率よく行うようにしている。
FIG. 6 shows a perspective view of the basic structure of a flat plate type fuel cell stack. As shown in the figure, generally, the flow paths 17 for supplying a fluid such as fuel (H 2 ) or air (oxygen: O 2 ) formed in the interconnector 15 are formed so as to be orthogonal to each other. Therefore, fuel and air are efficiently supplied and exhausted.

【0005】[0005]

【発明が解決しようとする課題】ところで、燃料電池の
運転時にはその発電によって燃料及び空気を消費するた
め、燃料及び空気の各成分は流路内の流れ方向に分圧の
分布を有する。このことは、図7に示す平板型燃料電池
の運転状態でのシュミレーション解析による空気側流路
内の酸素分圧の計算による分圧分布図からも明らかであ
る。
By the way, when the fuel cell is in operation, fuel and air are consumed by its power generation, so that each component of fuel and air has a partial pressure distribution in the flow direction in the flow path. This is also apparent from the partial pressure distribution chart shown in FIG. 7, which is obtained by calculating the oxygen partial pressure in the air side flow passage by the simulation analysis in the operating state of the flat plate fuel cell.

【0006】また、セルの起電力は燃料ガスの分圧が高
いほど大きくなるので、燃料入口付近では電流密度が高
くなり(図8参照)、従って燃料入口近傍の空気側での
酸素消費率が大きくなり、図6に示すような従来のスタ
ックの構造においては、セル面に均一に空気を供給して
いるので、燃料入口近傍での電流密度の高い部分では多
くの酸素が消費されることとなるが、一方の燃料出口近
傍での電流密度の低い部分では酸素がほとんど消費され
ず、出力の低下が発生するという問題がある。
Further, since the electromotive force of the cell increases as the partial pressure of the fuel gas increases, the current density increases near the fuel inlet (see FIG. 8). Therefore, the oxygen consumption rate on the air side near the fuel inlet increases. In the conventional stack structure as shown in FIG. 6, since air is uniformly supplied to the cell surface, a large amount of oxygen is consumed near the fuel inlet where the current density is high. However, there is a problem in that oxygen is scarcely consumed in the portion where the current density is low near one of the fuel outlets, resulting in a decrease in output.

【0007】本発明は上記問題に鑑み、各セル各部にお
いて酸素消費率を均一化させ、出力の低下を防止する平
板型の固体電解質燃料電池を提供することを目的とす
る。
In view of the above problems, it is an object of the present invention to provide a flat plate type solid electrolyte fuel cell in which the oxygen consumption rate is made uniform in each part of each cell and the decrease in output is prevented.

【0008】[0008]

【課題を解決するための手段】前記目的を達成する本発
明に係る平板型燃料電池は、固体電解質の両面に燃料極
及び空気極を各々配すると共に、これら電極に流体を供
給する流体供給溝を有するインタコネクタを当該電極の
表面に各々配設してなり、燃料及び空気の供給が互いに
直交する平板型セル構造を有する燃料電池において、上
記インタコネクタに供給する空気の供給を、空気と直交
する方向に流れる燃料の流れ方向下流に向かって漸次減
少するようにしてなることを特徴とする。
A flat plate fuel cell according to the present invention which achieves the above object has a fuel electrode and an air electrode on both surfaces of a solid electrolyte, and a fluid supply groove for supplying a fluid to these electrodes. In a fuel cell having a flat plate type cell structure in which the interconnectors having the above are respectively disposed on the surfaces of the electrodes, and the supply of fuel and air are orthogonal to each other, the supply of air to the interconnector is orthogonal to the air. It is characterized in that the fuel gradually decreases toward the downstream side in the flow direction of the fuel flowing in the direction.

【0009】また、上記平板型燃料電池の構成におい
て、上記インタコネクタに形成された流体供給溝の各開
口部に対する空気の供給を、空気と直交する方向に流れ
る燃料の流れ方向下流に向かって漸次減少するよう閉塞
する絞り部材を設けてなることを特徴とする。
Further, in the structure of the flat plate fuel cell, the supply of air to each opening of the fluid supply groove formed in the interconnector is gradually made downstream in the flow direction of the fuel flowing in the direction orthogonal to the air. It is characterized in that a diaphragm member that closes so as to decrease is provided.

【0010】[0010]

【作用】本発明の概念を示す図1に示すように、燃料の
供給と空気の供給とを直交させて導入する場合、燃料入
口近傍により多くの空気を流すことにより、セル各部で
の酸素消費率を均一化し、酸素不足による出力の低下を
防止する。
As shown in FIG. 1 showing the concept of the present invention, when the fuel supply and the air supply are introduced orthogonally to each other, more air is made to flow in the vicinity of the fuel inlet, so that oxygen consumption in each part of the cell is increased. The rate is made uniform, and the decrease in output due to lack of oxygen is prevented.

【0011】[0011]

【実施例】以下、本発明に係るセル構造の好適な実施例
を図面を参照して詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the cell structure according to the present invention will be described below in detail with reference to the drawings.

【0012】(第1実施例)図2は本発明の第1の実施
例の概略を示す。同図に示すように、固体電解質11の
両面にはそれぞれ燃料極(例えば、Ni/YSZサーメ
ット材料等)12と、空気極(例えば、LaSrMnO
3 系材料等)13とを接着させてセルプレート14を構
成し、更にその両面にインタコネクタ(例えば、LaM
gCrO3 系材料あるいは耐熱合金等)15を挟み重ね
て接合体16を構成している。
(First Embodiment) FIG. 2 shows an outline of a first embodiment of the present invention. As shown in the figure, the solid electrolyte 11 is provided on both sides with a fuel electrode (for example, Ni / YSZ cermet material) 12 and an air electrode (for example, LaSrMnO 2).
A cell plate 14 is formed by adhering the same to a 3 type material etc. 13 and interconnectors (eg LaM
The bonded body 16 is formed by sandwiching and sandwiching a gCrO 3 system material or a heat-resistant alloy) 15.

【0013】このインタコネクタ15には、燃料
(H2 )又は空気(酸素:O2 )等の流体供給用の溝状
の燃料及び空気の流路17が複数形成されており、ガス
又は空気が各々直行するように溝方向に流れるようにな
っている。
The interconnector 15 is provided with a plurality of groove-shaped fuel and air passages 17 for supplying a fluid such as fuel (H 2 ) or air (oxygen: O 2 ). Each of them flows in the groove direction so as to go straight.

【0014】上記空気極13側のインタコネクタ15に
形成された流体供給溝である流路17の入口側には、空
気の流れる方向(Y方向)と直交する方向に流れる燃料
の流れ方向(X方向)の下流に向かって該空気の供給を
漸次減少するようなくさび型の絞り部材21を設けてお
り、各流路17の開口部から流入する空気の量を燃料の
流れ方向(X方向)の下流に向かって、減少させるよう
にしている。
At the inlet side of the flow path 17 which is a fluid supply groove formed in the interconnector 15 on the side of the air electrode 13, the flow direction (X) of the fuel flowing in the direction orthogonal to the flow direction of the air (Y direction) (X Direction), a wedge-shaped throttle member 21 is provided so as to gradually reduce the supply of the air, and the amount of air flowing in from the opening of each flow path 17 is determined by the flow direction of the fuel (X direction). We are trying to reduce it toward the downstream.

【0015】この結果、燃料入口近傍において、より多
くの空気を流すことができ、図7及び図8において示し
たように、燃料入口付近の電流密度が高くなって、燃料
入口近傍の空気側での酸素消費率が大きくなっても、燃
料入口側において空気の供給を過剰としているので、各
セル面において酸素の消費率を均一化させることがで
き、酸素不足による出力の低下を防止する。
As a result, a larger amount of air can be made to flow in the vicinity of the fuel inlet, and as shown in FIGS. 7 and 8, the current density in the vicinity of the fuel inlet becomes higher and the air side in the vicinity of the fuel inlet becomes closer. Even if the oxygen consumption rate is high, since the air is excessively supplied on the fuel inlet side, it is possible to make the oxygen consumption rate uniform in each cell surface and prevent the output from decreasing due to insufficient oxygen.

【0016】(第2実施例)図3は本発明の第2の実施
例を示し、(A)はその平面図、(B)はその正面図を
各々示す。本実施例においては、空気極13側のインタ
コネクタ15に形成された流体供給溝である流路17の
入口側の個々の開口部内には、空気の流れる方向(Y方
向)と直交する方向に流れる燃料の流れ方向(X方向)
の下流に向かって該空気の供給を漸次減少するように、
漸次その大きさを増大させた絞り部材22を各々設けて
おり、各流路17の開口部から流入する空気の量を燃料
の流れ方向(X方向)の下流に向かって、減少させるよ
うにしている。なお、図中符号18は集電部を図示す
る。
(Second Embodiment) FIG. 3 shows a second embodiment of the present invention, (A) is a plan view thereof, and (B) is a front view thereof. In the present embodiment, the inside of each opening on the inlet side of the flow path 17, which is a fluid supply groove formed in the interconnector 15 on the air electrode 13 side, extends in a direction orthogonal to the air flowing direction (Y direction). Flow direction of flowing fuel (X direction)
To gradually reduce the supply of air toward the downstream of
The throttle members 22 each having a gradually increasing size are provided so that the amount of air flowing in from the opening of each flow passage 17 is decreased toward the downstream side in the fuel flow direction (X direction). There is. Reference numeral 18 in the figure indicates a current collector.

【0017】(第3実施例)図4は本発明の第3の実施
例を示す。本実施例においては、インタコネクタ15に
形成された流路17が燃料の供給と空気の供給とを直交
させて導入するものにおいて、空気極13側のインタコ
ネクタ15に形成された流路17の入口側には、該流路
17の開口部に沿って空気導入通路23を設け、該通路
23に供給する空気の導入は燃料の流れる方向(X方
向)と同方向から行い、各流路17の開口部内に流入す
る空気の量を、その静圧差により燃料の流れ方向(X方
向)の下流に向かって漸次減少させるようにして、燃料
入口近傍の流路17内には多量の空気を供給させるよう
にしている。これにより、スリットにより生じる流量の
アンバランスにより、セル面内の酸素分圧のアンバラン
スを解消することが出来る。
(Third Embodiment) FIG. 4 shows a third embodiment of the present invention. In this embodiment, in the case where the flow passage 17 formed in the interconnector 15 introduces the fuel supply and the air supply orthogonally, the flow passage 17 formed in the interconnector 15 on the air electrode 13 side is An air introduction passage 23 is provided on the inlet side along the opening of the flow passage 17, and the air supplied to the passage 23 is introduced in the same direction as the fuel flow direction (X direction). A large amount of air is supplied into the flow passage 17 near the fuel inlet by gradually reducing the amount of air flowing into the opening of the fuel tank toward the downstream side in the fuel flow direction (X direction) due to the difference in static pressure. I am trying to let you. As a result, it is possible to eliminate the imbalance of the oxygen partial pressure in the cell surface due to the imbalance of the flow rate generated by the slit.

【0018】なお、本実施例においては、空気の導入を
阻害する絞り部材や静圧差による空気導入通路を形成す
ることで、燃料入口近傍と燃料出口近傍との空気の供給
量を、空気と直交する方向に流れる燃料の流れ方向下流
に向かって漸次減少するようにしたが、本発明はこれに
限定されるものではなく、例えば空気を供給する通路の
幅を漸次狭くしたりする等してもよい。
In the present embodiment, the throttle member that inhibits the introduction of air and the air introduction passage due to the static pressure difference are formed so that the amount of air supplied between the fuel inlet and the fuel outlet is orthogonal to the air. Although the fuel is gradually reduced toward the downstream side in the flow direction, the present invention is not limited to this. For example, the width of the air supply passage may be gradually narrowed. Good.

【0019】[0019]

【発明の効果】以上、実施例と共に述べたように、燃料
の供給と空気の供給とを直交させて導入する際、燃料入
口近傍により多くの空気を流すことにより、スリットに
より生じる流量のアンバランスにより、セル面内の酸素
分圧のアンバランスを解消することができその結果セル
各部での酸素消費を均一化し、酸素不足による出力の低
下を防止する。
As described above in connection with the embodiments, when introducing the fuel supply and the air supply in a direction orthogonal to each other, by causing more air to flow in the vicinity of the fuel inlet, the flow rate imbalance caused by the slit is unbalanced. As a result, it is possible to eliminate the imbalance of the oxygen partial pressure in the cell surface, and as a result, the oxygen consumption in each part of the cell is made uniform and the decrease in output due to lack of oxygen is prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の平板型燃料電池の概念図である。FIG. 1 is a conceptual diagram of a flat plate type fuel cell of the present invention.

【図2】実施例1の平板型燃料電池の斜視図である。FIG. 2 is a perspective view of the flat-plate fuel cell of Example 1.

【図3】実施例2の概略図である。FIG. 3 is a schematic diagram of a second embodiment.

【図4】実施例3の概略図である。FIG. 4 is a schematic diagram of Example 3.

【図5】平板型燃料電池の基本構造図である。FIG. 5 is a basic structural diagram of a flat plate fuel cell.

【図6】平板型燃料電池の基本構造の斜視図である。FIG. 6 is a perspective view of the basic structure of a flat plate fuel cell.

【図7】平板型燃料電池の運転時の空気流路内酸素分圧
分布図である。
FIG. 7 is a distribution diagram of oxygen partial pressure in the air flow passage during operation of the flat plate fuel cell.

【図8】平板型燃料電池の運転時のセル面内電流密度分
布図である。
FIG. 8 is a cell plane current density distribution diagram during operation of the flat plate fuel cell.

【符号の説明】[Explanation of symbols]

11 固体電解質(例えば、YSZ等) 12 燃料極(例えば、Ni/YSZサーメット材料
等) 13 空気極(例えば、LaSrMnO3 系材料等) 14 セルプレート 15 インタコネクタ(LaMgCrO3 系材料あるい
は耐熱合金等) 16 空気通路 17 流路 18 集電部 21,22 絞り部材 23 空気導入通路
11 solid electrolyte (for example, YSZ etc.) 12 fuel electrode (for example, Ni / YSZ cermet material etc.) 13 air electrode (for example, LaSrMnO 3 system material etc.) 14 cell plate 15 interconnector (LaMgCrO 3 system material or heat resistant alloy etc.) 16 air passages 17 flow passages 18 current collectors 21, 22 throttle members 23 air introduction passages

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木村 敦 東京都千代田区内幸町1丁目1番3号 東 京電力株式会社内 (72)発明者 小阪 健一郎 長崎県長崎市深堀町五丁目717番1号 三 菱重工業株式会社長崎研究所内 (72)発明者 高月 誠治 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Atsushi Kimura 1-3-1, Uchisaiwaicho, Chiyoda-ku, Tokyo Within Tokyo Electric Power Company (72) Kenichiro Kosaka 5-717-1, Fukahori-cho, Nagasaki-shi, Nagasaki Sanryo Heavy Industries Co., Ltd. Nagasaki Research Institute (72) Inventor Seiji Takatsuki 1-1, Atsunoura-machi, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質の両面に燃料極及び空気極を
各々配すると共に、これら電極に流体を供給する流体供
給溝を有するインタコネクタを当該電極の表面に各々配
設してなり、燃料及び空気の供給が互いに直交する平板
型セル構造を有する燃料電池において、上記インタコネ
クタに供給する空気の供給を、空気と直交する方向に流
れる燃料の流れ方向下流に向かって漸次減少するように
してなることを特徴とする平板型燃料電池。
1. A fuel electrode and an air electrode are arranged on both sides of a solid electrolyte, and interconnectors having fluid supply grooves for supplying fluid to these electrodes are arranged on the surfaces of the electrodes, respectively. In a fuel cell having a flat-plate cell structure in which air supplies are orthogonal to each other, the supply of air to be supplied to the interconnector is gradually reduced toward a downstream side in a flow direction of fuel flowing in a direction orthogonal to the air. A flat plate fuel cell characterized by the above.
【請求項2】 請求項1記載の平板型燃料電池におい
て、上記インタコネクタに形成された流体供給溝の各開
口部に対する空気の供給を、空気と直交する方向に流れ
る燃料の流れ方向下流に向かって漸次減少するよう閉塞
する絞り部材を設けてなることを特徴とする平板型燃料
電池。
2. The flat plate type fuel cell according to claim 1, wherein air is supplied to each opening of the fluid supply groove formed in the interconnector toward a downstream side in a flow direction of fuel flowing in a direction orthogonal to the air. The flat plate fuel cell is characterized in that it is provided with a throttle member that closes so as to gradually decrease.
JP6147327A 1994-06-29 1994-06-29 Flat plate type fuel cell Pending JPH0817452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6147327A JPH0817452A (en) 1994-06-29 1994-06-29 Flat plate type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6147327A JPH0817452A (en) 1994-06-29 1994-06-29 Flat plate type fuel cell

Publications (1)

Publication Number Publication Date
JPH0817452A true JPH0817452A (en) 1996-01-19

Family

ID=15427681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6147327A Pending JPH0817452A (en) 1994-06-29 1994-06-29 Flat plate type fuel cell

Country Status (1)

Country Link
JP (1) JPH0817452A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208417A (en) * 2001-01-10 2002-07-26 Tokyo Gas Co Ltd Supply method of air and fuel for flat plate type solid electrolyte fuel cell
JP2009080965A (en) * 2007-09-25 2009-04-16 Toshiba Corp Fuel cell
JP2010272541A (en) * 2010-08-06 2010-12-02 Toyota Motor Corp Fuel cell
JP2019053925A (en) * 2017-09-15 2019-04-04 日本特殊陶業株式会社 Fuel cell stack

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002208417A (en) * 2001-01-10 2002-07-26 Tokyo Gas Co Ltd Supply method of air and fuel for flat plate type solid electrolyte fuel cell
JP4485075B2 (en) * 2001-01-10 2010-06-16 東京瓦斯株式会社 Air and fuel supply method in flat plate type SOFC
JP2009080965A (en) * 2007-09-25 2009-04-16 Toshiba Corp Fuel cell
US8877405B2 (en) 2007-09-25 2014-11-04 Kabushiki Kaisha Toshiba Fuel cell including membrane electrode assembly to maintain humidity condition
JP2010272541A (en) * 2010-08-06 2010-12-02 Toyota Motor Corp Fuel cell
JP2019053925A (en) * 2017-09-15 2019-04-04 日本特殊陶業株式会社 Fuel cell stack

Similar Documents

Publication Publication Date Title
CN109904484B (en) Fuel cell bipolar plate structure and fuel cell
JP2002260710A (en) Solid polymer cell assembly, fuel cell stack and supply method of reactive gas for fuel cell
JPH04292865A (en) Solid electrolytic fuel cell
JPH10172594A (en) Method and device for distributing introduced gas to solid electrolyte fuel cell of flat plate type
JP3971969B2 (en) Polymer electrolyte fuel cell
US7618735B2 (en) Fuel cell with triangular buffers
EP1378955A2 (en) Fuel cell
JPS61256568A (en) Fuel cell
GB2413002A (en) Fuel cell gas distribution
JP2000090947A (en) Fuel cell
JPH03266365A (en) Separator of solid electrolytic type fuel cell
JPH1126007A (en) Fuel cell
JPH05159790A (en) Solid electrolyte fuel cell
JPH03276569A (en) Fuel cell
JPH0817452A (en) Flat plate type fuel cell
JP2005347107A (en) Redox flow battery cell and redox flow battery
JPS63119166A (en) Fuel battery
US8338047B2 (en) Solid oxide fuel cell
JP2003208909A (en) Fuel cell
JP3219600B2 (en) Solid oxide fuel cell
JP2009054290A (en) Fuel cell system
JP2982559B2 (en) Fuel cell
JP2005268151A (en) Fuel cell
JP2002100380A (en) Fuel cell and fuel cell stack
JP4899387B2 (en) Solid oxide fuel cell

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030311