JPH08173983A - Method and apparatus for fluidized bed type wastewater treatment - Google Patents

Method and apparatus for fluidized bed type wastewater treatment

Info

Publication number
JPH08173983A
JPH08173983A JP33598794A JP33598794A JPH08173983A JP H08173983 A JPH08173983 A JP H08173983A JP 33598794 A JP33598794 A JP 33598794A JP 33598794 A JP33598794 A JP 33598794A JP H08173983 A JPH08173983 A JP H08173983A
Authority
JP
Japan
Prior art keywords
carrier
oxygen
enriched air
wastewater treatment
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33598794A
Other languages
Japanese (ja)
Other versions
JP3455597B2 (en
Inventor
Yoshiharu Sakata
芳治 坂田
Kazuyoshi Honda
一好 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Engineering Co Ltd
Original Assignee
Showa Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Engineering Co Ltd filed Critical Showa Engineering Co Ltd
Priority to JP33598794A priority Critical patent/JP3455597B2/en
Publication of JPH08173983A publication Critical patent/JPH08173983A/en
Application granted granted Critical
Publication of JP3455597B2 publication Critical patent/JP3455597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE: To utilize the merit of an oxygen enriched air aeration method and to attain downsizing and energy saving by fluidizing a microorganism sticking use carrier with real specific gravity within a specified range and surface- aerating using oxygen-enriched air in a closed type treatment tank. CONSTITUTION: Raw wastewater is supplied from a raw wastewater supply port 4 to a closed type aeration tank 1 packed with a microorganism sticking use carrier 10, and a surface aerator 2 and an agitator 3 are operated to fluidize the carrier uniformly. Raw wastewater is treated continuously by supplying oxygen-enriched air from an oxygen-enriched air supply port 7. The treated water is discharged from a treated water outlet 6 through a screen 5. In other words, in a closed type treatment tank 1, raw wastewater is treated by fluidizing the carrier 10 with real specific gravity of 1.03-1.10 and surface-aerating using oxygen-enriched air. In this way, BOD decomposition speed and nitration speed can be greatly increased to increase treatment quantity per unit volume.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、BOD成分やチッ素成
分を含有する都市下水、産業廃水等を酸素富化空気を用
い省エネルギー化をし、コンパクトな装置で効率的にB
OD除去、チッ素成分の硝化を行う廃水処理技術に関す
る。
BACKGROUND OF THE INVENTION The present invention uses oxygen-enriched air to conserve energy in municipal sewage containing BOD components and nitrogen components, industrial wastewater, etc.
The present invention relates to a wastewater treatment technology for removing OD and nitrifying nitrogen components.

【0002】[0002]

【従来の技術】一般にBOD成分やチッ素成分を含む下
水及び産業廃水等の処理方法として、BOD物質は空気
曝気により活性汚泥処理を行い、分解・除去しており、
また廃水中のチッ素成分は同じく空気曝気槽において活
性汚泥処理することにより硝化を行い、後に嫌気性にし
て脱窒を行っている。しかし、このような方法は処理時
間を長時間必要とするため一般に処理設備が大型とな
り、また撹拌を兼ねた酸素溶解のための散気に多大のエ
ネルギーを必要とする。
2. Description of the Related Art Generally, as a method for treating sewage and industrial wastewater containing BOD components and nitrogen components, BOD substances are subjected to activated sludge treatment by air aeration to decompose and remove them.
The nitrogen component in the wastewater is also nitrified by treating it with activated sludge in an air aeration tank, and then anaerobic to denitrify it. However, since such a method requires a long processing time, the processing equipment is generally large in size, and a large amount of energy is required for aeration for dissolving oxygen, which also serves as stirring.

【0003】装置のコンパクト化のためには、被処理時
間の短縮を計らねばならない。このためには活性汚泥濃
度(微生物濃度)の増加と酸素溶解速度の向上が必要と
なる。活性汚泥濃度の増加には空気曝気槽内に微生物付
着担体を入れ、その表面に活性な微生物層を形成させ廃
水処理することが提案されている。この方法によるとき
は有効な微生物濃度を高めるのに効果があり、廃水の処
理時間の短縮、処理水品位の向上に有効な手段であるこ
とがわかってきた。しかし、活性のある微生物濃度の増
加は、単位時間当りの酸素消費量の増加を招くことにな
る。空気曝気法における酸素の溶解速度は濃度勾配が一
定、かつ気泡径が同一としたときには散気ガス量と比例
することになり、増大した酸素消費量に合せて散気ガス
量を増大させる必要が生ずる。しかし、散気ガス量を増
加させると、配管中の圧力損失の増大、散気ガスの気泡
径が増大などの現象と共に、ガスのチャンネリングを招
き易く、溶解速度を増すことは散気ガス量の過大な供給
量を必要とし、エネルギー効率を低下させることが避け
られなかった。
In order to make the apparatus compact, it is necessary to reduce the processing time. For this purpose, it is necessary to increase the concentration of activated sludge (microorganism concentration) and improve the oxygen dissolution rate. In order to increase the concentration of activated sludge, it has been proposed to put a microorganism-attached carrier in an air aeration tank, form an active microorganism layer on the surface of the carrier, and treat the wastewater. It has been found that this method is effective in increasing the effective microorganism concentration and is an effective means for shortening the treatment time of wastewater and improving the quality of treated water. However, increasing the concentration of active microorganisms leads to an increase in oxygen consumption per unit time. The dissolution rate of oxygen in the air aeration method is proportional to the amount of diffused gas when the concentration gradient is constant and the bubble diameter is the same, and it is necessary to increase the amount of diffused gas according to the increased oxygen consumption. Occurs. However, when the amount of diffused gas is increased, the pressure loss in the pipe increases, the bubble diameter of diffused gas increases, and the channeling of gas is easily caused. It was inevitable that the energy supply would have to be reduced and the energy efficiency would have to be reduced.

【0004】一方、担体に対する微生物付着力を高める
ため、多孔質の担体、例えば軽石、貫通孔を有する円筒
形担体、表面をサンドブラスト等で粗面化した合成樹脂
粒状体などの提案もある。軽石や粗面化した粒状体など
においては、撹拌による担体同士、あるいは担体と壁な
どとの衝突により表面微生物層が剥離されたとき、その
細孔内部の微生物層は剥離することはないが、細孔内部
に存在する微生物層の量はあまりに少量であって、曝気
槽中の微生物濃度を高め、廃水処理時間を安定に短縮化
する手段としては不十分である。また大きな貫通孔を有
する円筒形担体においては、担体表面は無理としても円
筒の内部に増殖した微生物層は量的にも多くすることも
でき、激しい撹拌においても剥離されることは少なく、
曝気槽中の微生物層の濃度を高く維持できるが、筒内の
微生物であるため、担体表面にある微生物層に比して効
率が劣り短時間処理にはあまり効果がない。またスポン
ジ状多孔質担体を用いたところ、短期間の操業で崩壊し
て安定な廃水処理には不適当であった。
On the other hand, in order to enhance the adhesion of microorganisms to the carrier, there are also proposals for porous carriers such as pumice, cylindrical carriers having through holes, and synthetic resin particles whose surface is roughened by sandblasting. In pumice or roughened granular material, when the surface microbial layer is peeled by the collision of the carriers with each other by stirring, or the carrier and the wall, the microbial layer inside the pores does not peel, The amount of the microbial layer present inside the pores is too small, which is insufficient as a means for increasing the microbial concentration in the aeration tank and stably shortening the wastewater treatment time. Further, in a cylindrical carrier having large through holes, even if the carrier surface is unreasonable, the microbial layer grown inside the cylinder can be increased in quantity, and is not easily peeled off even under vigorous stirring,
Although the concentration of the microbial layer in the aeration tank can be maintained at a high level, the efficiency is inferior to that of the microbial layer on the surface of the carrier because it is a microorganism in the cylinder, and it is not very effective for short-time treatment. When a sponge-like porous carrier was used, it collapsed in a short-term operation and was not suitable for stable wastewater treatment.

【0005】いずれにせよ、微生物濃度を高めるため微
生物付着担体は相当多量用いることが必要となるので、
空気曝気流動層方式(この方式の概念図を図3に示す)
では、担体を流動化させるために本来BOD成分分解等
に必要とする酸素溶解速度に対応した散気量以上の空気
が必要となり、省エネルギー効果を十分に発揮できな
い。また、この空気量を少なくするために、担体の比重
を下げたり担体の大きさを小さくすると、担体の曝気槽
中の均一な流動ができなかったり、曝気槽からのオーバ
ーフロー等を防止するためのスクリーンの網目サイズを
小さくすることが必要となり、目詰りを起こし易くする
こと及びさらに、後工程でのトラブルの原因を招くな
ど、安定した運転の維持が困難となったりする。
In any case, it is necessary to use a considerably large amount of the microorganism-attached carrier in order to increase the concentration of microorganisms.
Air aeration fluidized bed system (a conceptual diagram of this system is shown in Fig. 3)
However, in order to fluidize the carrier, it is necessary to use air in an amount equal to or larger than the air diffusion amount that corresponds to the oxygen dissolution rate originally required for the decomposition of BOD components, etc., and the energy saving effect cannot be sufficiently exerted. Further, in order to reduce the amount of air, if the specific gravity of the carrier is reduced or the size of the carrier is reduced, it is not possible to evenly flow the carrier in the aeration tank, or to prevent overflow from the aeration tank. It is necessary to reduce the mesh size of the screen, which easily causes clogging and causes troubles in the subsequent process, which makes it difficult to maintain stable operation.

【0006】一方空気に代え、酸素ガス分離法の技術革
新により安価となった酸素ガスを用いる酸素富化空気曝
気法(この方式の概念図を図4に示す)の場合、供給酸
素富化空気(酸素濃度90%位)の必要供給量は空気曝
気法における必要供給空気量の約1/30〜1/50で
よく、従ってそれだけでかなりのコンパクト化、省エネ
ルギーの方法であることがわかる。この酸素富化空気曝
気法に微生物付着用担体を併用した処理法として、ポリ
エチレングリコール等を用いた活性汚泥包括担体を用い
る方法の提案がある。この場合(この方式の概念図を図
5に示す)担体の活性汚泥の担持量は実用レベルに達し
ているが、撹拌に対する強度の点で不十分なので、機械
的な撹拌を採用することができなかった。従って担体の
流動化及び酸素の液中への十分な溶解を行うために、大
量の酸素富化空気を曝気槽内で循環する必要があり、折
角酸素富化空気による優れた酸素溶解速度を生かしてい
ない。このように酸素富化空気処理法に適した担体、液
−ガス接触方法、微生物付着担体に付着した微生物層の
剥離のない流動化方法など廃水処理のトータルシステム
の開発などいまだ十分な技術は完成していない。
On the other hand, in the case of the oxygen-enriched air aeration method (a conceptual diagram of this method is shown in FIG. 4) using oxygen gas, which has become cheaper due to the technological innovation of the oxygen gas separation method, instead of air, supply oxygen-enriched air The required supply amount (oxygen concentration of about 90%) may be about 1/30 to 1/50 of the required supply air amount in the air aeration method. Therefore, it can be seen that this is a method of considerable compactification and energy saving. As a treatment method in which a carrier for adhering microorganisms is used in combination with this oxygen-enriched air aeration method, there is a proposal of a method using an activated sludge entrapping carrier using polyethylene glycol or the like. In this case (the conceptual diagram of this method is shown in FIG. 5), although the amount of activated sludge loaded on the carrier has reached a practical level, mechanical agitation can be adopted because the strength against agitation is insufficient. There wasn't. Therefore, in order to fluidize the carrier and sufficiently dissolve oxygen in the liquid, it is necessary to circulate a large amount of oxygen-enriched air in the aeration tank, making use of the excellent oxygen dissolution rate of oxygen-enriched air. Not not. In this way, sufficient technology has been completed, including the development of a total system for wastewater treatment, such as a carrier suitable for the oxygen-enriched air treatment method, a liquid-gas contact method, and a fluidization method without separation of the microbial layer adhering to the microorganism-attached carrier. I haven't.

【0007】[0007]

【発明が解決しようとする課題】以上の如く、従来技術
にはコンパクト化、省エネルギー化を図るにおいて種々
の問題点がまだ残されている。本発明は前記酸素富化空
気曝気法の利点を生かし、なおかつコンパクト化、省エ
ネルギー化を実現し得る酸素富化空気を用いた流動床式
廃水処理方法及び装置の開発を目的とする。
As described above, various problems still remain in the prior art in achieving compactness and energy saving. It is an object of the present invention to develop a fluidized bed type wastewater treatment method and apparatus using oxygen-enriched air, which makes it possible to realize the advantages of the oxygen-enriched air aeration method, compactness, and energy saving.

【0008】[0008]

【課題を解決するための手段】本発明は、密閉型処理槽
内において、実比重1.03〜1.10の微生物付着用
担体を流動させながら酸素富化空気を用い、表面曝気を
することにより原廃水を処理することを特徴とする流動
床式廃水処理方法、合成樹脂と無機質材料からなり、表
面に多数の0.1〜100μmの微細孔または細溝を有
する円筒形の微生物付着用担体を流動させる流動床式廃
水処理方法、微生物付着用担体を密閉型処理槽に槽内廃
水保持水量の10〜40vol%入れて流動させる流動
床式廃水処理方法、密閉型廃水処理装置に微生物付着用
担体を流動させるための撹拌装置を設けた流動床式廃水
処理方法及び原廃水供給口、酸素富化空気供給装置から
の供給口、表面曝気機、微生物付着用担体流動用撹拌装
置、微生物付着用担体の流出を防止するためのスクリー
ンを設けた処理水出口及び次室へ気相部ガスの供給口ま
たは廃ガス出口を有する微生物付着用担体を用いる一段
または多段の密閉型廃水処理装置を開発することにより
上記の目的を達成した。
According to the present invention, surface aeration is carried out by using oxygen-enriched air while flowing a carrier for adhering microorganisms having an actual specific gravity of 1.03 to 1.10 in a closed treatment tank. Fluidized bed wastewater treatment method, characterized in that the raw wastewater is treated by the method, a cylindrical carrier for adhering to microorganisms, comprising a synthetic resin and an inorganic material and having a large number of 0.1-100 μm fine pores or fine grooves on the surface. Fluidized bed type waste water treatment method, fluidized bed type waste water treatment method in which a carrier for adhering microorganisms is placed in a closed type treatment tank in an amount of 10 to 40 vol% of the amount of waste water retained in the vessel, and microorganisms are attached to a closed type waste water treatment device Fluidized bed type wastewater treatment method provided with stirring device for fluidizing carrier, raw wastewater supply port, supply port from oxygen-enriched air supply device, surface aerator, agitation device for carrier flow for microorganism adhesion, for microorganism adhesion Develop a single-stage or multi-stage closed wastewater treatment system that uses a carrier for adhering microorganisms that has a treated water outlet with a screen to prevent body outflow and a gas phase gas supply port or waste gas outlet to the next chamber. By doing so, the above object was achieved.

【0009】本発明に用いる密閉型処理槽としては、通
常の酸素富化空気曝気式廃水処理装置として用いられて
いる廃水処理装置を使用できる。例えば原廃水供給口、
酸素富化空気製造装置からの酸素富化空気供給口、表面
曝気機、微生物付着用担体の流出を防ぐためのスクリー
ンを設けた処理水出口及び廃ガス出口、または次室への
供給口を有する一段または多段階処理のための密閉型廃
水処理装置が使用できる。特に微生物濃度を高めるため
担体使用量が多い場合や、処理槽の水深が深い場合にお
いても担体の流動化及び溶存酸素の液中への拡散を確保
するため、微生物付着用担体流動用撹拌装置として表面
曝気機に同軸の深層撹拌翼を設けるか、あるいは担体流
動化のための撹拌装置を別途設けることが好ましい。
As the closed type treatment tank used in the present invention, a wastewater treatment apparatus used as a usual oxygen-enriched air aeration type wastewater treatment apparatus can be used. For example, raw wastewater supply port,
It has an oxygen-enriched air supply port from the oxygen-enriched air manufacturing equipment, a surface aerator, a treated water outlet and a waste gas outlet equipped with a screen for preventing the outflow of the carrier for adhering microorganisms, or a supply port to the next chamber. Closed-type wastewater treatment equipment for single-stage or multi-stage treatment can be used. In order to ensure the fluidization of the carrier and the diffusion of dissolved oxygen into the liquid even when the amount of carrier used is large to increase the concentration of microorganisms, or when the depth of water in the treatment tank is deep, a stirring device for carrier flow for adhering microorganisms is used. It is preferable to provide a coaxial deep stirring blade on the surface aerator or separately provide a stirring device for fluidizing the carrier.

【0010】本発明に使用する微生物付着担体として
は、 流動に適し、またスクリーン等の目詰り等を起こさず
容易に流出防止ができる比重、大きさ、形状を有する。 撹拌等により破砕、変形、摩耗等を起こさない強度
と、なおかつ柔軟性を有する。 撹拌、担体相互接触等により担持微生物が剥離、脱落
しない微生物保持力を有する。 担体単位容積当りの微生物担持量が大きい。 などの要件を備えていることが必要とされる。
The carrier for adhering microorganisms used in the present invention has a specific gravity, size and shape suitable for flow and capable of easily preventing outflow without causing clogging of screens and the like. It has strength that does not cause crushing, deformation, abrasion, etc. due to stirring and the like, and also has flexibility. It has the ability to retain microorganisms so that the supported microorganisms do not peel off or fall off due to stirring, mutual contact of carriers, and the like. The amount of microorganisms supported per unit volume of carrier is large. It is necessary to have requirements such as.

【0011】酸素富化空気を用いて酸素溶解に必要な撹
拌強度が担体表面微生物層剥離のないような撹拌で、担
体が流動できる比重は1.2以下であった。また比重
1.03未満の担体は、処理槽液表面近くに集まる傾向
が見られた。以上の結果より比重は1.03〜1.10
が選ばれた。担体のサイズは小さい程担体充填容積当り
の表面積を大きくすることが可能であり、この面からは
小さい程良いが、代表径5mmφ以下では流出防止スク
リーンも5mm以下となり目詰り等のトラブルが起こり
易く、また大きすぎると流動性が悪化するので担体の代
表径は5〜30mmφ、好ましくは7〜25mmφであ
る。形状としては微生物保持量が大きく、微生物層が剥
離、脱落しにくいように、その表面に微生物の吸着及び
生育に適した多数の0.1〜100μmの微細孔及び/
または細溝を有する筒状のものであり、特に外筒面付着
の微生物層を円筒内面付着の微生物層と結合させること
により、微生物層の保持力を高めるため該微細孔は貫通
しているものがあることが好ましく、円筒形状のものが
製造も容易であり性能的にも優れている。
The specific gravity that allows the carrier to flow was 1.2 or less when the stirring strength required for oxygen dissolution using oxygen-enriched air was such that the carrier surface microbial layer was not separated. In addition, carriers having a specific gravity of less than 1.03 tended to collect near the surface of the liquid in the treatment tank. From the above results, the specific gravity is 1.03 to 1.10
Was chosen. The smaller the carrier size, the larger the surface area per carrier filling volume. From this aspect, the smaller the better, but with a typical diameter of 5 mmφ or less, the outflow prevention screen also becomes 5 mm or less, and problems such as clogging are likely to occur. If it is too large, the fluidity deteriorates, so the typical diameter of the carrier is 5 to 30 mmφ, preferably 7 to 25 mmφ. As a shape, a large amount of microorganisms are retained, and a large number of micropores of 0.1 to 100 μm suitable for adsorption and growth of microorganisms and //
Or a cylindrical one having a narrow groove, in particular, by combining the microbial layer adhered to the outer cylinder surface with the microbial layer adhered to the inner surface of the cylinder, the micropores are penetrated in order to enhance the retention of the microbial layer. It is preferable that the cylindrical shape is easy to manufacture and excellent in performance.

【0012】担体の材料としては比重、サイズ、強度、
柔軟性、表面状態、成形加工性などから合成樹脂及び無
機質材料を組合せることが好ましい。合成樹脂としては
ポリエチレン、ポリプロピレン等の柔軟性があり、軽量
のポリオレフィン系汎用熱可塑性合成樹脂、無機質材料
としては炭酸カルシウム、タルク、硫酸バリウム、ゼオ
ライト等を用いる。合成樹脂の比重は1.0g/cm3
以下であるのでこれら無機質材料は、合成樹脂の比重の
調節と担体表面の粗面化、親水性付与の目的も兼ねて組
合される。特に材質の微細孔、細溝を多く発生させ、強
固な微生物保持層を形成させるためには成形に際して、
担体表面の粗面化、比重の調整を兼ねて発泡剤を併用す
ることは好ましい。使用する酸素富化空気としては、空
気液化分離した酸素の如く高純度の酸素であってもよい
が、経済的にはゼオライト系モレキュラーシーブを用い
るPSAの如き濃度の酸素ガス(70vol%以上、好
ましくは90vol%以上)であってもよい。
The material of the carrier includes specific gravity, size, strength,
It is preferable to combine a synthetic resin and an inorganic material in terms of flexibility, surface condition, moldability and the like. As the synthetic resin, a flexible and lightweight polyolefin general-purpose thermoplastic synthetic resin such as polyethylene or polypropylene is used, and as the inorganic material, calcium carbonate, talc, barium sulfate, zeolite or the like is used. Specific gravity of synthetic resin is 1.0 g / cm 3
Since these are the followings, these inorganic materials are combined for the purpose of adjusting the specific gravity of the synthetic resin, roughening the surface of the carrier, and imparting hydrophilicity. In particular, in order to form a large number of fine holes and fine grooves in the material and form a strong microbial retention layer, at the time of molding
It is preferable to use a foaming agent together for the purpose of roughening the surface of the carrier and adjusting the specific gravity. The oxygen-enriched air to be used may be high-purity oxygen such as oxygen liquefied and separated, but economically, oxygen gas having a concentration such as PSA using a zeolitic molecular sieve (70 vol% or more, preferably 90 vol% or more).

【0013】上記の合成樹脂、無機物質の材質的な組合
せによる担体性能の差はほとんど無いので、比重及び表
面状態が目的の範囲に入るように混合比を調整する。但
し無機物質の割合が大きくなると破損し易くなるので、
前記の比重範囲に入る混合割合が強度の点からも適して
いる。担体表面状態は、担体単位容量当りの微生物担持
量及び撹拌等に対する微生物保持性能に大きな影響を与
える。担体成形時の条件(引き抜き速度、発泡剤種類と
添加量など)により、担体表面の細孔大きさと分布割
合、円筒状担体の時の筒内面から外面への貫通孔の大き
さと数がコントロールできることを見いだした。なお、
担体の形状は加工性、表面状態コントロール性などの面
から円筒形が優れているが、特に限定するものではな
い。
Since there is almost no difference in carrier performance due to the material combination of the synthetic resin and the inorganic substance, the mixing ratio is adjusted so that the specific gravity and the surface state fall within the target ranges. However, as the proportion of inorganic substances increases, it becomes easier to break, so
A mixing ratio within the range of the specific gravity is also suitable from the viewpoint of strength. The surface state of the carrier has a great influence on the amount of microorganisms supported per unit volume of the carrier and the ability to retain the microorganisms with respect to stirring and the like. It is possible to control the size and distribution of pores on the surface of the carrier, and the size and number of through-holes from the inner surface to the outer surface of the cylindrical carrier, depending on the conditions at the time of molding the carrier (drawing speed, type and amount of blowing agent, etc.) I found it. In addition,
The shape of the carrier is preferably cylindrical in terms of processability and surface state controllability, but is not particularly limited.

【0014】担体流出防止用のスクリーンは、スクリー
ンの目詰りを防ぐため担体が通り抜けない限りできるだ
け網目の大きいスクリーンを用いる。操業に際して、微
生物付着担体使用量としては槽内廃水保持水量の10〜
40vol%、好ましくは20〜35vol%程度入れ
て行う。密閉型処理層の気相部の酸素濃度は、少なくと
も30vol%、できれば50vol%以上に維持する
ように操業することが好ましい。多段式処理であるとき
は、向流、併流のいずれでもよいが、最終段の処理槽の
酸素濃度が少なくとも25vol%、できれば40vo
l%以上維持するように操業することが好ましい。
As the screen for preventing carrier outflow, a screen having a mesh as large as possible is used as long as the carrier does not pass through in order to prevent clogging of the screen. At the time of operation, the amount of the microorganism-attached carrier used is 10 to 10% of the amount of waste water retained in the tank.
40 vol%, preferably 20 to 35 vol% is added. It is preferable to operate so that the oxygen concentration in the gas phase portion of the closed type treatment layer is maintained at least 30 vol%, and preferably 50 vol% or more. In the case of multi-stage treatment, either countercurrent flow or cocurrent flow may be used, but the oxygen concentration in the final stage treatment tank is at least 25 vol%, preferably 40 vo
It is preferable to operate so as to maintain 1% or more.

【0015】[0015]

【作用】本発明の廃水処理は短時間処理による装置のコ
ンパクト化を目的とし、微生物濃度を高めるため微生物
付着担体を使用する方法において、気液の接触を緩和な
条件であっても高酸素消費速度に対応できる酸素富化空
気を用いること、並びに気液の接触をゆるくしても十分
な担体の流動を確保し、担体表面に付着増殖した微生物
層の剥離を防止しながら、より活発な微生物活動の確保
を目的としたものである。このことは酸素の溶解は表面
曝気方式を主体とし、(勿論酸素富化空気または循環酸
素含有気体の供給を水面下に供給することはかまわな
い。)微生物付着担体の流動はガス撹拌より効率的な機
械撹拌を併用することにより、処理槽の液深が深い場合
など特殊な場合でなくとも効率的な廃水処理が可能とな
る。本発明方法は、従来の酸素富化空気による廃水処理
装置(例えばユノックスシステム)の曝気槽をそのまま
置換することにより、さらに効率的操業が可能となる。
特に全チッ素含有量の多い廃水処理において活性汚泥処
理で効率的に硝化が可能な特徴を有している。
The purpose of the wastewater treatment of the present invention is to compact the equipment by a short-time treatment, and in the method of using a microorganism-attached carrier to increase the concentration of microorganisms, high oxygen consumption is achieved even under the condition that gas-liquid contact is moderated. Using oxygen-enriched air that can respond to the speed and ensuring sufficient flow of the carrier even if the contact of gas and liquid is loosened, while preventing the detachment of the microbial layer adhered and grown on the carrier surface, more active microorganisms The purpose is to secure activities. This means that oxygen is mainly dissolved by the surface aeration method (of course, oxygen-enriched air or circulating oxygen-containing gas may be supplied below the surface of the water). By using such mechanical agitation together, efficient wastewater treatment becomes possible even in special cases such as when the liquid depth of the treatment tank is deep. The method of the present invention enables a more efficient operation by replacing the aeration tank of the conventional wastewater treatment apparatus using oxygen-enriched air (for example, the UNOX system) as it is.
In particular, it has a feature that nitrification can be efficiently performed by activated sludge treatment in the treatment of wastewater having a high total nitrogen content.

【0016】[0016]

【実施例】本発明の実施を図面により説明する。図1は
本発明の担体を用いた酸素富化空気曝気法流動式廃水処
理方法の一例を示す概略図である。曝気槽1は、100
0mm×1000mm、高さ1000mmの密閉型で、
表面曝気機2、これに同軸の担体流動用撹拌機3、原廃
水供給口4、目開き8mmのスクリーン5を供えた処理
水出口6、酸素富化空気供給口7、廃ガス出口8を備え
ている。微生物付着用担体10は図2に示す如きもので
ポリエチレン及びポリプロピレンと炭酸カルシウムとか
らなる組成物を用い、比重約1.05、外径約10mm
φ、内径約8mmφ、長さ約10mmの多孔性円筒状担
体で、円筒内外表面に約1〜100μm位の微細孔や細
溝の凸凹が無数にあり、約100〜500μm孔の円筒
内外の貫通孔がいくつかある。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing an example of an oxygen-enriched air aeration method fluidized wastewater treatment method using the carrier of the present invention. Aeration tank 1 is 100
0mm x 1000mm, height 1000mm closed type,
Surface aerator 2, coaxial carrier flow agitator 3, raw wastewater supply port 4, treated water outlet 6 with a screen 5 having an opening of 8 mm, oxygen-enriched air supply port 7, waste gas outlet 8 ing. The carrier 10 for adhering microorganisms is as shown in FIG. 2, and is made of a composition of polyethylene and polypropylene and calcium carbonate, and has a specific gravity of about 1.05 and an outer diameter of about 10 mm.
It is a porous cylindrical carrier of φ, inner diameter of about 8 mmφ, and length of about 10 mm. There are innumerable micropores and fine grooves of about 1 to 100 μm on the inner and outer surfaces of the cylinder, and penetration of about 100 to 500 μm holes inside and outside the cylinder. There are some holes.

【0017】この微生物付着用担体を約30vol%
(210リットル)入れた密閉型曝気槽1に原廃水供給
口4から350リットル/hrの割合で原廃水を供給
し、表面曝気機2及び撹拌機3を起動し担体を均一に流
動化させる。次いで、酸素富化空気(酸素濃度約90
%)を酸素富化空気供給口7より供給しながら連続的に
原廃水を処理する。処理水はスクリーン5を通って処理
水出口6より排出する。原廃水の処理条件は以下の通り
である。 曝気槽有効内容積 700リットル 原廃水供給量 350リットル/hr 酸素富化空気供給量 100リットル/hr 撹拌動力 50w 表1に原廃水の処理条件、原廃水の組成及び4ケ月連続
処理を行い処理が平衡に達した後の処理廃水の組成を示
す。
About 30 vol% of this carrier for adhering microorganisms
Raw wastewater is supplied from the raw wastewater supply port 4 to the sealed aeration tank 1 (210 liters) at a rate of 350 liters / hr, and the surface aerator 2 and the agitator 3 are activated to uniformly fluidize the carrier. Next, oxygen-enriched air (oxygen concentration of about 90
%) Through the oxygen-enriched air supply port 7 to continuously treat the raw wastewater. The treated water passes through the screen 5 and is discharged from the treated water outlet 6. The raw wastewater treatment conditions are as follows. Aeration tank effective inner volume 700 liters Raw wastewater supply amount 350 liters / hr Oxygen-enriched air supply amount 100 liters / hr Stirring power 50w Table 1 shows the treatment conditions of raw wastewater, the composition of raw wastewater and the treatment for 4 months continuous treatment. The composition of the treated wastewater after reaching equilibrium is shown.

【0018】[比較例1]微生物付着担体を処理槽に添
加しないこと及び処理槽内の微生物濃度を約4000m
g/リットルに保持するために返送微生物を循環した以
外は実施例と同じで装置及び処理条件で行った。表1に
処理条件、原廃水の組成及び4ケ月連続処理後の処理水
の組成を示す。
[Comparative Example 1] No carrier for adhering microorganisms was added to the treatment tank, and the concentration of microorganisms in the treatment tank was about 4000 m.
The apparatus and processing conditions were the same as in the example except that the returning microorganisms were circulated to maintain g / l. Table 1 shows treatment conditions, composition of raw wastewater, and composition of treated water after continuous treatment for 4 months.

【0019】[比較例2]処理水中のNH4 −Nがほぼ
実施例1の濃度になるように原廃水供給量を低下させた
以外は、比較例1と同じ装置及び処理条件で行った。表
1に処理条件、原廃水の組成及び4ケ月連続処理後の処
理水の組成を示す。
[Comparative Example 2] The same apparatus and treatment conditions as in Comparative Example 1 were used, except that the raw wastewater supply rate was lowered so that the concentration of NH 4 -N in the treated water was almost the same as in Example 1. Table 1 shows treatment conditions, composition of raw wastewater, and composition of treated water after continuous treatment for 4 months.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】本発明による微生物付着担体を使用した
酸素富化空気法流動層式廃水処理方法は、空気曝気式廃
水処理法は勿論、従来の酸素富化空気使用廃水処理法等
の従来法に比較してBOD分解速度、硝化速度を著しく
大きくすることができ、処理槽単位容積当りの処理量を
上げることができる。特にデータとしては出していない
が、微生物付着用担体を使用したため処理槽中の活性汚
泥濃度が高く、短時間の処理にもかかわらず、BODを
低く、またアンモニア性チッ素が低いだけでなく、処理
水中の溶存酸素濃度(DO)を高く維持できること、沈
降槽における活性汚泥の沈降性が優れていることなど、
省エネルギー、コンパクトな装置であって優れた性能を
有する廃水処理方法である。本発明は、解決しようとし
た廃水処理の問題点を総て解決し、装置費、運転費が安
価で極めてコンパクトな廃水処理装置及び方法が提供で
きた。
The oxygen-enriched air fluidized-bed wastewater treatment method using the microorganism-attached carrier according to the present invention is not limited to the air aeration-type wastewater treatment method, but is also a conventional method such as the conventional oxygen-enriched air wastewater treatment method. The BOD decomposition rate and the nitrification rate can be remarkably increased as compared with the above, and the treatment amount per unit volume of the treatment tank can be increased. Although not particularly shown as data, not only is the activated sludge concentration in the treatment tank high due to the use of the carrier for adhering microorganisms, the BOD is low and the ammoniacal nitrogen is low in spite of the short treatment time, The ability to maintain a high dissolved oxygen concentration (DO) in the treated water and the excellent settability of activated sludge in the settling tank,
It is an energy-saving, compact device and a wastewater treatment method with excellent performance. INDUSTRIAL APPLICABILITY The present invention has solved all the problems of wastewater treatment to be solved, and was able to provide an extremely compact wastewater treatment apparatus and method with low equipment costs and operating costs.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例を示す概略図である。FIG. 1 is a schematic view showing an embodiment of the present invention.

【図2】本発明で使用した担体の1実施例を示す概略図
である。
FIG. 2 is a schematic view showing one example of the carrier used in the present invention.

【図3】従来技術の空気曝気流動槽方式の概念図であ
る。
FIG. 3 is a conceptual diagram of a conventional air aeration flow tank system.

【図4】従来技術の酸素富化空気曝気方式の概念図であ
る。
FIG. 4 is a conceptual diagram of a conventional oxygen-enriched air aeration system.

【図5】従来の活性汚泥包括担体を用いた酸素富化空気
曝気方式の概念図である。
FIG. 5 is a conceptual diagram of an oxygen-enriched air aeration system using a conventional activated sludge entrapping carrier.

【符号の説明】[Explanation of symbols]

1 処理槽 2 表面曝気機 3 微生物付着用担体流動用撹拌機 4 原廃水供給口 5 スクリーン 6 処理水出口 7 酸素富化空気供給口 8 廃ガス出口 10 微生物付着用担体 11 散気装置 12 空気供給ポンプ 1 Treatment Tank 2 Surface Aerator 3 Stirrer for Flowing Carrier for Microorganism Adhesion 4 Raw Wastewater Supply Port 5 Screen 6 Treated Water Outlet 7 Oxygen-enriched Air Supply Port 8 Waste Gas Outlet 10 Microbe Adhesion Carrier 11 Air Diffuser 12 Air Supply pump

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 密閉型処理槽内において、実比重1.0
3〜1.10の微生物付着用担体を流動させながら酸素
富化空気を用い、表面曝気をすることにより原廃水を処
理することを特徴とする流動床式廃水処理方法。
1. An actual specific gravity of 1.0 in a closed processing tank.
A fluidized bed wastewater treatment method, characterized in that the raw wastewater is treated by aerating the surface with oxygen-enriched air while flowing the carrier for adhering microorganisms of 3 to 1.10.
【請求項2】 合成樹脂と無機質材料からなり、表面に
多数の0.1〜100μmの微細孔または細溝を有する
円筒形の微生物付着用担体を流動させる請求項1記載の
流動床式廃水処理方法。
2. A fluidized bed wastewater treatment system according to claim 1, wherein a cylindrical carrier for adhering to microorganisms, which is made of a synthetic resin and an inorganic material and has a large number of micropores or fine grooves of 0.1 to 100 μm on its surface, is caused to flow. Method.
【請求項3】 微生物付着用担体を密閉型処理槽に槽内
廃水保持水量の10〜40vol%入れて流動させる請
求項1〜2記載の流動床式廃水処理方法。
3. The fluidized bed wastewater treatment method according to claim 1, wherein the carrier for adhering microorganisms is put in a closed type treatment tank in an amount of 10 to 40 vol% of the amount of wastewater retained in the tank and allowed to flow.
【請求項4】 密閉型廃水処理装置に微生物付着用担体
を流動させるための撹拌装置を設けた請求項1〜3記載
の流動床式廃水処理方法。
4. The fluidized bed wastewater treatment method according to claim 1, wherein the closed wastewater treatment device is provided with a stirring device for causing the carrier for adhering microorganisms to flow.
【請求項5】 原廃水供給口、酸素富化空気供給装置か
らの供給口、表面曝気機、微生物付着用担体流動用撹拌
装置、微生物付着用担体の流出を防止するためのスクリ
ーンを設けた処理水出口及び次室へ気相部ガスの供給口
または廃ガス出口を有する微生物付着用担体を用いる一
段または多段の密閉型廃水処理装置。
5. A treatment provided with a raw wastewater supply port, a supply port from an oxygen-enriched air supply device, a surface aerator, a stirring device for flowing a carrier for adhering microorganisms, and a screen for preventing the carrier for adhering microorganisms from flowing out. A one-stage or multi-stage closed wastewater treatment device using a carrier for adhering microorganisms, which has a water outlet and a gas phase gas supply port or a waste gas outlet to the next chamber.
JP33598794A 1994-12-21 1994-12-21 Fluidized bed wastewater treatment method and apparatus Expired - Fee Related JP3455597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33598794A JP3455597B2 (en) 1994-12-21 1994-12-21 Fluidized bed wastewater treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33598794A JP3455597B2 (en) 1994-12-21 1994-12-21 Fluidized bed wastewater treatment method and apparatus

Publications (2)

Publication Number Publication Date
JPH08173983A true JPH08173983A (en) 1996-07-09
JP3455597B2 JP3455597B2 (en) 2003-10-14

Family

ID=18294531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33598794A Expired - Fee Related JP3455597B2 (en) 1994-12-21 1994-12-21 Fluidized bed wastewater treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP3455597B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103920693A (en) * 2014-04-08 2014-07-16 北京工业大学 Rural domestic rubbish treating device
JP2014184400A (en) * 2013-03-25 2014-10-02 Kubota Corp Method of operating sewage treatment apparatus
CN114057359A (en) * 2021-11-29 2022-02-18 丽瑾(浙江)环保科技有限公司 Device for purifying water by microorganisms

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014184400A (en) * 2013-03-25 2014-10-02 Kubota Corp Method of operating sewage treatment apparatus
CN103920693A (en) * 2014-04-08 2014-07-16 北京工业大学 Rural domestic rubbish treating device
CN114057359A (en) * 2021-11-29 2022-02-18 丽瑾(浙江)环保科技有限公司 Device for purifying water by microorganisms
CN114057359B (en) * 2021-11-29 2024-03-29 丽瑾(浙江)环保科技有限公司 Microorganism water purifying device

Also Published As

Publication number Publication date
JP3455597B2 (en) 2003-10-14

Similar Documents

Publication Publication Date Title
US4256573A (en) Process for biological treatment of waste water in downflow operation
EP1322558A1 (en) Activated sludge wastewater treatment system and method
KR20180043689A (en) Eco-friendly Sewage System By Contact Oxidation Method Using Plastic Material As Bio-film Filtration
JP5597002B2 (en) Waste water treatment apparatus and waste water treatment method
JP3399443B2 (en) High-load biological treatment method
JP4014581B2 (en) Biological filtration device
JP3455597B2 (en) Fluidized bed wastewater treatment method and apparatus
TW201821376A (en) Biologically activated carbon processing device
JP3761671B2 (en) Carrier for attaching microorganisms
JPH01262996A (en) Method and apparatus for aerobic treatment of organic waste water
JP3502173B2 (en) Microbial carrier for wastewater treatment
JP2002307088A (en) Wastewater treatment apparatus
JP3478241B2 (en) Biological treatment equipment
JP3136900B2 (en) Wastewater treatment method
US5961826A (en) Biological waste water treatment system having a sedimentation tank vertically combined with an aeration tank therein
JPH10296283A (en) Carrier separating method for biological reaction tank using carrier combinedly
JP2004041981A (en) Organic waste water treatment method and its system
JP3735959B2 (en) Biological treatment equipment
JP2020142179A (en) Water treatment method and water treatment device
JPH03118891A (en) Treatment of organic sewage
JP4181501B2 (en) Biofilm filtration apparatus and method
JP2003033787A (en) Method for nitrifying drainage
JP2673488B2 (en) Method and apparatus for treating organic wastewater
JPH0623065A (en) Biological treatment method and apparatus for organic sewage
JPWO2005005327A1 (en) Water purification advanced treatment method and apparatus

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees