JPH0817280B2 - Oxide superconducting magnetic shield tubular body and method for producing the same - Google Patents

Oxide superconducting magnetic shield tubular body and method for producing the same

Info

Publication number
JPH0817280B2
JPH0817280B2 JP2334443A JP33444390A JPH0817280B2 JP H0817280 B2 JPH0817280 B2 JP H0817280B2 JP 2334443 A JP2334443 A JP 2334443A JP 33444390 A JP33444390 A JP 33444390A JP H0817280 B2 JPH0817280 B2 JP H0817280B2
Authority
JP
Japan
Prior art keywords
tubular body
substrate
layer
oxide superconducting
magnetic shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2334443A
Other languages
Japanese (ja)
Other versions
JPH04206696A (en
Inventor
清水  秀樹
武義 富樫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2334443A priority Critical patent/JPH0817280B2/en
Priority to US07/799,230 priority patent/US5268530A/en
Priority to CA002056523A priority patent/CA2056523C/en
Priority to EP91311123A priority patent/EP0488790B1/en
Priority to DE69112182T priority patent/DE69112182T2/en
Publication of JPH04206696A publication Critical patent/JPH04206696A/en
Publication of JPH0817280B2 publication Critical patent/JPH0817280B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、酸化物超電導体を用いた磁気シールド筒状
体及びその製造方法に関する。
TECHNICAL FIELD The present invention relates to a magnetic shield cylinder using an oxide superconductor and a method for manufacturing the same.

[従来の技術] 従来、磁気シールドのためにパーマロイ、フェライト
等の強磁性体により囲まれた空間が利用されている。ま
た、近年、研究開発が盛んな超電導体の反磁性を利用し
た磁気シールド装置等も多く提案されている。例えば、
特開平1−134998号公報では磁気シールドする空間の最
内側に超電導体を配置することが提案されている。ま
た、出願人は特願平1−97197号にて、遮蔽する磁気源
に対し、磁気源側より基板−超電導層の順で少なくとも
2層を有する磁気シールド筒を提案した。
[Prior Art] Conventionally, a space surrounded by a ferromagnetic material such as permalloy or ferrite has been used for magnetic shielding. In recent years, many magnetic shield devices using diamagnetism of superconductors, which have been actively researched and developed, have been proposed. For example,
JP-A-1-134998 proposes to dispose a superconductor at the innermost side of a space to be magnetically shielded. Further, the applicant proposed in Japanese Patent Application No. 1-97197 a magnetic shield cylinder having at least two layers in the order of substrate and superconducting layer from the magnetic source side with respect to the magnetic source to be shielded.

[発明が解決しようとする課題] しかしながら、実用的な磁気シールド体に関しては未
だ開発段階であるのが現状である。特に、実用性のある
大型磁気シールド体にあっては、機械的強度を保持する
ためには金属等の基板が必須とされている。また、高磁
気シールド性のためには一体成形により超電導体を得る
必要があるとされている。しかし、大型化するほど基板
も含め酸化物超電導体の一体成形は困難となり、装置も
大型化し工業的に好ましくない。従来技術では、一体で
積層基板を作成するために、均一に積層することが困難
であった。また、積層時に不均一部分が導入されると、
酸化物超電導体層の形成後、その部分に応力が集中し、
酸化物超電導体の特性が劣化するという問題があった。
更にまた、金属基板との反応を防止するために貴金属等
の中間層を形成し、中間層上に酸化物超電導層を形成す
るのが一般的となっているが、金属基板上に中間層を均
一に、更に中間層上に酸化物超電導層を均一に形成する
ことは難しく、そのため優れた超電導特性が得られない
おそれもある。
[Problems to be Solved by the Invention] However, at present, a practical magnetic shield is still in the development stage. In particular, in a practical large-sized magnetic shield, a substrate made of metal or the like is indispensable in order to maintain mechanical strength. Further, it is said that it is necessary to obtain a superconductor by integral molding for high magnetic shield property. However, as the size becomes larger, it becomes more difficult to integrally form the oxide superconductor including the substrate, and the size of the device becomes large, which is not industrially preferable. In the conventional technique, it is difficult to uniformly laminate the substrates because they are integrally formed. Also, if a non-uniform portion is introduced during stacking,
After the oxide superconductor layer is formed, stress concentrates on that portion,
There is a problem that the characteristics of the oxide superconductor are deteriorated.
Furthermore, it is common practice to form an intermediate layer of a noble metal or the like to prevent reaction with a metal substrate, and then form an oxide superconducting layer on the intermediate layer. It is difficult to uniformly and evenly form the oxide superconducting layer on the intermediate layer, and there is a possibility that excellent superconducting properties may not be obtained.

本発明は、酸化物超電導体を用いて磁気シールドする
ための超電導特性が優れた磁気シールド体、特に応用範
囲の広い筒状体の酸化物超電導磁気シールド体及びその
製造方法を提供することを目的とする。
It is an object of the present invention to provide a magnetic shield body having excellent superconducting properties for magnetic shielding using an oxide superconductor, particularly a tubular body oxide superconducting magnetic shield body having a wide range of applications and a method for manufacturing the same. And

[課題を解決するための手段] すなわち、本発明によれば、超電導磁気シールド筒状
体であって、基板−中間層−貴金属層−酸化物超電導層
の順で配置された構造を有し、接合により筒状体を形成
する分割基板上に中間層を積層した分割積層基板と筒状
に形成された貴金属筒状体とを接合してなる筒状積層体
上に酸化物超電導層を一体的に形成して構成されること
を特徴とする酸化物超電導磁気シールド筒状体が提供さ
れる。
[Means for Solving the Problems] That is, according to the present invention, a superconducting magnetic shield tubular body having a structure in which a substrate, an intermediate layer, a noble metal layer, and an oxide superconducting layer are arranged in this order, An oxide superconducting layer is integrally formed on a tubular laminated body obtained by joining a divided laminated substrate in which an intermediate layer is laminated on a divided substrate forming a tubular body by joining and a tubular precious metal tubular body to each other. There is provided an oxide superconducting magnetic shield tubular body, which is characterized by being formed and formed.

更にまた、接合により筒状体を形成するように構成さ
れた分割基板上に、中間層を積層した分割積層基板を作
製するとともに、貴金属筒状体を作製した後、該貴金属
筒状体と該分割積層基板を接合して筒状積層体を作製
し、次いで、該筒状積層体の貴金属層の上に酸化物超電
導層を形成することを特徴とする、酸化物超電導磁気シ
ールド筒状体の製造方法が提供される。
Furthermore, a divided laminated substrate in which an intermediate layer is laminated is produced on a divided substrate configured to form a tubular body by bonding, and after producing a precious metal tubular body, the precious metal tubular body and the A cylindrical laminated body is manufactured by joining divided laminated substrates, and then an oxide superconducting layer is formed on the noble metal layer of the cylindrical laminated body. A manufacturing method is provided.

以下、本発明について詳しく説明する。 Hereinafter, the present invention will be described in detail.

本発明の磁気シールド筒状体における筒状体は酸化物
超電導層を内側としてもあるいは外側としてもよいが、
特に磁気シールド筒状体内部に低磁場空間を得たい場合
には遮蔽する磁気源側より基板−中間層−貴金属層−酸
化物超電導層の順に配置する方が、磁気シールド筒状体
内部空間に振動により発生する基板、中間層からの磁気
ノイズの影響を除去できるために好ましい。また有底、
無底のいずれでもよい。特に、有底即ち底付筒状体とし
た場合には、同じ筒長の無底筒状体よりも高い磁気遮蔽
効果が得られ、好ましい。また、筒状体の外形状に特に
制限されず、円筒、四角筒、多角筒等使用目的及び使用
条件に合わせて適宜選択することができる。
The tubular body in the magnetic shield tubular body of the present invention may have the oxide superconducting layer inside or outside,
In particular, when it is desired to obtain a low magnetic field space inside the magnetic shield tubular body, it is better to arrange the substrate-intermediate layer-noble metal layer-oxide superconducting layer in this order from the magnetic source side to be shielded in the magnetic shield tubular interior space. It is preferable because the influence of magnetic noise from the substrate and the intermediate layer generated by the vibration can be eliminated. Also bottomed,
It may be bottomless. In particular, when a bottomed or bottomed tubular body is used, a magnetic shielding effect higher than that of a bottomless tubular body having the same tube length can be obtained, which is preferable. Further, the outer shape of the tubular body is not particularly limited, and a cylinder, a square tube, a polygonal tube or the like can be appropriately selected according to the purpose of use and use conditions.

本発明の超電導磁気シールド筒状体の構成は、基板−
中間層−貴金属層−酸化物超電導層の順に配置されるも
のである。これは、基板−酸化物超電導体層の構成で
は、基板として、酸化物超電導体の焼成温度までの高温
で酸化物超電導体の機械的強度を保持できる金属基板を
用いると、直接酸化物超電導体層と接触して焼成した場
合、焼成中に酸化物超電導体との反応が激しく、得られ
た超電導特性が低くなるからであり、一方、酸化物超電
導体との反応が少なく、超電導特性の低下を回避できる
貴金属は、それ自体で酸化物超電導体の機械的強度を保
持する場合、貴金属基板の厚さが厚くなり、コスト的に
問題となるからである。さらに、セラミックスを基板と
して用いる場合、大型基板を得ることが難しいという問
題がある。そのため、本発明の超電導磁気シールド筒状
体の構成は、基板として、酸化物超電導体の焼成温度ま
で、酸化物超電導体の機械的強度を保持できる材料を用
い、基板と酸化物超電導層の間に、基板と酸化物超電導
層との反応を防止する貴金属層を配置し、さらに、貴金
属層と基板を酸化物超電導体の焼成温度から液体窒素等
の極低温度までの温度範囲において接着することが可能
な中間層を配置することから成る。
The superconducting magnetic shield tubular body of the present invention has a substrate-
The intermediate layer, the noble metal layer, and the oxide superconducting layer are arranged in this order. This is because in the structure of the substrate-oxide superconductor layer, when a metal substrate capable of maintaining the mechanical strength of the oxide superconductor at a high temperature up to the firing temperature of the oxide superconductor is used as the substrate, the oxide superconductor can be directly used. This is because if the material is in contact with the layer and fired, the reaction with the oxide superconductor is violent during firing, and the obtained superconducting properties are low, while the reaction with the oxide superconductor is low and the superconducting property is reduced. This is because the noble metal that can avoid the problem becomes costly because the thickness of the noble metal substrate becomes large when the mechanical strength of the oxide superconductor is maintained by itself. Further, when ceramics is used as a substrate, it is difficult to obtain a large substrate. Therefore, the configuration of the superconducting magnetic shield tubular body of the present invention, as the substrate, using a material that can maintain the mechanical strength of the oxide superconductor up to the firing temperature of the oxide superconductor, between the substrate and the oxide superconducting layer. , A noble metal layer for preventing the reaction between the substrate and the oxide superconducting layer, and further bonding the noble metal layer and the substrate in the temperature range from the firing temperature of the oxide superconductor to an extremely low temperature such as liquid nitrogen. It comprises arranging an intermediate layer capable of

本発明に用いる基板としては、酸化物超電導体の機械
的強度を保持できるものであればよく、例えば、ジルコ
ニア、チタニア等のセラミックスやSUS430、SUS310、SU
S304、インコネル、インコロイ、ハステロイ等の金属を
用いることができる。基板の厚さは、特に制限されな
い。
The substrate used in the present invention may be one that can maintain the mechanical strength of the oxide superconductor, for example, ceramics such as zirconia, titania or SUS430, SUS310, SU
Metals such as S304, Inconel, Incoloy, Hastelloy, etc. can be used. The thickness of the substrate is not particularly limited.

また、本発明の中間層としては、基板と貴金属の間に
配置され、基板と貴金属を接着する機能があればよい。
例えば、ガラス、各種セラミックス、金属ペースト、貴
金属ペーストなどを用いることができる。この場合、特
に、中間層を基板と貴金属層との間に全面的でなく部分
的に、例えば、ストライプ状、散点状、格子状またはラ
ンダムに配置することが好ましい(第1図(b)参
照)。ガラス層の部分的配置は、貴金属層上に形成され
る酸化物超電導層を含めて磁気シールド体全体として、
超電導特性発現のための液体窒素等の極低温度と室温間
を繰り返す冷熱サイクルの際に受ける熱衝撃を緩和し、
安定した磁気シールド特性を維持することができ、好適
である。
Further, the intermediate layer of the present invention may be disposed between the substrate and the noble metal and has a function of adhering the substrate and the noble metal.
For example, glass, various ceramics, metal paste, noble metal paste, etc. can be used. In this case, it is particularly preferable to dispose the intermediate layer between the substrate and the noble metal layer partially, not entirely, for example, in a stripe pattern, a scattered dot pattern, a lattice pattern or a random pattern (FIG. 1 (b)). reference). The partial arrangement of the glass layer is as a whole magnetic shield including the oxide superconducting layer formed on the noble metal layer,
To alleviate the thermal shock received during the cooling and heating cycle that repeats between the extremely low temperature of liquid nitrogen and the room temperature for manifesting superconducting properties,
This is preferable because it can maintain stable magnetic shield characteristics.

中間層上に形成される貴金属層は、金、銀等により構
成され、特に、安価な銀を用いることが好ましい。貴金
属層の厚さは、酸化物超電導体と基板または中間層との
反応を防止できる厚さであればよい。特に、中間層と貴
金属層の厚さは、酸化物超電導層、貴金属層、中間層、
基板の熱膨張率、弾性率、機械的強度、及び酸化物超電
導層、基板の厚さに合わせて、酸化物超電導層に発生す
る熱応力を低減するように適宜選択すればよい。中間層
を部分的に配置する場合、中間層の厚さを50〜250μ
m、貴金属層の厚さを50〜700μmにすることが好まし
い。中間層の厚さがこの範囲から外れる場合には、酸化
物超電導層に発生する熱応力が酸化物超電導体の機械的
強度を越え、液体窒素等の極低温度に冷却した際に、酸
化物超電導層にクラックを引き起こす原因となる。ま
た、貴金属層の厚さが50μm未満の場合、上記緩和材と
しての作用が得られず、また、700μmを越える場合、
上記緩和材としての作用よりも、酸化物超電導層と貴金
属層の熱膨張差による熱応力が支配的となる場合があ
り、特に緩和材としての作用は向上せず、コスト増加を
引き起す原因となるので好ましくない。
The noble metal layer formed on the intermediate layer is composed of gold, silver or the like, and it is particularly preferable to use inexpensive silver. The noble metal layer may have any thickness as long as it can prevent the reaction between the oxide superconductor and the substrate or the intermediate layer. In particular, the thickness of the intermediate layer and the noble metal layer, the oxide superconducting layer, the noble metal layer, the intermediate layer,
The thermal expansion coefficient, elastic modulus, mechanical strength of the substrate, and the thickness of the oxide superconducting layer and the substrate may be appropriately selected so as to reduce the thermal stress generated in the oxide superconducting layer. When partially disposing the intermediate layer, the thickness of the intermediate layer should be 50-250μ.
m, and the thickness of the noble metal layer is preferably 50 to 700 μm. If the thickness of the intermediate layer deviates from this range, the thermal stress generated in the oxide superconducting layer exceeds the mechanical strength of the oxide superconductor, and when the oxide is cooled to an extremely low temperature such as liquid nitrogen, It causes cracks in the superconducting layer. Further, when the thickness of the noble metal layer is less than 50 μm, the action as the above-mentioned relaxation material cannot be obtained, and when it exceeds 700 μm,
There is a case where the thermal stress due to the difference in thermal expansion between the oxide superconducting layer and the noble metal layer becomes dominant rather than the action as the relaxing material, and the action as the relaxing material is not particularly improved, and causes a cost increase. Therefore, it is not preferable.

本発明における酸化物超電導体としては、特に限定さ
れるものでなく、例えば、M−Ba−Cu−O系化合物で、
MがSc,Y及びLa,Eu,Gd,Er,Yb,Lu等のランタニドから選
ばれる一種以上の希土類元素を含む多層ペロブスカイト
構造を有する希土類系酸化物超電導体、また例えばSi2S
r2Ca1Cu2OxやBi2Sr2Ca2Cu3Oxに代表される組成を有する
ビスマス系(Bi系)超電導体等いずれの酸化物超電導体
でもよい。
The oxide superconductor in the present invention is not particularly limited, and examples thereof include M-Ba-Cu-O based compounds,
A rare earth oxide superconductor having a multi-layer perovskite structure in which M contains one or more rare earth elements selected from lanthanides such as Sc, Y and La, Eu, Gd, Er, Yb, Lu, and Si 2 S, for example.
Any oxide superconductor such as a bismuth-based (Bi-based) superconductor having a composition represented by r 2 Ca 1 Cu 2 O x and Bi 2 Sr 2 Ca 2 Cu 3 O x may be used.

本発明の超電導磁気シールド筒状体は、上記のように
基板−中間層−貴金属層−酸化物超電導層の構造を有
し、更に筒状体を構成する基板及び中間層は一体的に形
成することなく、分割基板に中間層を積層した分割積層
基板を組合わせ接合して筒状体を構成し、貴金属層は予
め筒状に形成し、分割積層基板と共に筒状積層体とし、
更に、酸化物超電導層は一体的に形成するものである。
この場合、分割基板の分割態様及び形状は各種の形態を
採ることができる。
The superconducting magnetic shield tubular body of the present invention has the structure of substrate-intermediate layer-noble metal layer-oxide superconducting layer as described above, and the substrate and the intermediate layer constituting the tubular body are integrally formed. Without forming a cylindrical laminated body by combining and joining the divided laminated substrates in which the intermediate layer is laminated on the divided substrates, the noble metal layer is formed in a tubular shape in advance, and the divided laminated substrates are formed into a cylindrical laminated body.
Further, the oxide superconducting layer is integrally formed.
In this case, the division mode and shape of the divided substrate can take various forms.

例えば、第1図及び第2図に基板の分割形態と分割基
板の形状の典型的な例を示した。第1図(a)は無底の
筒状体の分割態様であって、第1図(b)に示す分割積
層基板7を組合せ接合するもので、筒状体を軸方向に平
行に4分割する態様である。
For example, FIG. 1 and FIG. 2 show typical examples of the substrate division mode and the divided substrate shape. FIG. 1 (a) shows a mode of division of a bottomless tubular body, in which the divided laminated substrates 7 shown in FIG. 1 (b) are combined and joined, and the tubular body is divided into four parallel to the axial direction. It is a mode to do.

第2図(a)〜(d)は底付筒状体の軸方向に平行に
分割する態様であり、第2図(a)は筒部と底部とを連
続的に分割形成する態様であり、(b)は筒部と底部と
を別々に形成分割する態様であり、また(c)は筒部と
底部とを別々に形成し且つ筒部のみ分割する態様であ
る。尚、第2図(d)は二つの開口部を有する筒状体で
あって、その内径を異ならせた態様を示す。
2 (a) to (d) show a mode in which the bottomed tubular body is divided parallel to the axial direction, and FIG. 2 (a) shows a mode in which the tubular portion and the bottom portion are continuously formed. , (B) is a mode in which the cylindrical portion and the bottom portion are separately formed and divided, and (c) is a mode in which the cylindrical portion and the bottom portion are separately formed and only the cylindrical portion is divided. It should be noted that FIG. 2 (d) shows a cylindrical body having two openings and different inner diameters.

本発明において基板の分割態様は、上記のように各種
あるが磁気シールド筒状体の使用目的、使用条件、中間
層,貴金属層及び酸化物超電導層の種類、更に下記で説
明する分割体の接合方法等により好適な態様を適宜選択
することができる。
In the present invention, there are various ways of dividing the substrate as described above, but the purpose of use of the magnetic shield tubular body, the use conditions, the type of the intermediate layer, the noble metal layer and the oxide superconducting layer, and the joining of the divided bodies described below. A suitable aspect can be appropriately selected depending on the method and the like.

上記のように分割された基板の分割基板は、組合わせ
て接合し筒状体を形成する。この分割基板の接合におい
ても、各種の態様がある。
The divided substrates of the substrates divided as described above are combined and joined to form a tubular body. There are various modes for joining the divided substrates.

例えば、第3図に接合の典型的な態様を示した。第3
図(a)においては、基板分割体1にフランジを設け、
フランジ4をナット5とボルト6により接合する態様で
あり、第3図(b)は分割体の接合部8を突き合わせて
接合する態様であり、基板が金属であれば溶接等で、セ
ラミックであればガラス接合等の公知の方法により接合
することができる。
For example, FIG. 3 shows a typical mode of joining. Third
In FIG. (A), a flange is provided on the board division body 1,
FIG. 3B shows a mode in which the flange 4 is joined by the nut 5 and the bolt 6, and FIG. 3B shows a mode in which the joint portions 8 of the divided bodies are abutted and joined together. For example, they can be joined by a known method such as glass joining.

本発明において、中間層は上記基板の分割基板上に筒
状体に接合形成する前に形成する。
In the present invention, the intermediate layer is formed on the divided substrates of the above-mentioned substrate before being bonded and formed into a cylindrical body.

分割基板上に形成する中間層は、分割基板の接合の態
様に合わせて各種の態様を採ることができる。例えば、
第3図において、中間層は部分的接合のガラス層2から
構成され、第3図(a)ではフランジ部4上を除いた分
割基板上に厚さ100〜200μmのガラス層2を形成する。
また、第3図(b)は、基板にフランジを設けない場合
で、それぞれ分割基板1上に中間層のガラス層2を形成
した分割積層基板7の態様を示している。
The intermediate layer formed on the divided substrate can take various forms according to the joining mode of the divided substrates. For example,
In FIG. 3, the intermediate layer is composed of a partially bonded glass layer 2, and in FIG. 3A, the glass layer 2 having a thickness of 100 to 200 μm is formed on the divided substrate except the flange portion 4.
Further, FIG. 3B shows a mode of the divided laminated substrate 7 in which the glass layer 2 of the intermediate layer is formed on each of the divided substrates 1 when the substrate is not provided with the flange.

次に、第1図(c)〜(e)に貴金属層形成の態様を
示す。例えば、第1図(c)において、厚さ300〜500μ
mの銀箔を重ね合わせ、または突き合わせによって溶接
して銀の筒状体3を作製し、前記分割体積層基板と接合
するまで各種材質で作製された芯材により支持を行な
う。
Next, FIGS. 1 (c) to (e) show a mode of forming the noble metal layer. For example, in FIG. 1 (c), the thickness is 300 to 500 μ.
The silver foils of m are overlapped or welded by butting to produce the silver tubular body 3, and the silver tubular body 3 is supported by the core material made of various materials until it is joined to the divided body laminated substrate.

上記、銀箔の溶接方法は、第1図(d)に示すよう
に、一方のAg層を他方のAg層上まで延ばしてAg層を重ね
合わせて二重とし、上Ag層の先端部と下Ag層との接点9
を溶接またはAgペーストを用いて接合するか、または第
1図(e)に示すように、Ag層の接点9で溶接またはAg
ペーストを用いて接合する。Agペーストを用いて接合す
る場合には、Agペーストを塗布後、約800〜900℃で焼付
け、接合を完成させる。また、Agの中間層上には、酸化
物超電導層を形成するため接合の溶接部及びAgペースト
塗布部を接合後、ダラインダー等により平滑化するのが
好ましい。
As shown in FIG. 1 (d), the above-mentioned silver foil welding method is such that one Ag layer is extended to the other Ag layer and the Ag layers are overlapped to form a double layer. Contact with Ag layer 9
Are welded or joined using Ag paste, or as shown in FIG. 1 (e), welded or Ag at the contact 9 of the Ag layer.
Join using paste. In the case of joining using Ag paste, the Ag paste is applied and then baked at about 800 to 900 ° C. to complete the joining. Further, it is preferable that the welded portion for joining and the Ag paste applied portion for joining to form the oxide superconducting layer are joined on the intermediate layer of Ag and then smoothed by a darender or the like.

第1図において、上記のようにして作製された銀の筒
状体3の周囲に、前記分割積層基板7を巻き付けて組合
せた後、ガラス溶融温度で焼成して、分割積層基板7の
ガラス層2と銀の筒状体3を接合した後、各分割積層基
板7をフランジ締め、または溶接によって接合して一体
とし、筒状積層体とする。そして、銀の筒状体3の内側
面上に酸化物超電導層11を形成することにより、酸化物
超電導磁気シールド筒状体を得る。
In FIG. 1, the divided laminated substrate 7 is wound around the silver cylindrical body 3 produced as described above and combined, and then the laminated laminated substrate 7 is baked at a glass melting temperature to form a glass layer of the divided laminated substrate 7. After joining 2 and the silver tubular body 3, the divided laminated substrates 7 are joined together by flange fastening or welding to form a tubular laminated body. Then, by forming the oxide superconducting layer 11 on the inner side surface of the silver tubular body 3, an oxide superconducting magnetic shield tubular body is obtained.

第3図(b)において、金属基板、貴金属層をそれぞ
れ溶接する場合において、帰属基板、貴金属層の融点が
大きく異なるときには、高融点材料側を溶接する際に、
低融点材料が一部溶融する場合があり、そのような場合
には必ずしも接合断面部全面を溶接する必要はなく、肉
盛溶接等を用い、実用上の機械的強度が満足されればよ
い。
In FIG. 3 (b), when the metal substrate and the noble metal layer are respectively welded, and the melting points of the belonging substrate and the noble metal layer are largely different, when welding the high melting point material side,
There is a case where the low melting point material partially melts, and in such a case, it is not always necessary to weld the entire joint cross section, and overlay welding or the like may be used as long as the practical mechanical strength is satisfied.

本発明の酸化物超電導磁気シールド筒状体は、上記の
ように筒状積層体として構成された基板、中間層及び貴
金属層上に前記の酸化物超電導体の層を一体的に形成し
て基板−中間層−貴金属層−酸化物超電導層の構造とす
る。酸化物超電導層を貴金属層上に形成する方法は、ス
プレー等の塗布成形、ドクターブレード法等公知のいず
れの方法を用いてもよい。通常は、スプレー塗布法が用
いられ、塗布後約800〜1150℃で焼成して酸化物超電導
層を形成する。酸化物超電導層の厚さは、特に限定する
ものでなく、実用上有効な磁気シールド能を得るために
必要な超電導特性、超電導材料によって適宜選択すれば
よい。
The oxide superconducting magnetic shield tubular body of the present invention is a substrate formed by integrally forming a layer of the above oxide superconductor on the substrate, the intermediate layer and the noble metal layer which are configured as a tubular laminate as described above. -Intermediate layer-noble metal layer-oxide superconducting layer structure. As a method for forming the oxide superconducting layer on the noble metal layer, any known method such as spray molding or the like and doctor blade method may be used. Usually, a spray coating method is used, and after coating, baking is performed at about 800 to 1150 ° C. to form an oxide superconducting layer. The thickness of the oxide superconducting layer is not particularly limited and may be appropriately selected depending on the superconducting characteristics and the superconducting material required to obtain a practically effective magnetic shielding ability.

本発明の底付筒状体においては、該筒状体の軸方向の
断面において筒部と底部との連続部が湾曲部、鈍角部を
有して形成されるのが好ましい。底部と筒部とが湾曲、
鈍角でなく鋭角、直角等の角度で連続する場合は、磁気
シールド体として、超電導特性発現のための液体窒素等
の極低温度と室温間を繰り返す冷熱サイクルの際に受け
る熱衝撃によって、その部分に応力が集中しクラック等
が発生して、磁気シールド特性が著しく劣化するため好
ましくない。また、湾曲部の曲率半径Rは5mm以上であ
るのが好ましい。R<5mmの場合は磁気シールド体とし
て、超電導特性発現のための液体窒素等の極低温度と室
温間を繰り返す冷熱サイクルの際に受ける熱衝撃によっ
て、その部分に応力が集中しクラック等が発生して、磁
気シールド特性が著しく劣化するため好ましくない。さ
らに、筒状体の底部を構成する各部材はそれぞれ鈍角に
て接続することが、上記と同様の理由で好ましい。
In the bottomed tubular body of the present invention, it is preferable that a continuous portion of the tubular portion and the bottom portion is formed to have a curved portion and an obtuse angle portion in an axial cross section of the tubular body. The bottom and the cylinder are curved,
When it is continuous at an acute angle, not an obtuse angle, a right angle, etc., it is used as a magnetic shield body due to the thermal shock that is received during a thermal cycle that repeats between extremely low temperature of liquid nitrogen for manifesting superconducting characteristics and room temperature. The stress is concentrated on the surface and cracks are generated, which significantly deteriorates the magnetic shield characteristics, which is not preferable. The radius of curvature R of the curved portion is preferably 5 mm or more. When R <5mm, as a magnetic shield, stress is concentrated in that part due to thermal shock that is received during the heat cycle that repeats between extremely low temperature of liquid nitrogen for manifesting superconducting characteristics and room temperature, and cracks occur. Then, the magnetic shield characteristics are significantly deteriorated, which is not preferable. Further, it is preferable to connect the respective members forming the bottom of the tubular body at obtuse angles for the same reason as above.

第4図(a)は底付筒状体13の底部14が半球状を呈
し、第4図(b)は底付筒状体13の底部14と筒部12との
接続部15が湾曲部を有するものである。一方、第4図
(c)は底付筒状体13の底部14が頭部切欠円錐体形状を
呈するものである。尚、第4図(d)では、底部14は平
板状であり、筒部12と直角に接続しているものである。
In FIG. 4 (a), the bottom portion 14 of the bottomed tubular body 13 has a hemispherical shape, and in FIG. 4 (b), the connecting portion 15 between the bottom portion 14 of the bottomed tubular body 13 and the tubular portion 12 is a curved portion. Is to have. On the other hand, in FIG. 4 (c), the bottom portion 14 of the bottomed tubular body 13 has the shape of a truncated conical head. In FIG. 4 (d), the bottom portion 14 has a flat plate shape and is connected to the tubular portion 12 at a right angle.

第4図に示した各種の底部形状、あるいは底部と筒部
との接続形状は、第5図(a)のように曲面状の場合、
上記した如く曲率半径rは5mm以上とすることが酸化物
超電導層に応力が集中せず、好ましい。
When the various bottom shapes shown in FIG. 4 or the connection shape between the bottom and the cylinder are curved as shown in FIG. 5 (a),
As described above, it is preferable that the radius of curvature r be 5 mm or more because stress is not concentrated on the oxide superconducting layer.

また、第5図(b)のように、底部14と筒部12とがあ
る角度で接続する場合には、その接続角度は90°を超え
る鈍角であることが好ましい。
Further, as shown in FIG. 5 (b), when the bottom portion 14 and the cylindrical portion 12 are connected at an angle, the connection angle is preferably an obtuse angle exceeding 90 °.

また、本発明の底付筒状体において、第2図(d)に
示すように、内径を異なる二つの開口部を有する筒状体
とすると、センサ等の配線が導入できる小径の開口部を
有する磁気シールド筒状体となり、好ましい。
In addition, in the bottomed tubular body of the present invention, as shown in FIG. 2 (d), when the tubular body has two openings having different inner diameters, a small-diameter opening into which wiring such as a sensor can be introduced is formed. It is preferable because the magnetic shield has a tubular body.

[実施例] 以下、本発明を実施例により詳細に説明する。但し、
本発明は下記実施例により制限されるものではない。
[Examples] Hereinafter, the present invention will be described in detail with reference to Examples. However,
The present invention is not limited to the examples below.

(実施例1) 第1図は本発明の基板筒状体の分割形態の一実施例を
示した説明図である。内径100mmφ、長さ450mmの円筒体
が組合わせて構成されるように、第1図(a)に示した
筒状体の軸方向に平行に分割する態様で、基板となるイ
ンコネルを用いて、4分割した分割体1を4個製造し
た。各分割体1には接合のためのフランジ4をそれぞれ
分割接合部の2ヵ所に設けた。まず、各分割体1をサン
ドブラストにより表面処理を行い、その後、中間層のガ
ラス層2を30mm間隔の格子状で形成するために紙テープ
でマスキングし、ホーロー用釉薬ガラススラリーをスプ
レー塗布して、800〜900℃で1時間焼成し、100μmの
厚さで、格子状のガラス層2をフランジ4を除く各分割
体1上に形成して分割積層基板7を作製した。
(Embodiment 1) FIG. 1 is an explanatory view showing an embodiment of a divided form of a tubular substrate of the present invention. Using Inconel as a substrate in a manner of dividing the cylindrical body shown in FIG. 1 (a) in parallel with the axial direction so that a cylindrical body having an inner diameter of 100 mmφ and a length of 450 mm is constructed in combination, Four divided bodies 1 divided into four were manufactured. Each divided body 1 was provided with flanges 4 for joining at two places of the divided joints. First, each divided body 1 is subjected to a surface treatment by sandblasting, and then, a glass layer 2 as an intermediate layer is masked with a paper tape to form a grid pattern of 30 mm intervals, and a glazing glass slurry for enamel is spray-applied to 800 After firing at ˜900 ° C. for 1 hour, a grid-like glass layer 2 having a thickness of 100 μm was formed on each divided body 1 excluding the flange 4 to produce a divided laminated substrate 7.

次いで、肉厚300μmのAg箔を突合わせ溶接により外
径100mmのAgの筒状体3を作製し、これを金属製の芯材
により補強して支持した。次に、上記中間層のガラス層
焼付け済みの分割積層基板7をAgの筒状体3の周囲に巻
き付けて組合わせた後、850〜900℃で、1時間加熱し
て、ガラス層2とAgの筒状体3とを接合した。その後、
ガラス層2及び銀の筒状体3を積層形成した4個の分割
体のそれぞれのフランジ4を合わせ、ボルト6とナット
5により第3図(a)に示す態様で固定して筒状積層体
9を構成した。
Next, an Ag foil having a thickness of 300 μm was butt-welded to produce an Ag tubular body 3 having an outer diameter of 100 mm, which was reinforced by a metallic core material and supported. Next, the intermediate laminated glass layer-baked divided laminated substrate 7 is wrapped around the Ag cylindrical body 3 and combined, and then heated at 850 to 900 ° C. for 1 hour to form the glass layer 2 and Ag. And the cylindrical body 3 of No. 3 were joined. afterwards,
The tubular layered body is obtained by aligning the respective flanges 4 of the four divided bodies formed by laminating the glass layer 2 and the silver tubular body 3 and fixing them in the manner shown in FIG. 9 was configured.

上記のようにして得られた筒状積層体10のAg層上に、
Bi2Sr2CaCu2Oxを含有するスラリーをスプレー塗布し
て、酸素雰囲気中、875〜900℃で30分間部分溶融した
後、850℃まで冷却速度1℃/分で徐冷し、850℃で15時
間結晶化した。その後、窒素雰囲気に変え、450〜700℃
で10時間熱処理して厚さ250μmのBi系酸化物超電導層1
1を形成し、酸化物超電導円筒体を得た。
On the Ag layer of the tubular laminate 10 obtained as described above,
A slurry containing Bi 2 Sr 2 CaCu 2 O x is spray-coated and partially melted in an oxygen atmosphere at 875 to 900 ° C for 30 minutes, and then gradually cooled to 850 ° C at a cooling rate of 1 ° C / minute, and then 850 ° C. It was crystallized for 15 hours. After that, change to nitrogen atmosphere, 450-700 ℃
250 µm thick Bi-based oxide superconducting layer 1
1 was formed to obtain an oxide superconducting cylinder.

得られた酸化物超電導円筒体は、目視観察にて外観上
は良好であり、また冷熱サイクル評価も良好であった。
これらの結果を第1表に示した。
The obtained oxide superconducting cylinder was good in appearance by visual observation, and the thermal cycle evaluation was also good.
The results are shown in Table 1.

なお、冷熱サイクル評価は、酸化物超電導円筒体を液
体窒素中に浸漬し、円筒体全体が液体窒素温度となった
後、30分保持して磁気シールド能を測定した。その後、
円筒体を液体窒素中から取り出して室温に放置し、円筒
体全体が室温になった後30分保持する操作を1サイクル
とし、再び液体窒素中に浸漬、保持、磁気シールド能測
定、室温取り出し、放置、保持とサイクルを5回繰り返
し、1回目と5回目の冷熱サイクル磁気シールド能とを
それぞれ次式にて比較し、80%以上を○、50%以上を
△、50%未満を×とした。
In the thermal cycle evaluation, the oxide superconducting cylinder was immersed in liquid nitrogen, the whole cylinder was brought to the liquid nitrogen temperature, and then held for 30 minutes to measure the magnetic shielding ability. afterwards,
One cycle consists of taking a cylinder out of liquid nitrogen and allowing it to stand at room temperature and holding it for 30 minutes after the whole cylinder has reached room temperature. It is again immersed in liquid nitrogen, held, the magnetic shield capacity is measured, and it is taken out at room temperature. The cycle of standing, holding and cycling was repeated 5 times, and the first and the 5th thermal cycle magnetic shield capacities were compared by the following formulas, and 80% or more was marked with ◯, 50% or more was marked with Δ, and less than 50% was marked with x. .

また、外観評価は、ガラス接合部不均一をa,銀溶接不
十分をbとした。
In addition, the appearance was evaluated as "a" for non-uniformity of the glass joint and "b" for insufficient silver welding.

(実施例2〜15) 第1表に示した底付または底無しの円筒体を、各円筒
体の寸法、基板の材質、分割数及び接合形態、中間層の
Ag層の厚さ及び接合形態をそれぞれ第1表に示したよう
にし、実施例1と同様にして各酸化物超電導磁気シール
ド筒状体を得て、外観及び冷熱サイクル評価を行った。
その結果を第1表に示した。
(Examples 2 to 15) The bottomed or non-bottomed cylindrical body shown in Table 1 was used to measure the dimensions of each cylindrical body, the material of the substrate, the number of divisions and the bonding form,
The thickness of the Ag layer and the bonding form were set as shown in Table 1, and each oxide superconducting magnetic shield tubular body was obtained in the same manner as in Example 1, and the appearance and the cooling / heating cycle evaluation were performed.
The results are shown in Table 1.

(比較例1〜10) 筒状基板を一体的に形成した以外は、実施例1と同様
にして第1表に示した各酸化物超電導磁気シールド筒状
体を得て、外観及び冷熱サイクル評価を行った。その結
果を第1表に示した。
(Comparative Examples 1 to 10) Each oxide superconducting magnetic shield tubular body shown in Table 1 was obtained in the same manner as in Example 1 except that the tubular substrate was integrally formed, and the appearance and the thermal cycle evaluation I went. The results are shown in Table 1.

上記の実施例及び比較例より明らかなように、本発明
の分割基板を用いて形成した酸化物超電導磁気シールド
筒状体は、酸化物超電導層等が均一化され、比較例に比
べて、外観、冷熱サイクル評価共に優れていることが分
る。
As is clear from the above Examples and Comparative Examples, the oxide superconducting magnetic shield tubular body formed by using the divided substrate of the present invention has a uniform oxide superconducting layer, etc. It turns out that both the thermal cycle evaluation are excellent.

[発明の効果] 本発明の酸化物超電導磁気シールド筒状体は、基板を
分割して形成するため、大型な筒状体であっても製造が
容易であり、且つ各層の接合が均一に行われるため得ら
れる筒状体の磁気シールド能も安定し、極めて実用性が
高く工業的に有用である。
[Effects of the Invention] The oxide superconducting magnetic shield tubular body of the present invention is formed by dividing the substrate, so that even if it is a large tubular body, it is easy to manufacture and each layer is uniformly joined. Since the obtained cylindrical body has a stable magnetic shield ability, it is highly practical and industrially useful.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の無底の基板筒状体の分割形態の一実施
例を示した説明図、第2図は底付基板筒状体の分割形態
の一実施例を示した概要図、第3図は本発明の基板及び
中間層の接合の一実施例を示した断面説明図である。第
4図は超電導磁気シールド筒状体の筒軸方向に平行な断
面を示す模式図、第5図は筒状体の筒軸方向に平行な断
面を示す部分模式図である。 1…基板の分割体、2…ガラス層(中間層) 3…銀の筒状体、4…フランジ、5…ナット 6…ボルト、7…分割積層基板、8…接合部 9…接点、10…筒状積層体
FIG. 1 is an explanatory view showing an example of a divided form of a bottomless tubular substrate of the present invention, and FIG. 2 is a schematic view showing an example of a divided form of a bottomed tubular substrate. FIG. 3 is a cross-sectional explanatory view showing an example of joining the substrate and the intermediate layer of the present invention. FIG. 4 is a schematic diagram showing a cross section of the superconducting magnetic shield tubular body parallel to the cylinder axis direction, and FIG. 5 is a partial schematic diagram showing a cross section of the tubular body parallel to the cylinder axis direction. DESCRIPTION OF SYMBOLS 1 ... Divided body of substrate, 2 ... Glass layer (intermediate layer) 3 ... Cylindrical body of silver, 4 ... Flange, 5 ... Nut 6 ... Bolt, 7 ... Divided laminated board, 8 ... Joined portion 9 ... Contact, 10 ... Tubular laminate

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】超電導磁気シールド筒状体であって、基板
−中間層−貴金属層−酸化物超電導層の順で配置された
構造を有し、接合により筒状体を形成する分割基板上に
中間層を積層した分割積層基板と筒状に形成された貴金
属筒状体とを接合してなる筒状積層体上に酸化物超電導
層を一体的に形成して構成されることを特徴とする酸化
物超電導磁気シールド筒状体。
1. A superconducting magnetic shield tubular body having a structure in which a substrate, an intermediate layer, a noble metal layer, and an oxide superconducting layer are arranged in this order, and the tubular body is formed on the divided substrate by bonding. It is characterized in that an oxide superconducting layer is integrally formed on a tubular laminate formed by joining a divided laminated substrate in which an intermediate layer is laminated and a tubular noble metal tubular body. Oxide superconducting magnetic shield tubular body.
【請求項2】前記分割体の接合が、筒状体の軸方向に平
行である請求項1記載の酸化物超電導磁気シールド筒状
体。
2. The oxide superconducting magnetic shield tubular body according to claim 1, wherein the joining of the divided bodies is parallel to the axial direction of the tubular body.
【請求項3】基板が金属で、且つ中間層がセラミックス
である請求項1記載の酸化物超電導磁気シールド筒状
体。
3. The tubular body of oxide superconducting magnetic shield according to claim 1, wherein the substrate is metal and the intermediate layer is ceramics.
【請求項4】前記筒状体が底付筒状体であり、筒部と底
部とが曲率半径が5mm以上の湾曲部を有して及び/また
は鈍角にて接続形成した請求項1、2または3記載の酸
化物超電導磁気シールド筒状体。
4. The tubular body is a tubular body with a bottom, and the tubular portion and the bottom portion have a curved portion with a radius of curvature of 5 mm or more and / or are connected at an obtuse angle. Alternatively, the oxide superconducting magnetic shield cylindrical body according to the item 3.
【請求項5】筒状体の底部を構成する各部材を鈍角にて
接続した請求項4記載の酸化物超電導磁気シールド筒状
体。
5. The oxide superconducting magnetic shield tubular body according to claim 4, wherein each member constituting the bottom of the tubular body is connected at an obtuse angle.
【請求項6】基板が金属で、且つ中間層がガラスであ
り、該ガラス層が該基板上に部分的に配置されている請
求項1〜5のいずれかに記載の酸化物超電導磁気シール
ド筒状体。
6. The oxide superconducting magnetic shield tube according to claim 1, wherein the substrate is a metal, the intermediate layer is glass, and the glass layer is partially disposed on the substrate. Shape.
【請求項7】接合により筒状体を形成するように構成さ
れた分割基板上に、中間層を積層した分割積層基板を作
製するとともに、貴金属筒状体を作製した後、該貴金属
筒状体と該分割積層基板を接合して筒状積層体を作製
し、次いで、該筒状積層体の貴金属層の上に酸化物超電
導層を形成することを特徴とする、酸化物超電導磁気シ
ールド筒状体の製造方法。
7. A divided laminated substrate in which an intermediate layer is laminated on a divided substrate configured to form a tubular body by bonding, and after producing a precious metal tubular body, the precious metal tubular body is produced. And an oxide superconducting magnetic shield tubular shape, characterized in that a tubular laminated body is produced by bonding the divided laminated substrate and the divided laminated substrate, and then an oxide superconducting layer is formed on the noble metal layer of the tubular laminated body. Body manufacturing method.
JP2334443A 1990-11-30 1990-11-30 Oxide superconducting magnetic shield tubular body and method for producing the same Expired - Lifetime JPH0817280B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2334443A JPH0817280B2 (en) 1990-11-30 1990-11-30 Oxide superconducting magnetic shield tubular body and method for producing the same
US07/799,230 US5268530A (en) 1990-11-30 1991-11-27 Superconductive tube for magnetic shielding and manufacturing method therefor
CA002056523A CA2056523C (en) 1990-11-30 1991-11-28 Superconductive tube for magnetic shielding and manufacturing method therefor
EP91311123A EP0488790B1 (en) 1990-11-30 1991-11-29 Superconductive tube for magnetic shielding and manufacturing method therefor
DE69112182T DE69112182T2 (en) 1990-11-30 1991-11-29 Superconductor tube for magnetic shielding and manufacturing process.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2334443A JPH0817280B2 (en) 1990-11-30 1990-11-30 Oxide superconducting magnetic shield tubular body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04206696A JPH04206696A (en) 1992-07-28
JPH0817280B2 true JPH0817280B2 (en) 1996-02-21

Family

ID=18277444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2334443A Expired - Lifetime JPH0817280B2 (en) 1990-11-30 1990-11-30 Oxide superconducting magnetic shield tubular body and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0817280B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11134877B2 (en) * 2017-08-09 2021-10-05 Genetesis, Inc. Biomagnetic detection

Also Published As

Publication number Publication date
JPH04206696A (en) 1992-07-28

Similar Documents

Publication Publication Date Title
JPH05145267A (en) Superconducting magnetic-shielding body and manufacture thereof
US5902774A (en) Method for preparing high-temperature superconducting wire
JPH05267888A (en) Cylindrical superconducting magnetic shield
US5268530A (en) Superconductive tube for magnetic shielding and manufacturing method therefor
GB2096925A (en) Manufacture of tubular coupling elements
JPH0817280B2 (en) Oxide superconducting magnetic shield tubular body and method for producing the same
EP0488717B1 (en) Oxide superconductor magnetic shielding material and method of manufacturing the same
JPH04206695A (en) Oxide superconductor magnetic shield cylinder-shaped body and manufacture thereof
JPH04290500A (en) Cylindrical oxide superconducting magnetic shielding body and its manufacture
CA2038012A1 (en) Oxide superconductor lamination and method of manufacturing the same
JPH02296778A (en) Production of ceramic superconductor
JPH0287422A (en) Long superconductor which is laminated in wave shape and its manufacture
JPH04273500A (en) Oxide superconductive magnetic shield body and its manufacture
JPH07228966A (en) Production of long-sized chromium cylinder target
JPH02302379A (en) Cylindrical unit structure of oxide superconductor
JPH0640720A (en) Laminar oxide superconductor and its production
JPH04199700A (en) Oxide superconductive magnetically shielding body and manufacture thereof
KR910009287B1 (en) Superconductive coil and making method thereof
JP2761425B2 (en) Ceramic joint
JPH03235088A (en) Bismuth based superconductor composite
JPH038777A (en) Bond structure of oxide superconductor
JPH06291488A (en) Superconductive electromagnetic shield substance and its manufacture
JPH04199699A (en) Superconductive magnetic shielding cylindrical body
JPH051991Y2 (en)
JPH03122917A (en) Manufacture of ceramics superconductive conductor