JPH0817384A - Method for aligning scanning electron microscope - Google Patents

Method for aligning scanning electron microscope

Info

Publication number
JPH0817384A
JPH0817384A JP14661194A JP14661194A JPH0817384A JP H0817384 A JPH0817384 A JP H0817384A JP 14661194 A JP14661194 A JP 14661194A JP 14661194 A JP14661194 A JP 14661194A JP H0817384 A JPH0817384 A JP H0817384A
Authority
JP
Japan
Prior art keywords
scanning
alignment
detection signal
electron microscope
signal waveforms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14661194A
Other languages
Japanese (ja)
Inventor
Nagahide Ishida
長秀 石田
Susumu Ozasa
進 小笹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Science Systems Ltd
Original Assignee
Hitachi Ltd
Hitachi Science Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Science Systems Ltd filed Critical Hitachi Ltd
Priority to JP14661194A priority Critical patent/JPH0817384A/en
Publication of JPH0817384A publication Critical patent/JPH0817384A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify adjustment and to increase their accuracy by automating the alignment of a scanning electron microscope. CONSTITUTION:A current through an objective lens 7 is finely varied from a value of a positive focal point to positive or negative side, and in either case line scan is performed with the direction of scanning varied radially, and data about detection during the scan is stored, and the direction and amount of movement of an image resulting from misalignment are calculated by comparison of two sets of data in the same direction of scanning, and an alignment device is controlled so that the amount of movement becomes zero. The alignment device may be an electromagnetic deflector 5 for alignment or an objective diaphragm that is mechanically moved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、走査電子顕微鏡のレン
ズ軸調整を自動的に行うための方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for automatically adjusting the lens axis of a scanning electron microscope.

【0002】[0002]

【従来の技術】走査電子顕微鏡においては、レンズによ
る収差を少なくするために電子ビームが対物レンズの軸
芯を通過するように調整する電流中心調整(以後、アラ
イメントと言う)が必要であり、この調整が不充分であ
ると走査電子顕微鏡の最高性能を実現することができな
い。
2. Description of the Related Art In a scanning electron microscope, current center adjustment (hereinafter referred to as alignment) for adjusting an electron beam so as to pass through an axis of an objective lens is necessary in order to reduce aberrations caused by the lens. If the adjustment is not enough, the maximum performance of the scanning electron microscope cannot be realized.

【0003】従来このアライメントは、対物レンズ電流
を正焦点の近傍で微細に変化させながら、拡大像の移動
する状態を観察し、対物絞りの位置を調節して、像の移
動が最小となるようにすることで行われていた。
Conventionally, in this alignment, the movement of the magnified image is observed while the objective lens current is finely changed in the vicinity of the positive focus, and the position of the objective aperture is adjusted to minimize the movement of the image. It was done by.

【0004】[0004]

【発明が解決しようとする課題】上記従来の方法は調整
作業に熟練を必要とし、また人が像の移動を判断すると
いうプロセスを含むため、自動化が困難であるという問
題があった。本発明の目的は、アライメントを自動化す
ることによって調整作業の簡易化、高精度化を図ること
にある。
The above-mentioned conventional method has a problem that automation is difficult because it requires a skill for adjustment work and includes a process in which a person judges movement of an image. An object of the present invention is to simplify adjustment work and improve accuracy by automating alignment.

【0005】[0005]

【課題を解決するための手段】上記問題を達成するため
に、本発明においては、アライメント手段を電気信号に
より制御できるように構成すると同時に、対物レンズの
励磁条件を変化させて、種々の方向に電子ビームを一次
元走査し、この時得られた検出信号を記憶、比較するこ
とにより像の移動を検出し、この検出量に基づき前記調
整手段を制御するようにしたものである。
In order to achieve the above-mentioned problems, in the present invention, the alignment means is constructed so as to be controllable by an electric signal, and at the same time, the exciting condition of the objective lens is changed so that it can be moved in various directions. The electron beam is one-dimensionally scanned, and the detection signal obtained at this time is stored and compared to detect the movement of the image, and the adjusting means is controlled based on the detected amount.

【0006】すなわち、本発明のアライメント方法は、
走査電子顕微鏡の対物レンズの励磁電流を正焦点の時の
励磁電流に対して正負に微小量変化させた異なる励磁条
件にて、電子ビームの走査方向を所定の角度間隔で変化
させて試料を放射状に一次元走査し、各一次元走査時に
試料から放出された検出信号波形を記憶し、同一の走査
方向について得られた前記異なる励磁条件での2つの検
出信号波形を比較し、2つの検出信号波形を相対的にシ
フトさせたとき最も良く重なり合う部分を有する検出信
号波形が得られる一次元走査方向をミスアライメントに
起因する像の移動方向とし、該2つの検出信号波形を最
も良く重ね合わせるのに必要な両検出信号波形の相対的
なシフト量から像の移動量を決定し、このようにして決
定された像の移動方向及び移動量のデータに基づいて像
の移動がゼロになるようにアライメント装置を制御する
ことを特徴とするものである。
That is, the alignment method of the present invention is
Under different excitation conditions where the exciting current of the objective lens of the scanning electron microscope is changed by a small amount between positive and negative with respect to the exciting current at positive focus, the sample is radially changed by changing the scanning direction of the electron beam at a predetermined angular interval. One-dimensional scanning is performed, the detection signal waveforms emitted from the sample during each one-dimensional scanning are stored, two detection signal waveforms obtained under the different excitation conditions obtained in the same scanning direction are compared, and two detection signals are detected. When the waveforms are relatively shifted, the one-dimensional scanning direction in which the detection signal waveform having the best overlapping portion is obtained is set as the image movement direction due to the misalignment, and the two detection signal waveforms are best overlapped. The amount of movement of the image is determined from the required relative shift amount of both detection signal waveforms, and the image movement becomes zero based on the data of the moving direction and the amount of movement of the image thus determined. It is characterized in that for controlling the alignment device so.

【0007】アライメントの完了は、前述のようにして
アライメント装置を制御した後、前記異なる励磁条件に
おける各走査方向の2つの検出信号波形の差がそれぞれ
シフト量0の近傍で最小となることで確認することがで
きる。
Completion of the alignment is confirmed by controlling the alignment device as described above, and then the difference between the two detection signal waveforms in the respective scanning directions under the different excitation conditions becomes the minimum in the vicinity of the shift amount 0, respectively. can do.

【0008】[0008]

【作用】本発明では、走査方向を放射状に変化させるこ
とで二次元画像情報を複数の一次元情報に変換し、像の
移動の判定処理をその一次元情報の比較という単純な作
業に還元することによって、簡単な演算により像の移動
方向と移動量を検出する。像の移動方向と移動量が求ま
れば、アライメント装置による調整量と像の移動量の間
の既知の関係から、正確なアライメントを実現すること
ができる。この方法は自動化に適し、既存の手段によっ
てアライメントの自動化を容易に実現することができ
る。
In the present invention, the two-dimensional image information is converted into a plurality of one-dimensional information by changing the scanning direction radially, and the process of determining the movement of the image is reduced to the simple operation of comparing the one-dimensional information. Thus, the moving direction and the moving amount of the image are detected by a simple calculation. If the moving direction and moving amount of the image are obtained, accurate alignment can be realized from the known relationship between the adjustment amount by the alignment device and the moving amount of the image. This method is suitable for automation, and automation of alignment can be easily realized by existing means.

【0009】また、本発明によるアライメント方法は、
調整の完了を正確に確認することができるため、誤動作
等による調整の未完了状態をチェックすることが容易で
あり、高精度の調整を実現することができる。
Further, the alignment method according to the present invention is
Since the completion of the adjustment can be confirmed accurately, it is easy to check the unfinished state of the adjustment due to a malfunction or the like, and highly accurate adjustment can be realized.

【0010】[0010]

【実施例】以下、本発明の一実施例を図面により説明す
る。図1は、走査電子顕微鏡の全体構成を示す概略図で
ある。電子銃1より発生された電子ビーム2は、コンデ
ンサレンズ3により収束され、対物絞り4により開口角
を制限された後、アライメント用偏向器5で軸調整さ
れ、走査偏向器6,6’により試料室内の試料8上を走
査する。対物レンズ7は、試料8上に電子ビーム2の焦
点を結ばせる。試料8より発生した2次電子は、検出器
9で検出される。電子銃1に電圧を印加する高圧電源1
0、コンデンサレンズ3の励磁電源11、アライメント
用偏向器5の励磁電源、走査偏向器6,6’の励磁電源
13、対物レンズ7の励磁電源14は、各々インタフェ
ース15を介してCPU16により制御される。2次電
子検出器9の出力信号は、インタフェース15を介して
取り込まれ、データ処理された後、CRT等の表示装置
17に走査像が表示される。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic diagram showing the overall configuration of a scanning electron microscope. The electron beam 2 generated by the electron gun 1 is converged by the condenser lens 3, the aperture angle is limited by the objective diaphragm 4, and the axis is adjusted by the alignment deflector 5, and the sample is obtained by the scanning deflectors 6, 6 ′. The sample 8 in the chamber is scanned. The objective lens 7 focuses the electron beam 2 on the sample 8. Secondary electrons generated from the sample 8 are detected by the detector 9. High-voltage power supply 1 for applying voltage to the electron gun 1.
0, the exciting power source 11 of the condenser lens 3, the exciting power source of the alignment deflector 5, the exciting power source 13 of the scanning deflectors 6 and 6 ', and the exciting power source 14 of the objective lens 7 are controlled by the CPU 16 via the interface 15, respectively. It The output signal of the secondary electron detector 9 is taken in through the interface 15 and subjected to data processing, and then a scan image is displayed on the display device 17 such as a CRT.

【0011】対物絞り4は、図1に破線で示すように偏
向器6,6’の下方、又は対物レンズ7の下方に配置す
ることもできる。アライメント用偏向器5は1段の偏向
器で構成してもよいし、2段の偏向器でで構成してもよ
い。図2は、走査電子顕微鏡の外観図である。制御装置
21の操作部22には、円内に示すように操作つまみが
設けられており、「ALIGNMENT」スイッチを押
すとアライメント装置23が作動して自動アライメント
が行われる。また、X及びYつまみを用いた手動のアラ
イメントも可能である。以下、動作について説明する。
The objective diaphragm 4 can be arranged below the deflectors 6 and 6'or below the objective lens 7 as shown by the broken line in FIG. The alignment deflector 5 may be a one-stage deflector or a two-stage deflector. FIG. 2 is an external view of a scanning electron microscope. An operation knob is provided on the operation unit 22 of the control device 21 as shown in a circle, and when the "ALIGNMENT" switch is pressed, the alignment device 23 is operated to perform automatic alignment. Manual alignment using the X and Y knobs is also possible. The operation will be described below.

【0012】図3に、自動アライメント動作のアルゴリ
ズム(フローチャート)の一例を示す。ただし、最初に
正焦点であることを前提とする。そこから±Δだけ焦点
をずらして像信号を検出することにより、コントラスト
が同程度となって像信号の比較が容易になり、像のずれ
量の検出を確実に行うことができる。最初に、対物レン
ズ7の励磁電流Iを正焦点の値I0 から微小量Δ増加さ
せてI=I0 +Δに設定する(ステップ1)。
FIG. 3 shows an example of an algorithm (flow chart) for the automatic alignment operation. However, it is assumed that the focus is first. By detecting the image signal by shifting the focus by ± Δ from that point, the contrast becomes approximately the same, the image signals can be easily compared, and the image shift amount can be reliably detected. First, the exciting current I of the objective lens 7 is increased by a slight amount Δ from the value I 0 of the positive focus to set I = I 0 + Δ (step 1).

【0013】次いで、X方向走査偏向器に鋸歯状電流を
流し、2Nの長さを±Nの範囲で一次元走査し、走査長
さ1毎の(2N+1)個所の検出信号をデータとしてメ
モリに記録する。さらに、X,Y走査偏向器の電流Xi
及びYi をそれぞれ以下のように設定して、複数の走査
方向θj (j=1,2,…)に対する長さ2Nの走査を
順次行い、各走査毎に(2N+1)個のデータ収集を行
う。 Xi =(−N+i)cosθji =(−N+i)sinθj i=0,1,2,
…,2N
Then, a saw-tooth current is passed through the X-direction scanning deflector to perform one-dimensional scanning of a length of 2N within a range of ± N, and detection signals at (2N + 1) points for each scanning length 1 are stored in a memory as data. Record. Further, the current X i of the X, Y scanning deflector
And Y i are respectively set as follows, and scanning of a length 2N is sequentially performed with respect to a plurality of scanning directions θ j (j = 1, 2, ...), and (2N + 1) data acquisition is performed for each scanning. To do. X i = (− N + i) cos θ j Y i = (− N + i) sin θ j i = 0,1,2,
…, 2N

【0014】走査方向(角度)θj は、0゜≦θj <1
80゜であり、図4に示すように、180゜の範囲を複
数に分割して放射状に走査を行い、検出信号をデータと
して収集する(ステップ2〜4)。各走査方向θj (j
=0,1,2,…)において、上記i=0,1,2,
…,2Nの時の検出信号は、図6の様なフォーマット
で、a0 ,a1 ,…,a2Nとしてメモリに記録される。
The scanning direction (angle) θ j is 0 ° ≦ θ j <1
The angle is 80 °, and as shown in FIG. 4, the range of 180 ° is divided into a plurality of portions to perform radial scanning, and detection signals are collected as data (steps 2 to 4). Each scanning direction θ j (j
= 0,1,2, ...), i = 0,1,2,
, 2N is recorded in the memory as a 0 , a 1 , ..., A 2N in the format as shown in FIG.

【0015】なお、ここでは簡単のために、走査長さを
2Nとし、X方向走査偏向器の電流変化幅を2Ncosθ
j 、Y方向走査偏向器の電流変化幅を2Nsinθj とし
て説明するが、実際には走査長さは500〜10μm程
度の値をとり、走査偏向器の電流変化幅もそれに応じた
値をとる。
Here, for simplification, the scanning length is 2N and the current change width of the X-direction scanning deflector is 2Ncosθ.
j, is described the current change width in the Y-direction scanning deflector as 2Nsinshita j, actually running length has a value of about 500~10Myuemu, taking current change width of the scanning deflector also accordingly value.

【0016】次に、対物レンズ7の励磁電流をI=I0
−Δに変更する(ステップ5)。そして、走査偏向器の
電流Xi 及びYi をそれぞれ以下のように設定し、ステ
ップ2で設定したのと同じ複数の走査方向θj (j=
0,1,2,…)について、4Nの長さを±2Nの範囲
で図5に示すように走査する。検出データは、各走査方
向θj (j=0,1,2,…)について走査長さ1毎に
(4N+1)個づつ収集し、図7に示すようなフォーマ
ットで、b0 ,b1 ,…,b4Nとしてメモリに記録され
る(ステップ6〜8)。 Xi =(−2N+i)cosθji =(−2N+i)sinθj i=0,1,2,
…,4N
Next, the exciting current of the objective lens 7 is I = I 0
Change to −Δ (step 5). Then, the currents X i and Y i of the scanning deflector are set as follows, respectively, and the same plural scanning directions θ j (j = j) as set in step 2 are set.
0, 1, 2, ...) are scanned over a length of 4N within a range of ± 2N as shown in FIG. Detected data is collected for each scanning direction θ j (j = 0, 1, 2, ...) By (4N + 1) for each scanning length 1, and in the format as shown in FIG. 7, b 0 , b 1 , , B4N is recorded in the memory (steps 6 to 8). X i = (− 2N + i) cos θ j Y i = (− 2N + i) sin θ j i = 0,1,2,
…, 4N

【0017】最初の処理の際には、ステップ9をスキッ
プして、像の移動方向及び移動量を求めるステップ10
に進む。同一走査方向θj において、対物レンズの励磁
電流が(I0 +Δ)の時の(2N+1)個のデータをa
k とし、対物レンズの励磁電流が(I0 −Δ)の時の
(4N+1)個のデータのうち連続する(2N+1)個
のデータをbl とする。ここで、k及びlは以下の値を
とり、データak 及びデータbl を収納するメモリの番
地を示している。 k=0,1,2,・・・・・ ,2N l(m,k)=m+k
At the time of the first processing, step 9 is skipped and step 10 for obtaining the moving direction and moving amount of the image is skipped.
Proceed to. In the same scanning direction θ j , (2N + 1) pieces of data when the exciting current of the objective lens is (I 0 + Δ)
and k, the excitation current of the objective lens and (I 0 -Δ) consecutive (4N + 1) among the pieces of data when the (2N + 1) pieces of data b l. Here, k and l take the following values, and indicate the addresses of the memories that store the data a k and the data b l . k = 0, 1, 2, ..., 2N l (m, k) = m + k

【0018】上式において、mはbl の初期番地であ
り、以下の値をとる。 m=0,1,・・・・・ ,2N 従って l(0,k)=0,1,・・・・・ ,2N l(1,k)=1,2,・・・・・ ,2N+1 : l(2N,k)=2N,2N+1,・・・・・ ,4N となり、ak 及びbl の2組の検出データについて次式
の値Am を計算し、最小の結果が得られるデータ位置m
を求める。
In the above equation, m is the initial address of b l and has the following values. m = 0,1, ..., 2N Therefore, l (0, k) = 0,1, ..., 2N l (1, k) = 1,2 ,. : L (2N, k) = 2N, 2N + 1, ..., 4N, and the value A m of the following equation is calculated for two sets of detection data of a k and b l , and the minimum result is obtained. Position m
Ask for.

【0019】[0019]

【数1】 [Equation 1]

【0020】検出記録された全走査方向のデータについ
て上記の計算を行い、演算結果Amが最小となる時の走
査方向θj を求める。図6及び図7から分かるように、
像の移動方向に走査したとき類似の信号波形図7(a)
及び(b)を示すデータが得られる。そして、図7
(a)の波形の中心を図7(b)の波形の中心に対して
移動したとき、ちょうど両波形が重なるときの移動量が
像の移動量である。すなわち、前記Am を最小とするデ
ータの走査方向θが像移動の方向として求められ、相対
アドレス p=l(m,0)−(N+1)が像の移動量
として求められる(ステップ10)。
The above calculation is performed on the detected and recorded data in all scanning directions, and the scanning direction θ j when the calculation result A m becomes the minimum is obtained. As can be seen from FIGS. 6 and 7,
Similar signal waveform diagram when scanning in the moving direction of the image (a)
And data showing (b) are obtained. And FIG.
When the center of the waveform of FIG. 7A is moved with respect to the center of the waveform of FIG. 7B, the amount of movement when the two waveforms exactly overlap is the amount of movement of the image. That is, the scanning direction θ of the data that minimizes A m is obtained as the image movement direction, and the relative address p = 1 (m, 0)-(N + 1) is obtained as the image movement amount (step 10).

【0021】以上により像の移動方向と移動量が求めら
れたので、あらかじめ実験等により決定されテーブルと
して制御装置に記憶されているアライメント用偏向器5
の駆動電流と像の移動量の関係を用い、この像の移動を
打ち消すように、アライメント用偏向器5に与える電流
値を決定し、設定制御する(ステップ11)。
Since the moving direction and the moving amount of the image are obtained as described above, the alignment deflector 5 which is determined in advance by experiments or the like and stored in the control device as a table.
Using the relationship between the drive current and the movement amount of the image, the current value given to the alignment deflector 5 is determined so as to cancel the movement of the image, and the setting is controlled (step 11).

【0022】この時、もしアライメント制御が不能であ
れば、異常終了動作を行って制御を終了し(ステップ1
2,13)、アライメント制御が正常に行われた場合に
は、その状態でステップ1〜ステップ8を繰り返して再
度データ収集を行ない、収集されたデータに基づいて下
式のずれ量Bを計算し、ずれ量Bが予め設定された値γ
以内であれば調整が正常に行なえたと判断し(ステップ
9)、処理を終了する。 B=Σ[(ak −bl(m,k)2 ]≦γ
At this time, if the alignment control is impossible, an abnormal end operation is performed to end the control (step 1
2, 13), when the alignment control is normally performed, step 1 to step 8 are repeated in that state to collect data again, and the shift amount B in the following formula is calculated based on the collected data. , The deviation amount B is a preset value γ
If it is within the range, it is determined that the adjustment can be normally performed (step 9), and the process is ended. B = Σ [( ak− bl (m, k) ) 2 ] ≦ γ

【0023】ずれ量Bがγより大きい場合には、ステッ
プ10に移り、前述のようにAm を計算して像の移動方
向と移動量を求めなおし、ステップ11によってアライ
メントをやり直す。その後、ステップ1〜ステップ9を
反復して結果を確認する。図10に実線で示すように、
アライメント用偏向器として1段の偏向器5を用いる
と、対物絞り4を通過した電子ビーム2を対物レンズ中
心に通すことができる。一方、アライメント用偏向器と
して2段の偏向器5,5’を用いると、破線で示すよう
に、対物レンズ軸芯と電子ビームが完全に一致するアラ
イメントを行うことができる。本発明は、このいずれの
場合にも適用することができる。
If the shift amount B is larger than γ, the process proceeds to step 10 to recalculate the moving direction and the moving amount of the image by calculating A m as described above, and realign the alignment in step 11. Then, steps 1 to 9 are repeated to confirm the result. As shown by the solid line in FIG.
When the one-stage deflector 5 is used as the alignment deflector, the electron beam 2 that has passed through the objective diaphragm 4 can be passed through the center of the objective lens. On the other hand, when the two-stage deflectors 5 and 5'are used as the alignment deflector, it is possible to perform alignment in which the axis of the objective lens and the electron beam are completely coincident with each other, as indicated by the broken line. The present invention can be applied to any of these cases.

【0024】また、上記説明においては走査偏向器とア
ライメント用偏向器を別配置としたが、アライメント用
偏向器が走査偏向器と一体または同一(電流加算)であ
ってもさしつかえない。以上では、対物絞り4が偏向器
上部に配置されており、アライメント装置として電磁偏
向器を用いる場合について説明したが、対物絞りが対物
レンズ中心に配置される場合においては、対物絞りの位
置をレンズ中心に正しく設定するアライメントが必要で
あり、対物絞りの機械的な移動機構が上記の偏向器に代
わるアライメント装置となる。すなわち、本発明は、機
械式であるか電磁式であるかを問わず、電子ビームの対
物レンズに対する入射方向、入射位置のいずれか、また
は両者を二次元に移動して、電子ビームを対物レンズ軸
に一致させるいかなる形式のアライメント装置にも適用
可能である。
Further, although the scanning deflector and the alignment deflector are separately arranged in the above description, the alignment deflector may be integrated with the scanning deflector or the same (current addition). Although the case where the objective diaphragm 4 is arranged above the deflector and the electromagnetic deflector is used as the alignment device has been described above, when the objective diaphragm is arranged at the center of the objective lens, the position of the objective diaphragm is set to the lens. Alignment that is set correctly at the center is required, and the mechanical movement mechanism of the objective diaphragm serves as an alignment device that replaces the above-mentioned deflector. That is, the present invention, regardless of whether it is a mechanical type or an electromagnetic type, two-dimensionally moves either the incident direction of the electron beam with respect to the objective lens, the incident position, or both to move the electron beam into the objective lens. It is applicable to any type of alignment device that matches the axis.

【0025】アライメントが完了し、像の移動が生じな
い状態において、上述のデータ収集を行った場合、各走
査方向の比較データはすべてシフト量p=0において最
小となる。従ってこのことはアライメント終了の確認に
用いることができる。走査方向の変化ステップおよび、
各走査における検出データの個数(2N)は、細かくす
るほど精度が向上するが、あまり細かくするとデータの
収集および計算に長時間を必要とし、メモリも大容量を
要する。実用的には、走査方向ステップとして3°〜3
0°、データ分割個数としてN=16〜256の範囲に
設定すれば充分である。対物電流の変化量(Δ)および
実際の走査振幅は観察倍率により変更することが望まし
い。
When the above-mentioned data acquisition is performed in a state where the alignment is completed and the image does not move, the comparison data in each scanning direction becomes minimum at the shift amount p = 0. Therefore, this can be used to confirm the end of alignment. Scan direction change step, and
The finer the number of detected data (2N) in each scan is, the more the accuracy is improved. However, if the number is too small, it takes a long time to collect and calculate the data, and the memory also needs a large capacity. Practically, the scanning direction step is 3 ° to 3 °.
It is sufficient to set 0 ° and the number of data divisions in the range of N = 16 to 256. It is desirable to change the change amount (Δ) of the objective current and the actual scanning amplitude according to the observation magnification.

【0026】[0026]

【発明の効果】以上述べたように、本発明によれば従来
手動で熟練を必要とした対物レンズ電流中心調整を、簡
単な構成で自動化することができるため、操作が単純と
なり、また高精度の調整が可能となる。また調整の完了
を正確に確認できるため、SEM性能を高い水準で維持
することができるなど、実用に際して効果が大きい。
As described above, according to the present invention, the adjustment of the current center of the objective lens, which conventionally requires manual operation, can be automated with a simple structure, so that the operation is simple and the precision is high. Can be adjusted. Further, since the completion of the adjustment can be confirmed accurately, the SEM performance can be maintained at a high level, which is very effective in practical use.

【図面の簡単な説明】[Brief description of drawings]

【図1】走査電子顕微鏡の全体構成を示す概略図。FIG. 1 is a schematic diagram showing the overall configuration of a scanning electron microscope.

【図2】走査電子顕微鏡の外観図。FIG. 2 is an external view of a scanning electron microscope.

【図3】アライメント処理手順の一例を示すフローチャ
ート。
FIG. 3 is a flowchart showing an example of an alignment processing procedure.

【図4】アライメント時の電子ビーム走査(2N長)を
示す説明図。
FIG. 4 is an explanatory diagram showing electron beam scanning (2N length) during alignment.

【図5】アライメント時の電子ビーム走査(4N長)を
示す説明図。
FIG. 5 is an explanatory diagram showing electron beam scanning (4N length) during alignment.

【図6】2N長走査データのフォーマット。FIG. 6 is a format of 2N long scan data.

【図7】4N長走査データのフォーマット。FIG. 7 is a format of 4N long scan data.

【図8】走査像の移動を示す説明図。FIG. 8 is an explanatory diagram showing movement of a scanning image.

【図9】検出信号の1例を示す説明図。FIG. 9 is an explanatory diagram showing an example of a detection signal.

【図10】アライメント用偏向器の作用を説明する図。FIG. 10 is a view for explaining the operation of the alignment deflector.

【符号の説明】[Explanation of symbols]

1…電子銃、2…電子ビーム、3…コンデンサレンズ、
4…対物絞り、5…アライメント用偏向器、6,6’…
走査偏向器、7…対物レンズ、8…試料、9…2次電子
検出器、10…高圧電源、11〜14…励磁電源、15
…インタフェース、16…CPU、17…表示装置
1 ... Electron gun, 2 ... Electron beam, 3 ... Condenser lens,
4 ... Objective diaphragm, 5 ... Alignment deflector, 6, 6 '...
Scan deflector, 7 ... Objective lens, 8 ... Sample, 9 ... Secondary electron detector, 10 ... High voltage power supply, 11-14 ... Excitation power supply, 15
... interface, 16 ... CPU, 17 ... display device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 対物レンズの励磁電流を正焦点の時の励
磁電流に対して正負に微小量変化させた異なる励磁条件
にて、電子ビームの走査方向を所定の角度間隔で変化さ
せて試料を放射状に一次元走査し、各一次元走査時に試
料から放出された検出信号波形を記憶し、同一の走査方
向について得られた前記異なる励磁条件での2つの検出
信号波形を比較し、前記2つの検出信号波形を相対的に
シフトさせたとき最も良く重なり合う部分を有する検出
信号波形が得られる一次元走査方向をミスアライメント
に起因する像の移動方向とし、該2つの検出信号波形を
最も良く重ね合わせるのに必要な両検出信号波形の相対
的なシフト量から像の移動量を決定し、該像の移動方向
及び移動量のデータに基づいて像の移動がゼロになるよ
うにアライメント装置を制御することを特徴とする走査
電子顕微鏡のアライメント方法。
1. A sample is obtained by changing the scanning direction of an electron beam at a predetermined angular interval under different exciting conditions in which the exciting current of the objective lens is changed by a small amount between positive and negative with respect to the exciting current at a positive focus. Radial one-dimensional scanning is performed, the detection signal waveforms emitted from the sample at each one-dimensional scanning are stored, two detection signal waveforms obtained in the same scanning direction under the different excitation conditions are compared, and the two When the detection signal waveforms are relatively shifted, the one-dimensional scanning direction in which the detection signal waveform having the best overlapping portion is obtained is the moving direction of the image due to the misalignment, and the two detection signal waveforms are best overlapped. The amount of movement of the image is determined from the relative shift amount of both detection signal waveforms required for A method for aligning a scanning electron microscope, which comprises controlling the position.
【請求項2】 前記アライメント装置を制御した後、前
記異なる励磁条件における各走査方向の2つの検出信号
波形の差がそれぞれシフト量0の近傍で最小となること
で、アライメントが完了したことを確認することを特徴
とする請求項一記載の走査電子顕微鏡のアライメント方
法。
2. After the alignment device is controlled, the difference between the two detection signal waveforms in the respective scanning directions under the different excitation conditions is minimized in the vicinity of the shift amount 0, thereby confirming that the alignment is completed. The alignment method for a scanning electron microscope according to claim 1, wherein:
【請求項3】 前記アライメント装置は、電子ビーム軸
に垂直な平面内で対物レンズ絞りを機械的に移動させる
ものであることを特徴とする請求項1又は2記載の走査
電子顕微鏡のアライメント方法。
3. The alignment method for a scanning electron microscope according to claim 1, wherein the alignment device mechanically moves the objective lens diaphragm in a plane perpendicular to the electron beam axis.
【請求項4】 アライメント装置は電子線偏向器である
ことを特徴とする請求項1又は2記載の走査電子顕微鏡
のアライメント方法。
4. The alignment method for a scanning electron microscope according to claim 1, wherein the alignment device is an electron beam deflector.
JP14661194A 1994-06-28 1994-06-28 Method for aligning scanning electron microscope Pending JPH0817384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14661194A JPH0817384A (en) 1994-06-28 1994-06-28 Method for aligning scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14661194A JPH0817384A (en) 1994-06-28 1994-06-28 Method for aligning scanning electron microscope

Publications (1)

Publication Number Publication Date
JPH0817384A true JPH0817384A (en) 1996-01-19

Family

ID=15411656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14661194A Pending JPH0817384A (en) 1994-06-28 1994-06-28 Method for aligning scanning electron microscope

Country Status (1)

Country Link
JP (1) JPH0817384A (en)

Similar Documents

Publication Publication Date Title
JP3951590B2 (en) Charged particle beam equipment
US7598497B2 (en) Charged particle beam scanning method and charged particle beam apparatus
US7705300B2 (en) Charged particle beam adjusting method and charged particle beam apparatus
US8207513B2 (en) Charged particle beam apparatus
US6555816B1 (en) Scanning electron microscope and sample observation method using the same
US6548811B1 (en) Transmission electron microscope apparatus with equipment for inspecting defects in specimen and method of inspecting defects in specimen using transmission electron microscope
JPH11238484A (en) Projection type charged particle microscope and substrate inspection system
US20060043293A1 (en) Charged particle beam adjustment method and apparatus
CN113125478A (en) Method and system for automatic alignment of ribbon axes
JP4581223B2 (en) Focused ion beam device
JP4928987B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
JP2002184336A (en) Charged particle beam microscope device, charged particle beam application device, charged particle beam microscopic method, charged particle beam inspection method and electron microscope
JP3524776B2 (en) Scanning electron microscope
JPH0817384A (en) Method for aligning scanning electron microscope
JP4431624B2 (en) Charged particle beam adjustment method and charged particle beam apparatus
JP3202857B2 (en) Focusing method and apparatus in charged particle beam apparatus
JP2003045370A (en) Scanning electron microscope
JP3678910B2 (en) Scanning electron microscope
JP3112541B2 (en) Astigmatism correction method for electron beam device
JPH08148108A (en) Automatic focus adjustment
JP2007194060A (en) Method and device for adjusting automatic axis of electron lens of scanning electron microscope
JP2010016007A (en) Charged particle beam adjustment method, and charged particle beam device
JPS6134222B2 (en)
JPH09223476A (en) Astigmatism correcting method for charged particle beam apparatus
JP2002216685A (en) Apparatus and method for adjusting axis