JPH04206696A - Oxide super conductor magnetic shield cylinder-shaped body and manufacture thereof - Google Patents

Oxide super conductor magnetic shield cylinder-shaped body and manufacture thereof

Info

Publication number
JPH04206696A
JPH04206696A JP2334443A JP33444390A JPH04206696A JP H04206696 A JPH04206696 A JP H04206696A JP 2334443 A JP2334443 A JP 2334443A JP 33444390 A JP33444390 A JP 33444390A JP H04206696 A JPH04206696 A JP H04206696A
Authority
JP
Japan
Prior art keywords
layer
cylindrical body
substrate
divided
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2334443A
Other languages
Japanese (ja)
Other versions
JPH0817280B2 (en
Inventor
Hideki Shimizu
秀樹 清水
Takeyoshi Togashi
富樫 武義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2334443A priority Critical patent/JPH0817280B2/en
Priority to US07/799,230 priority patent/US5268530A/en
Priority to CA002056523A priority patent/CA2056523C/en
Priority to DE69112182T priority patent/DE69112182T2/en
Priority to EP91311123A priority patent/EP0488790B1/en
Publication of JPH04206696A publication Critical patent/JPH04206696A/en
Publication of JPH0817280B2 publication Critical patent/JPH0817280B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate manufacture and enhance serviceability by laminating a middle layer on a divided substrate which constitutes a cylinder-shaped body to be jointed and connecting said body with a precious metal-made cylinder- shaped body, and further forming integrally an oxide superconducting layer on this cylinder-shaped laminated body. CONSTITUTION:Inconel which serves as a substrate is used in such a manner that it may be divided into parallel in the longitudinal direction of a cylinder- shaped body where four divided members 1 split into 4 sections are manufactured. A glass layer 2 is formed on each divided member 1, thereby manufacturing a divided laminated layer substrate 7. Then, a cylinder-shaped body 3 of Ag is prepared where the divided laminated layer substrate is wound around the cylinder-shaped body 3 so that the glass layer 2 may be connected with the Ag cylinder-shaped body 3, which constitutes a cylinder-shaped laminated layer body 10, combined with each flange 4 for the four divided members and by means of a bolt 6 and a nut 6. Furthermore, a bismuth oxide superconducting layer is formed on the Ag layer of the cylinder-shaped laminated body is formed so that the oxide superconducting layer cylinder-shaped body may be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は、酸化物超電導体を用いた磁気シールド筒状体
及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic shielding cylindrical body using an oxide superconductor and a method for manufacturing the same.

[従来の技術] 従来、磁気シールドのためにパーマロイ、フェライト等
の強磁性体により囲まれた空間か利用されている。また
、近年、研究開発か盛んな超電導体の反磁性を利用した
磁気シールド装置等も多く提案されている。例えば、特
開平1−134998号公報ては磁気シールドする空間
の最内側に超電導体を配置することが提案されている。
[Prior Art] Conventionally, a space surrounded by a ferromagnetic material such as permalloy or ferrite has been used for magnetic shielding. Furthermore, in recent years, many magnetic shielding devices have been proposed that utilize the diamagnetic properties of superconductors, which have been actively researched and developed. For example, Japanese Patent Laid-Open No. 1-134998 proposes that a superconductor be placed at the innermost side of a magnetically shielded space.

また、出願人は特願平1−97197号にて、遮蔽する
磁気源に対し、磁気源側より基板−超電導層の順て少な
くとも2層を有する磁気シールド筒を提案した。
Furthermore, in Japanese Patent Application No. 1-97197, the applicant proposed a magnetic shield tube having at least two layers in the order of substrate and superconducting layer from the magnetic source side for a magnetic source to be shielded.

[発明か解決しようとする課題] しかしながら、実用的な磁気シールド体に関しては未だ
開発段階であるのが現状である。特に、実用性のある大
型磁気シールド体にあっては、機械的強度を保持するた
めには金属等の基板か必須とされている。また、高磁気
シールド性のためには一体成形により超電導体を得る必
要かあるとされている。しかし、大型化するほど基板も
含め酸化物超電導体の一体成形は困難となり、装置も大
型化し工業的にも好ましくない。従来技術では、一体て
積層基板を作成するために、均一に積層することか困難
てあった。また、積層時に不均一部分か導入されると、
酸化物超電導体層の形成後、その部分に応力か集中し、
酸化物超電導体の特性か劣化するという問題かあった。
[Problems to be Solved by the Invention] However, at present, practical magnetic shielding bodies are still in the development stage. In particular, for practical large magnetic shielding bodies, a substrate made of metal or the like is essential in order to maintain mechanical strength. It is also said that in order to obtain high magnetic shielding properties, it is necessary to obtain a superconductor by integral molding. However, as the size increases, it becomes difficult to integrally mold the oxide superconductor including the substrate, and the device also becomes larger, which is not desirable from an industrial perspective. In the prior art, it was difficult to uniformly laminate the substrates in order to create an integrally laminated substrate. Also, if non-uniform parts are introduced during lamination,
After the oxide superconductor layer is formed, stress is concentrated in that area,
There was a problem that the characteristics of the oxide superconductor deteriorated.

更にまた、金属基板と酸化物超電導体、特にB1−3r
−Ca−Cu−0系超電導体との反応を防止するために
貴金属等の中間層を形成し、中間層上に酸化物超電導層
を形成するのか一般的となっているか、金属基板上に中
間層を均一に、更に中間層上に酸化物超電導層を均一に
形成することは難しく、そのため優れた超電導特性か得
られないおそれもある。
Furthermore, metal substrates and oxide superconductors, especially B1-3r
- Is it common practice to form an intermediate layer of noble metal or the like to prevent reaction with the Ca-Cu-0 superconductor, and then form an oxide superconducting layer on the intermediate layer? It is difficult to uniformly form a layer, and furthermore, to uniformly form an oxide superconducting layer on an intermediate layer, and therefore there is a possibility that excellent superconducting properties may not be obtained.

本発明は、酸化物超電導体を用いて磁気シールドするた
めの超電導特性か優れた磁気シールド体、特に応用範囲
の広い筒状体の酸化物超電導磁気シールド体及びその製
造方法を提供することを目的とする。
An object of the present invention is to provide a magnetic shielding body with excellent superconducting properties for magnetic shielding using an oxide superconductor, particularly a cylindrical oxide superconducting magnetic shielding body that has a wide range of applications, and a method for manufacturing the same. shall be.

[課題を解決するための手段] すなわち、本発明によれば、超電導磁気シールド筒状体
てあって、基板−中間層一貴金属層一酸化物超電導層の
順て配置された構造を有し、接合により筒状体を形成す
る分割基板上に中間層を積層した分割積層基板と筒状に
形成された貴金属筒状体とを接合してなる筒状積層体上
に酸化物超電導層を一体的に形成して構成されることを
特徴とする酸化物超電導磁気シールド筒状体か提供され
る。
[Means for Solving the Problems] That is, according to the present invention, there is a superconducting magnetic shield cylindrical body having a structure in which a substrate, an intermediate layer, a noble metal layer, a monoxide superconducting layer are arranged in this order, An oxide superconducting layer is integrally formed on a cylindrical laminate formed by bonding a divided laminated substrate in which an intermediate layer is laminated on a divided substrate that forms a cylindrical body by bonding and a noble metal cylindrical body formed in a cylindrical shape. An oxide superconducting magnetic shield cylindrical body is provided.

更にまた、接合により筒状体を形成するように構成され
た分割基板上に、中間層を積層した分割積層基板を作製
するとともに、貴金属筒状体を作製した後、該貴金属筒
状体と該分割積層基板を接合して筒状積層体を作製し、
次いて、該筒状積層体の貴金属層の上に酸化物超電導層
を形成することを特徴とする、酸化物超電導磁気シール
ド筒状体の製造方法か提供される。
Furthermore, a divided laminated substrate is produced in which an intermediate layer is laminated on a divided substrate configured to form a cylindrical body by bonding, and after the noble metal cylindrical body is produced, the noble metal cylindrical body and the A cylindrical laminate is produced by joining the divided laminate substrates,
Next, a method for producing an oxide superconducting magnetic shielding cylindrical body is provided, which comprises forming an oxide superconducting layer on the noble metal layer of the cylindrical laminate.

以下1本発明について詳しく説明する。The present invention will be explained in detail below.

本発明の磁気シールド筒状体における筒状体4よ酸化物
超電導層を内側としてもあるいは外側としてもよいか、
特に磁気シールド筒状体内部に低磁場空間を得たい場合
には遮蔽する磁気源側より基板−中間層一貴金属層一酸
化物超電導層の順に配置する方か、磁気シールド筒状体
内部空間に振動により発生する基板、中間屠がらの磁気
ノイズの影響を除去できるために好ましい。また有底、
無底のいずれてもよい。詩に、有底即ち底付筒状体とし
た場合には、同し筒長の無底筒状体よりも高い磁気遮蔽
効果が得られ、好ましい。また1、筒状体の外形状は特
に制限されず、円筒、四角筒、多角筒等使用目的及び使
用条件に合わせて適宜選択することかてきる。
In the magnetic shielding cylindrical body of the present invention, the oxide superconducting layer of the cylindrical body 4 may be placed inside or outside.
In particular, when it is desired to obtain a low magnetic field space inside the magnetic shield cylinder, it is recommended to arrange the substrate in this order from the magnetic source side to be shielded, then the intermediate layer, the noble metal layer, and the monoxide superconducting layer, or in the internal space of the magnetic shield cylinder. This is preferable because it can eliminate the influence of magnetic noise of the substrate and intermediate carcass caused by vibration. Also bottomed,
It can be bottomless or bottomless. In fact, it is preferable to use a cylindrical body with a bottom because it provides a higher magnetic shielding effect than a cylindrical body with the same length and without a bottom. Further, 1. The outer shape of the cylindrical body is not particularly limited, and may be appropriately selected from a cylinder, a square cylinder, a polygonal cylinder, etc. according to the purpose of use and conditions of use.

本発明の超電導磁気シールド筒状体の構成は、基板−中
間層一貴金属層一酸化物超電導層の順に配置されるもの
である。これは、基板−酸化物超電導体層の構成では、
基板として、酸化物超電導体の焼成温度まての高温で酸
化物超電導体の機械的強度を保持できる金属基板を用い
ると、直接酸化物超電導体層と接触して焼成した場合、
焼成中に酸化物超電導体との反応が激しく、得られた超
電導特性か低くなるからてあり、一方、酸化物超電導体
との反応か少なく、超電導特性の低下を回避てきる貴金
属は、それ自体で酸化物超電導体の機械的強度を保持す
る場合、貴金属基板の厚さか厚くなり、コスト的に問題
となるからである。さらに、セラミックスを基板として
用いる場合、大型基板を得ることか難しいという問題が
ある。そのため、本発明の超電導磁気シールド筒状体の
構成は、基板として、酸化物超電導体の焼成温度まで、
酸化物超電導体の機械的強度を保持できる材料を用い、
基板と酸化物超電導層の間に、基板と酸化物超電導層と
の反応を防止する貴金属層を配置し、さらに、基金属層
と基板を酸化物超電導体の焼成温度から液体窒素等の極
低温度までの温度範囲において接着することが可能な中
間層を配置することから成る。
The structure of the superconducting magnetic shield cylindrical body of the present invention is such that a substrate, an intermediate layer, a noble metal layer, a monoxide superconducting layer are arranged in this order. This means that in the substrate-oxide superconductor layer configuration,
If a metal substrate that can maintain the mechanical strength of the oxide superconductor at a high temperature up to the firing temperature of the oxide superconductor is used as the substrate, then when it is fired in direct contact with the oxide superconductor layer,
This is because noble metals react violently with oxide superconductors during firing, reducing the obtained superconducting properties.On the other hand, noble metals, which react less with oxide superconductors and avoiding deterioration of superconducting properties, are This is because, if the mechanical strength of the oxide superconductor is to be maintained, the thickness of the noble metal substrate becomes thicker, which poses a problem in terms of cost. Furthermore, when ceramics are used as a substrate, there is a problem in that it is difficult to obtain a large substrate. Therefore, the configuration of the superconducting magnetic shielding cylindrical body of the present invention is such that it can be used as a substrate up to the firing temperature of the oxide superconductor.
Using materials that can maintain the mechanical strength of oxide superconductors,
A noble metal layer is placed between the substrate and the oxide superconducting layer to prevent a reaction between the substrate and the oxide superconducting layer, and the base metal layer and the substrate are heated to an extremely low temperature such as liquid nitrogen at a temperature lower than the firing temperature of the oxide superconductor. It consists of arranging an intermediate layer that is capable of adhesion in a temperature range up to temperature.

本発明に用いる基板としては、酸化物超電導体の機械的
強度を保持てきるものであればよく、例えば、ジルコニ
ア、チタニア等のセラミックスや5US430.5US
310.5US304.インコネル、インコロイ、ハス
テロイ等の金属を用いることかできる。基板の厚さは、
特に制限されない。
The substrate used in the present invention may be any material as long as it can maintain the mechanical strength of the oxide superconductor, such as ceramics such as zirconia and titania, or 5US430.5US.
310.5US304. Metals such as Inconel, Incoloy, and Hastelloy can be used. The thickness of the board is
There are no particular restrictions.

また、本発明の中間層としては、基板と貴金属の間に配
置され、基板と貴金属を接着する機能があればよい。例
えば、ガラス、各種セラミックス、金属ペースト、貴金
属ペーストなどを用いることができる。この場合、特に
、中間層を基板と貴金属層との間に全面的でなく部分的
に、例えば、ストライブ状、散点状、格子状またはラン
ダムに配置することか好ましい(第1図(b)参照)。
Further, the intermediate layer of the present invention only needs to be placed between the substrate and the noble metal and have a function of bonding the substrate and the noble metal. For example, glass, various ceramics, metal paste, noble metal paste, etc. can be used. In this case, it is particularly preferable to arrange the intermediate layer between the substrate and the noble metal layer not entirely but partially, for example, in a striped, dotted, lattice, or random manner (see Fig. 1(b). )reference).

ガラス層の部分的配置は、貴金属層上に形成される酸化
物超電導層を含めて磁気シールド体全体として、超電導
特性発現のための液体窒素等の極低温度と室温間を繰り
返す冷熱サイクルの際に受ける熱衝撃を緩和し、安定し
た磁気シールド特性を維持することかでき、好適である
The partial arrangement of the glass layer is such that the entire magnetic shield body, including the oxide superconducting layer formed on the noble metal layer, is used during cooling and heating cycles that repeat between extremely low temperatures such as liquid nitrogen and room temperature to develop superconducting properties. This is suitable because it can alleviate the thermal shock experienced by the magnetic field and maintain stable magnetic shielding properties.

中間層上に形成される貴金属層は、金、銀等により構成
され、特に、安価な銀を用いることか好ましい。貴金属
層の厚さは、酸化物超電導体と基板または中間層との反
応を防止てきる厚さてあればよい。特に、中間層と貴金
属層の厚さは、酸化物超電導層、貴金属層、中間層、基
板の熱膨張率、弾性率、機械的強度、及び酸化物超電導
層、基板の厚さに合わせて、酸化物超電導層に発生する
熱応力を低減するように適宜選択すればよい。中間層を
部分的に配置する場合、中間層の厚さを50〜250p
m、貴金属層の厚さを50〜700gmにすることが好
ましい。中間層の厚さかこの範囲から外れる場合には、
酸化物超電導層に発生する熱応力が酸化物超電導体の機
械的強度を越え、液体窒素等の極低温度に冷却した際に
、酸化物超電導層にクラックを引き起こす原因となる。
The noble metal layer formed on the intermediate layer is made of gold, silver, etc., and it is particularly preferable to use inexpensive silver. The thickness of the noble metal layer may be any thickness that can prevent the reaction between the oxide superconductor and the substrate or intermediate layer. In particular, the thickness of the intermediate layer and the noble metal layer is adjusted according to the thermal expansion coefficient, elastic modulus, and mechanical strength of the oxide superconducting layer, the noble metal layer, the intermediate layer, and the substrate, and the thickness of the oxide superconducting layer and the substrate. It may be selected as appropriate to reduce the thermal stress generated in the oxide superconducting layer. When placing the intermediate layer partially, the thickness of the intermediate layer should be 50 to 250p.
m, the thickness of the noble metal layer is preferably 50 to 700 gm. If the thickness of the intermediate layer is outside this range,
Thermal stress generated in the oxide superconductor layer exceeds the mechanical strength of the oxide superconductor, causing cracks in the oxide superconductor layer when it is cooled to an extremely low temperature using liquid nitrogen or the like.

また、貴金属層の厚さが501Lm未満の場合、上記緩
和材としての作用か得られず、また、700kmを越え
る場合、上記緩和材としての作用よりも、酸化物超電導
層と貴金属層の熱膨張差にょる熱応力か支配的となる場
合があり、特に緩和材としての作用は向上せず、コスト
増加を引き起す原因となるのて好ましくない。
In addition, if the thickness of the noble metal layer is less than 501 Lm, the above-mentioned function as a relaxation material cannot be obtained, and if the thickness exceeds 700 km, the thermal expansion of the oxide superconducting layer and the noble metal layer is greater than the function as the relaxation material. In some cases, the thermal stress due to the difference becomes dominant, and the effect as a relaxation material is not particularly improved, which is undesirable because it causes an increase in cost.

本発明における酸化物超電導体としては、特に限定され
るものてなく、例えば、M−Ba−Cu−0県北合物て
、繭かSc、Y及びLa 、Eu 、Gd 、Er、Y
b 、Lu等のランタニドから選ばれる一種以上の希土
類元素を含む多層ペロブスカイト構造を有する希土類系
酸化物超電導体、また例えばBi25r2Ca、Cu2
0xやBl 2Sr2Ca2Cu30xに代表される組
成を有するビスマス系(Bi系)超電導体等いずれの酸
化物超電導体でもよい。
The oxide superconductor in the present invention is not particularly limited, and includes, for example, M-Ba-Cu-0 Kenhokuai, Mayuka, Sc, Y, La, Eu, Gd, Er, Y.
b, a rare earth oxide superconductor having a multilayer perovskite structure containing one or more rare earth elements selected from lanthanides such as Lu, and for example Bi25r2Ca, Cu2
Any oxide superconductor such as a bismuth-based (Bi-based) superconductor having a composition represented by 0x or Bl 2 Sr 2 Ca 2 Cu 30x may be used.

本発明の超電導磁気シールド筒状体は、上記のように基
板−中間層一貴金属層一酸化物超電導層の構造を有し、
更に筒状体を構成する基板及び中間層は一体的に形成す
ることなく、分割基板に中間層を積層した分割積層基板
を組合わせ接合して筒状体を構成し、貴金属層は予め筒
状に形成し、分割積層基板と共に筒状積層体とし1.更
に、酸化物超電導層は一体的に形成するものである。こ
の場合、分割基板の分割態様及び形状は各種の形態を採
ることかできる。
The superconducting magnetic shielding cylindrical body of the present invention has the structure of the substrate-intermediate layer-noble metal layer monoxide superconducting layer as described above,
Furthermore, the substrate and intermediate layer constituting the cylindrical body are not integrally formed, but the cylindrical body is constructed by combining and bonding divided laminated substrates in which the intermediate layer is laminated on the divided substrate, and the noble metal layer is formed in advance into a cylindrical shape. 1. to form a cylindrical laminate together with the divided laminate substrates. Furthermore, the oxide superconducting layer is formed integrally. In this case, the dividing manner and shape of the divided substrates can take various forms.

例えば、第1図及び第2図に基板の分割形態と分割基板
の形状の典型的な例を示した。第1図(a)は無底の筒
状体の分割態様であって、第1図(b)に示す分割積層
基板7を組合せ接合するもので、筒状体を軸方向に平行
に4分割する態様である。
For example, FIGS. 1 and 2 show typical examples of how the substrate is divided and the shape of the divided substrates. FIG. 1(a) shows a method of dividing a bottomless cylindrical body, in which the divided laminated substrates 7 shown in FIG. 1(b) are combined and joined, and the cylindrical body is divided into four parts parallel to the axial direction. This is the mode of doing so.

第2図(a)〜(d)は底付筒状体の軸方向に平行に分
割する態様であり、第2図(a)は筒部と底部とを連続
的に分割形成する態様であり、(b)は筒部と底部とを
別々に形成分割する態様であり、また(C)は筒部と底
部とを別々に形成し且つ筒部のみ分割する態様である。
2(a) to 2(d) show an embodiment in which the bottomed cylindrical body is divided parallel to the axial direction, and FIG. 2(a) shows an embodiment in which the cylindrical part and the bottom part are continuously divided and formed. , (b) is an embodiment in which the cylindrical portion and the bottom portion are formed and divided separately, and (C) is an embodiment in which the cylindrical portion and the bottom portion are formed separately and only the cylindrical portion is divided.

尚、第2図(d)は二つの開口部を有する筒状体であっ
て、その内径を異ならせた態様を示す。
Note that FIG. 2(d) shows a cylindrical body having two openings with different inner diameters.

本発明において基板の分割態様は、上記のように各種あ
るか磁気シールド筒状体の使用目的、使用条件、中間層
、貴金属層及び酸化物超電導層の種類、更に下記で説明
する分割体の接合方法等により好適な態様を適宜選択す
ることができる。
In the present invention, the manner in which the substrate is divided is determined by the purpose of use of the various magnetic shielding cylinders, the conditions of use, the types of the intermediate layer, the noble metal layer, and the oxide superconducting layer, and the joining of the divided bodies as described below. A suitable embodiment can be appropriately selected depending on the method and the like.

上記のように分割された基板の分割基板は、組合わせて
接合し筒状体を形成する。この分割基板の接合において
も、各種の態様かある。
The divided substrates of the substrates divided as described above are combined and joined to form a cylindrical body. There are various ways to join these divided substrates.

例えば、第3図に接合の典型的な態様を示した。第3図
(a)においては、基板分割体lにフランジを設け、フ
ランジ4をナツト5とボルト6により接合する態様てあ
り、第3図(b)は分割体の接合部8を突き合わせて接
合する態様であり、基板か金属であれば溶接等て、セラ
ミツつてあればガラス接合等の公知の方法により接合す
ることかできる。
For example, FIG. 3 shows a typical mode of joining. In FIG. 3(a), a flange is provided on the board divided body l, and the flange 4 is joined with nuts 5 and bolts 6, and in FIG. 3(b), the joined parts 8 of the divided bodies are butted together. If the substrate is metal, it can be joined by welding or the like, and if it is ceramic, it can be joined by a known method such as glass bonding.

本発明において、中間層は上記基板の分割基板上に筒状
体に接合形成する前に形成する。
In the present invention, the intermediate layer is formed on the divided substrates of the above-mentioned substrates before bonding them to the cylindrical body.

分割基板上に形成する中間層は、分割基板の接合の態様
に合わせて各種の態様を採ることかてきる。例えば、第
3図において、中間層は部分的接合のガラス層2から構
成され、第3図(a)ではフランジ部4上を除いた分割
基板上に厚さ100〜200pmのガラス層2を形成す
る。また、第3図(b)は、基板にフランジを設けない
場合て、それぞれ分割基板l上に中間層のガラス層2を
形成した分割積層基板7の態様を示している。
The intermediate layer formed on the divided substrates can take various forms depending on the manner of joining the divided substrates. For example, in FIG. 3, the intermediate layer is composed of a partially bonded glass layer 2, and in FIG. do. Furthermore, FIG. 3(b) shows an embodiment of a divided laminated substrate 7 in which an intermediate glass layer 2 is formed on each divided substrate l, in the case where the substrate is not provided with a flange.

次に、第1図(c)〜(e)に貴金属層形成の態様を示
す。例えば、第1図(c)において、厚さ300〜50
0JLmの銀箔を重ね合わせ、または突き合わせによっ
て溶接して銀の筒状体3を作製し、前記分割体積層基板
と接合するまで各種材質で作製された芯材により支持を
行なう。
Next, FIGS. 1(c) to 1(e) show the formation of the noble metal layer. For example, in FIG. 1(c), the thickness is 300 to 50
A silver cylindrical body 3 is produced by overlapping or butting and welding silver foils of 0 JLm, and is supported by a core material made of various materials until it is joined to the divided laminated substrate.

上記、銀箔の溶接方法は、第1図(d)に示すように、
一方のAg層を他方のAg層上まで延ばしてAg層を重
ね合わせて二重とし、上Ag層の先端部と下Ag層との
接点9を溶接またはAgペーストを用いて接合するか、
または第1図(e)に示すように、 Ag層の接点9で
溶接またはAgペーストを用いて接合する。Agペース
トを用いて接合する場合には、Agペーストを塗布後、
約8oo〜9oo℃で焼付け、接合を完成させる。また
、Agの中間層上には、酸化物超電導層を形成するため
接合の溶接部及びAgペースト塗布部を接合後、グライ
ンダー等により平滑化するのが好ましい。
The above silver foil welding method is as shown in Figure 1(d).
Extend one Ag layer onto the other Ag layer, overlap the Ag layers to make a double layer, and connect the contact point 9 between the tip of the upper Ag layer and the lower Ag layer by welding or using Ag paste, or
Alternatively, as shown in FIG. 1(e), the Ag layer is joined at the contact point 9 by welding or using Ag paste. When bonding using Ag paste, after applying the Ag paste,
Baking is performed at approximately 800° C. to 900° C. to complete the bonding. Further, in order to form an oxide superconducting layer on the Ag intermediate layer, it is preferable to smooth the welded part and the Ag paste applied part by using a grinder or the like after joining.

第1図において、上記のようにして作製された銀の筒状
体3の周囲に、前記分割積層基板7を巻き付けて組合せ
た後、ガラス溶融温度て焼成して、分割積層基板7のガ
ラス層2と銀の筒状体3を接合した後、各分割積層基板
7をフランジ締め、または溶接によって接合して一体と
し、筒状積層体とする。
In FIG. 1, the divided laminated substrate 7 is wrapped around the silver cylindrical body 3 produced as described above and assembled, and then fired at a glass melting temperature to form a glass layer of the divided laminated substrate 7. After joining 2 and the silver cylindrical body 3, each divided laminated substrate 7 is joined by flanging or welding to form a cylindrical laminate.

第3図(b)において、金属基板、貴金属層をそれぞれ
溶接する場合において、金属基板、貴金属層の融点か大
きく異なるときには、高融点材料側を溶接する際に、低
融点材料か一部溶融する場合かあり、そのような場合に
は必ずしも接合断面部会面を溶接する必要はなく、肉感
溶接等を用い、実用上の機械的強度が満足されればよい
In Fig. 3(b), when welding the metal substrate and the noble metal layer, if the melting points of the metal substrate and the noble metal layer are significantly different, when welding the high melting point material side, the low melting point material may partially melt. In such cases, it is not necessarily necessary to weld the faces of the joint cross sections, and it is sufficient to use tactile welding or the like, as long as the mechanical strength for practical use is satisfied.

本発明の酸化物超電導磁気シールド筒状体は、上記のよ
うに筒状積層体として構成された基板、中間層及び貴金
属層上に前記の酸化物超電導体の層を一体的に形成して
基板−中間層一貴金属層一酸化物超電導層の構造とする
。酸化物超電導層を貴金属層上に形成する方法は、スプ
レー等の塗布成形、ドクターブレード法等公知のいずれ
の方法を用いてもよい。通常は、スプレー塗布法か用し
\られ、塗布後約800〜1150°Cで焼成して酸化
物超電導層を形成する。酸化物超電導層の厚さは、特に
限定するものてなく、実用上有効な磁気シールド能を得
るために必要な超電導特性、超電導材料によって適宜選
択すればよい。
The oxide superconducting magnetic shielding cylindrical body of the present invention is produced by integrally forming a layer of the oxide superconductor on a substrate, an intermediate layer, and a noble metal layer configured as a cylindrical laminate as described above. - The intermediate layer has a structure of one noble metal layer and one oxide superconducting layer. The oxide superconducting layer may be formed on the noble metal layer by any known method such as coating by spraying, doctor blade method, or the like. Usually, a spray coating method is used, and after coating, it is fired at about 800 to 1150°C to form an oxide superconducting layer. The thickness of the oxide superconducting layer is not particularly limited, and may be appropriately selected depending on the superconducting properties and superconducting material necessary to obtain a practically effective magnetic shielding ability.

本発明の底付筒状体においては、該筒状体の軸方向の断
面において筒部と底部との連続部が湾曲部、鈍角部を有
して形成されるのか好ましい。底部と筒部とか湾曲、鈍
角てなく鋭角、直角等の角度で連続する場合は、磁気シ
ールド体として、超電導特性発現のための液体窒素等の
極低温度と室温間を繰り返す冷熱サイクルの際に受ける
熱衝撃によって、その部分に応力か集中しクラック等か
発生して、磁気シールド特性か著しく劣化するため好ま
しくない。また、湾曲部の曲率半径Rは5■■以上であ
るのか好ましい。R<511@の場合は磁気シールド体
として、超電導特性発現のための液体窒素等の極低温度
と室温間を繰り返す冷熱サイクルの際に受ける熱衝撃に
よって、その部分に応力か集中しクラック等か発生して
、磁気シールド特性か著しく劣化するため好ましくない
。さらに、筒状体の底部を構成する各部材はそれぞれ鈍
角にて接続することか、上記と同様の理由て好ましい。
In the bottomed cylindrical body of the present invention, it is preferable that the continuous portion between the cylindrical portion and the bottom portion be formed with a curved portion and an obtuse angle portion in the axial cross section of the cylindrical body. If the bottom and cylinder part are curved or continuous at an acute or right angle instead of an obtuse angle, it can be used as a magnetic shield during cooling and heating cycles that repeat between extremely low temperatures and room temperature, such as liquid nitrogen to develop superconducting properties. This is undesirable because the thermal shock that it receives causes stress to concentrate in that part, causing cracks and the like, which significantly deteriorates the magnetic shielding properties. Further, it is preferable that the radius of curvature R of the curved portion is 5■■ or more. If R<511@, as a magnetic shield, stress will be concentrated in that part due to thermal shock during repeated cooling and heating cycles between extremely low temperatures such as liquid nitrogen and room temperature to develop superconducting properties, resulting in cracks, etc. This is undesirable because it significantly deteriorates the magnetic shielding characteristics. Furthermore, it is preferable for the same reason as above to connect the members constituting the bottom of the cylindrical body at obtuse angles.

また、本発明の底付筒状体において、第2図(d)に示
すように、内径を異なる二つの開口部を有する筒状体と
すると、センサ等の配線か導入てきる小径の開口部を有
する磁気シールド筒状体となり、好ましい。
In addition, in the bottomed cylindrical body of the present invention, if the cylindrical body has two openings with different inner diameters as shown in FIG. This is preferable because it provides a magnetically shielded cylindrical body having the following characteristics.

[実施例] 以下、本発明を実施例により詳細に説明する。[Example] Hereinafter, the present invention will be explained in detail with reference to Examples.

但し、本発明は下記実施例により制限されるものではな
い。
However, the present invention is not limited to the following examples.

(実施例1) 第1図は本発明の基板筒状体の分割形態の一実施例を示
した説明図である。内径lOO■閣φ、長さ450■鳳
の円筒体が組合わせて構成されるように、第1図(a)
に示した筒状体の軸方向にモ行に分割する態様て、基板
となるインコネルを用いて、4分割した分割体1を4個
製造した。各分割体1には接合のためのフランジ4をそ
れぞれ分割接合部の2カ所に設けた。まず、各分割体1
をサンドフラストにより表面処理を行い、その後、中間
層のガラス層2を30mm間隔の格子状で形成するため
に紙テープでマスキングし、ホーロー用釉薬ガラススラ
リーをスプレー塗布して、800〜900°Cて1時間
焼成し、100 p、、mの厚さで、格子状のガラス層
2をフランジ4を除く各分割体l上に形成して分割積層
基板7を作製した。
(Example 1) FIG. 1 is an explanatory diagram showing an example of the divided form of the substrate cylindrical body of the present invention. As shown in Figure 1(a), the inner diameter is lOO, the diameter is 450, and the length is 450.
Four divided bodies 1 were manufactured by using Inconel as a substrate in the manner shown in FIG. Each divided body 1 was provided with flanges 4 for joining at two locations at the divided joint portion. First, each divided body 1
The surface was treated with sand blast, and then masked with paper tape to form the intermediate glass layer 2 in a lattice pattern with intervals of 30 mm, sprayed with a glaze glass slurry for enamel, and heated at 800 to 900°C. After firing for 1 hour, a lattice-shaped glass layer 2 with a thickness of 100 m was formed on each divided body 1 except for the flange 4, thereby producing a divided laminated substrate 7.

次いて、肉厚300pmのAg箔を突合わせ溶接により
外径LoomsのAgの筒状体3を作製し、これを金属
製の芯材により補強して支持した。
Next, an Ag cylindrical body 3 having an outer diameter of Looms was produced by butt welding Ag foils with a wall thickness of 300 pm, and this was reinforced and supported by a metal core material.

次に、上記中間層のガラス層焼付は済みの分割積層基板
7をAgの筒状体3の周囲に巻き付けて組合わせた後、
850〜900℃で、1時間加熱して、ガラス層2とA
gの筒状体3とを接合した。
Next, the split laminated substrate 7 whose intermediate glass layer has already been baked is wrapped around the Ag cylindrical body 3 and assembled.
Heating at 850-900°C for 1 hour, glass layer 2 and A
The cylindrical body 3 of g was joined.

その後、ガラス層2及び銀の筒状体3を積層形成した4
個の分割体のそれぞれのフランジ4を合わせ、ボルト6
とナツト5により第3図(a)に示す態様で固定して筒
状積層体9を構成した。
After that, a glass layer 2 and a silver cylindrical body 3 were laminated and formed.
Align the flanges 4 of each divided body and bolt 6
and fixed with nuts 5 in the manner shown in FIG. 3(a) to form a cylindrical laminate 9.

上記のようにして得られた筒状積層体lOのAg層上に
、Bi25r2CaCu20Xを含有するスラリーをス
プレー塗布して、酸素雰囲気中、875〜900°Cで
30分間部分溶融した後、850°Cまて冷却速度1’
C/分で徐冷し、850°Cて15時間結晶化した。そ
の後、窒素雰囲気に変え、450〜700℃で10時間
熱処理して厚さ250終mのfli系酸化物超電導層を
形成し、酸化物超電導円筒体を得た。
A slurry containing Bi25r2CaCu20X was spray-coated onto the Ag layer of the cylindrical laminate lO obtained as described above, and partially melted at 875 to 900°C for 30 minutes in an oxygen atmosphere, and then heated to 850°C. Cooling rate 1'
The mixture was slowly cooled at a rate of C/min and crystallized at 850°C for 15 hours. Thereafter, the atmosphere was changed to nitrogen, and heat treatment was performed at 450 to 700° C. for 10 hours to form an fli-based oxide superconducting layer with a thickness of 250 m, thereby obtaining an oxide superconducting cylinder.

得られた酸化物超電導円筒体は、目視観察にて外観上は
良好であり、また冷熱サイクル評価も良好てあった。こ
れらの結果を第1表に示した。
The obtained oxide superconducting cylindrical body had a good appearance according to visual observation, and also had good thermal cycle evaluation. These results are shown in Table 1.

なお、冷熱サイクル評価は、酸化物超電導円筒体を液体
窒素中に浸漬し、円筒体全体が液体窒素温度となった後
、30分保持して磁気シールド能を測定した。その後、
円筒体を液体窒素中から取り出して室温に放置し、円筒
体全体が室温になった後30分保持する操作を1サイク
ルとし、再び液体窒素中に浸漬、保持、磁気シールド能
測定、室温取り出し、放置、保持とサイクルを5回繰り
返し、1回目と5回目の冷熱サイクル磁気シールド能と
をそれぞれ次式にて比較し、80%以上を0150%以
上を△、50%未満をXとした。
In the thermal cycle evaluation, the oxide superconducting cylindrical body was immersed in liquid nitrogen, and after the temperature of the entire cylindrical body reached the liquid nitrogen temperature, the temperature was maintained for 30 minutes to measure the magnetic shielding ability. after that,
One cycle consists of taking out the cylinder from liquid nitrogen, leaving it at room temperature, holding it for 30 minutes after the entire cylinder reaches room temperature, immersing it in liquid nitrogen again, holding it, measuring magnetic shielding ability, taking it out to room temperature, The cycle of standing and holding was repeated 5 times, and the magnetic shielding performance of the first and fifth cooling/heating cycles was compared using the following formula, and 80% or more was given as 0150% or more was given as △, and less than 50% was given as X.

また、外観評価は、ガラス接合部不均一をa。In addition, the appearance evaluation was conducted to evaluate the non-uniformity of the glass joint.

鋼溶接不十分をbとした。Insufficient steel welding was designated as b.

(以下、余白) (実施例2〜15) 第1表に示した庇付または底無しの円筒体を、各円筒体
の寸法、基板の材質、分割数及び接合形態、中間層のA
g層の厚さ及び接合形態をそれぞれ第1表に示したよう
にし、実施例1と同様にして各酸化物超電導磁気シール
ド筒状体を得て、外観及び冷熱サイクル評価を行った。
(Hereinafter, blank space) (Examples 2 to 15) Cylindrical bodies with eaves or without bottom shown in Table 1 were prepared by measuring the dimensions of each cylinder, the material of the substrate, the number of divisions, the joining form, and the A of the intermediate layer.
Each oxide superconducting magnetic shield cylindrical body was obtained in the same manner as in Example 1, with the thickness of the g layer and the bonding form shown in Table 1, and the external appearance and thermal cycle evaluation were performed.

その結果を第1表に示した。The results are shown in Table 1.

(比較例1〜10) 筒状基板を一体的に形成した以外は、実施例1と同様に
して第1表に示した各酸化物超電導磁気シールド筒状体
を得て、外観及び冷熱サイクル評価を行った。その結果
を第1表に示した。
(Comparative Examples 1 to 10) Each oxide superconducting magnetic shielding cylindrical body shown in Table 1 was obtained in the same manner as in Example 1 except that the cylindrical substrate was integrally formed, and the external appearance and thermal cycle evaluation were conducted. I did it. The results are shown in Table 1.

上記の実施例及び比較例より明らかなように、本発明の
分割基板を用いて形成した酸化物超電導磁気シールド筒
状体は、酸化物超電導層等が均一化され、比較例に比べ
て、外観、冷熱サイクル評価共に優れそいることか分る
As is clear from the above examples and comparative examples, the oxide superconducting magnetic shield cylindrical body formed using the divided substrate of the present invention has a uniform oxide superconducting layer, etc., and has a better appearance than the comparative example. It can be seen that both the cooling and heating cycle evaluations are excellent.

[発明の効果コ 本発明の酸化物超電導磁気シールド筒状体は、基板を分
割して形成するため、大型な筒状体であっても製造か容
易であり、且つ各層の接合か均一に行われるため得られ
る筒状体の磁気シールド使も安定し、極めて実用性か高
く工業的に有用である。
[Effects of the invention] Since the oxide superconducting magnetic shielding cylindrical body of the present invention is formed by dividing the substrate, it is easy to manufacture even a large cylindrical body, and each layer can be bonded uniformly. As a result, the resulting cylindrical magnetic shield is stable, extremely practical, and industrially useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の無底の基板筒状体の分割形態の一実施
例を示した説明図、第2図は庭付基板筒状体の分割形態
の一実施例を示した概要図、第3図は本発明の基板及び
中間層の接合の一実施例を示した断面説明図である。 ■・・一基板の分割体、2・・・ガラス層(中間層)3
・・・銀の筒状体、4・−・フランジ、5・・・ナツト
6−・・ボルト、7・・・分割積層基板、8・・・接合
部9・・・接点、10・−・筒状積層体
FIG. 1 is an explanatory diagram showing an embodiment of the divided form of the bottomless substrate cylindrical body of the present invention, FIG. 2 is a schematic diagram showing an example of the divided form of the gardened base cylindrical body, FIG. 3 is an explanatory cross-sectional view showing one embodiment of bonding a substrate and an intermediate layer of the present invention. ■...Divided body of one substrate, 2...Glass layer (intermediate layer) 3
... Silver cylindrical body, 4 ... Flange, 5 ... Nut 6 ... Bolt, 7 ... Divided laminated board, 8 ... Joint part 9 ... Contact, 10 ... Cylindrical laminate

Claims (7)

【特許請求の範囲】[Claims] (1)超電導磁気シールド筒状体であって、基板−中間
層−貴金属層−酸化物超電導層の順で配置された構造を
有し、接合により筒状体を形成する分割基板上に中間層
を積層した分割積層基板と筒状に形成された貴金属筒状
体とを接合してなる筒状積層体上に酸化物超電導層を一
体的に形成して構成されることを特徴とする酸化物超電
導磁気シールド筒状体。
(1) A superconducting magnetic shielding cylindrical body, which has a structure in which a substrate, an intermediate layer, a noble metal layer, and an oxide superconducting layer are arranged in this order, and the intermediate layer is placed on a divided substrate that forms a cylindrical body by bonding. An oxide characterized by being constructed by integrally forming an oxide superconducting layer on a cylindrical laminate formed by bonding a divided laminated substrate laminated with a cylindrical noble metal cylindrical body. Superconducting magnetic shield cylindrical body.
(2)前記分割体の接合が、筒状体の軸方向に平行であ
る請求項1記載の酸化物超電導磁気シールド筒状体。
(2) The oxide superconducting magnetic shield cylindrical body according to claim 1, wherein the joints of the divided bodies are parallel to the axial direction of the cylindrical body.
(3)基板が金属で、且つ中間層がセラミックスである
請求項1記載の酸化物超電導磁気シールド筒状体。
(3) The oxide superconducting magnetic shield cylindrical body according to claim 1, wherein the substrate is metal and the intermediate layer is ceramic.
(4)前記筒状体が底付筒状体であり、筒部と底部とか
曲率半径か5mm以上の湾曲部を有して及び/または鈍
角にて接続形成した請求項1、2または3記載の酸化物
超電導磁気シールド筒状体。
(4) The cylindrical body is a cylindrical body with a bottom, and the cylindrical part and the bottom part have a curved part with a radius of curvature of 5 mm or more and/or are connected at an obtuse angle. oxide superconducting magnetic shielding cylinder.
(5)筒状体の底部を構成する各部材を鈍角にて接続し
た請求項4記載の酸化物超電導磁気シールド筒状体。
(5) The oxide superconducting magnetic shielding cylindrical body according to claim 4, wherein the members constituting the bottom of the cylindrical body are connected at an obtuse angle.
(6)基板が金属で、且つ中間屠がガラスであり、該ガ
ラス層が該基板上に部分的に配置されている請求項1〜
5のいずれかに記載の酸化物超電導磁気シールド筒状体
(6) Claims 1 to 6, wherein the substrate is metal, the intermediate layer is glass, and the glass layer is partially disposed on the substrate.
5. The oxide superconducting magnetic shielding cylindrical body according to any one of 5.
(7)接合により筒状体を形成するように構成された分
割基板上に、中間層を積層した分割積層基板を作製する
とともに、貴金属筒状体を作製した後、該貴金属筒状体
と該分割積層基板を接合して筒状積層体を作製し、次い
で、該筒状積層体の貴金属層の上に酸化物超電導層を形
成することを特徴とする、酸化物超電導磁気シールド筒
状体の製造方法。
(7) After producing a divided laminated substrate in which an intermediate layer is laminated on a divided substrate configured to form a cylindrical body by bonding, and producing a noble metal cylindrical body, the precious metal cylindrical body and the An oxide superconducting magnetic shielding cylindrical body characterized in that a cylindrical laminate is produced by bonding divided laminated substrates, and then an oxide superconducting layer is formed on a noble metal layer of the cylindrical laminate. Production method.
JP2334443A 1990-11-30 1990-11-30 Oxide superconducting magnetic shield tubular body and method for producing the same Expired - Lifetime JPH0817280B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2334443A JPH0817280B2 (en) 1990-11-30 1990-11-30 Oxide superconducting magnetic shield tubular body and method for producing the same
US07/799,230 US5268530A (en) 1990-11-30 1991-11-27 Superconductive tube for magnetic shielding and manufacturing method therefor
CA002056523A CA2056523C (en) 1990-11-30 1991-11-28 Superconductive tube for magnetic shielding and manufacturing method therefor
DE69112182T DE69112182T2 (en) 1990-11-30 1991-11-29 Superconductor tube for magnetic shielding and manufacturing process.
EP91311123A EP0488790B1 (en) 1990-11-30 1991-11-29 Superconductive tube for magnetic shielding and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2334443A JPH0817280B2 (en) 1990-11-30 1990-11-30 Oxide superconducting magnetic shield tubular body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04206696A true JPH04206696A (en) 1992-07-28
JPH0817280B2 JPH0817280B2 (en) 1996-02-21

Family

ID=18277444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2334443A Expired - Lifetime JPH0817280B2 (en) 1990-11-30 1990-11-30 Oxide superconducting magnetic shield tubular body and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0817280B2 (en)

Also Published As

Publication number Publication date
JPH0817280B2 (en) 1996-02-21

Similar Documents

Publication Publication Date Title
US5359149A (en) Superconductive device for helping shield magnetic field
US5268530A (en) Superconductive tube for magnetic shielding and manufacturing method therefor
JPH04206696A (en) Oxide super conductor magnetic shield cylinder-shaped body and manufacture thereof
JPH02296778A (en) Production of ceramic superconductor
JPH04206695A (en) Oxide superconductor magnetic shield cylinder-shaped body and manufacture thereof
JP2003138354A (en) Metal matrix composite
JPH04290500A (en) Cylindrical oxide superconducting magnetic shielding body and its manufacture
JPH04273500A (en) Oxide superconductive magnetic shield body and its manufacture
EP0488717B1 (en) Oxide superconductor magnetic shielding material and method of manufacturing the same
JPH0287422A (en) Long superconductor which is laminated in wave shape and its manufacture
JPH07228966A (en) Production of long-sized chromium cylinder target
JPH02247906A (en) Manufacture of oxide superconducting wire
JPH04199699A (en) Superconductive magnetic shielding cylindrical body
JPH0829988B2 (en) Bonding structure of oxide superconductor
JPH04104970A (en) Bonding or mending oxide superconductor
JPH01151298A (en) Superconducting electromagnetic shield body
JPH02227249A (en) Joining method for magnetic shielding material made of bismuth oxide superconductor
JPH0453107A (en) Manufacture of superconducting coil
SU446490A1 (en) Solder
JPS61168430A (en) Connecting method of ceramics and metallic material
JPH04329217A (en) Oxide superconductive wire material and manufacture thereof
JPH0640720A (en) Laminar oxide superconductor and its production
JPS63279517A (en) Oxide ceramic superconductive composite wire
JP2000322957A (en) Manufacture for superconductive wire
JPH06291489A (en) Superconductive magnetic shield substance and its manufacture