JPH06291489A - Superconductive magnetic shield substance and its manufacture - Google Patents
Superconductive magnetic shield substance and its manufactureInfo
- Publication number
- JPH06291489A JPH06291489A JP5073450A JP7345093A JPH06291489A JP H06291489 A JPH06291489 A JP H06291489A JP 5073450 A JP5073450 A JP 5073450A JP 7345093 A JP7345093 A JP 7345093A JP H06291489 A JPH06291489 A JP H06291489A
- Authority
- JP
- Japan
- Prior art keywords
- noble metal
- superconducting
- layer
- magnetic shield
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000005291 magnetic effect Effects 0.000 title claims description 68
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000000126 substance Substances 0.000 title abstract 2
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 140
- 229910052751 metal Inorganic materials 0.000 claims abstract description 104
- 239000002184 metal Substances 0.000 claims abstract description 104
- 239000000758 substrate Substances 0.000 claims abstract description 69
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 34
- 239000000956 alloy Substances 0.000 claims abstract description 34
- 229910052742 iron Inorganic materials 0.000 claims abstract description 17
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 17
- 229910052718 tin Inorganic materials 0.000 claims abstract description 15
- 239000012535 impurity Substances 0.000 claims abstract description 14
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 14
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 14
- 229910052709 silver Inorganic materials 0.000 claims description 20
- 239000004332 silver Substances 0.000 claims description 20
- 239000010970 precious metal Substances 0.000 claims description 8
- 229910015901 Bi-Sr-Ca-Cu-O Inorganic materials 0.000 claims description 4
- 229910000923 precious metal alloy Inorganic materials 0.000 claims description 2
- 229910052793 cadmium Inorganic materials 0.000 claims 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 24
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 20
- 238000000034 method Methods 0.000 description 17
- 239000013078 crystal Substances 0.000 description 13
- 238000010304 firing Methods 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 150000002739 metals Chemical class 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000012298 atmosphere Substances 0.000 description 8
- 239000011777 magnesium Substances 0.000 description 8
- 229910004247 CaCu Inorganic materials 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000002887 superconductor Substances 0.000 description 6
- 239000011573 trace mineral Substances 0.000 description 6
- 235000013619 trace mineral Nutrition 0.000 description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 229910001026 inconel Inorganic materials 0.000 description 5
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229910001316 Ag alloy Inorganic materials 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 2
- 229910052688 Gadolinium Inorganic materials 0.000 description 2
- 229910052689 Holmium Inorganic materials 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229910052769 Ytterbium Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 229910021654 trace metal Inorganic materials 0.000 description 2
- 238000004506 ultrasonic cleaning Methods 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- 241000238366 Cephalopoda Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 101150000971 SUS3 gene Proteins 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 229910001293 incoloy Inorganic materials 0.000 description 1
- 229910001055 inconels 600 Inorganic materials 0.000 description 1
- 229910001119 inconels 625 Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は金属基板と、貴金属層
と、超電導層とを有する超電導磁気シールド体に関す
る。本発明の超電導磁気シールド体は、高感度磁束計で
ある超電導量子干渉計(SQUID)に必要な低磁場空
間を形成する磁場遮蔽材として、好適に用いることがで
きる。また、核磁気共鳴機器にも応用できる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnetic shield having a metal substrate, a noble metal layer and a superconducting layer. The superconducting magnetic shield of the present invention can be suitably used as a magnetic field shielding material that forms a low magnetic field space necessary for a superconducting quantum interferometer (SQUID) that is a high-sensitivity magnetometer. It can also be applied to nuclear magnetic resonance equipment.
【0002】[0002]
【従来の技術】従来、磁気シールドのためにパーマロ
イ、フェライト等の強磁性体により囲まれた空間が利用
されている。また、近年、研究開発が盛んな超電導体の
反磁性を利用した磁気シールド装置等も多く提案されて
いる。例えば、特開平1−134998号公報では磁気
シールドする空間の最内側に超電導体を配置することが
提案されている。また、出願人は特願平1−97197
号にて、遮蔽する磁気源に対し、磁気源側より基板−超
電導層の順で少なくとも2層を有する磁気シールド筒を
提案した。2. Description of the Related Art Conventionally, a space surrounded by a ferromagnetic material such as permalloy or ferrite has been used for magnetic shielding. Further, in recent years, many magnetic shield devices and the like utilizing the diamagnetism of superconductors, which have been actively researched and developed, have been proposed. For example, Japanese Patent Application Laid-Open No. 1-134998 proposes disposing a superconductor inside the space for magnetic shielding. In addition, the applicant is Japanese Patent Application No. 1-97197.
Proposed a magnetic shield tube having at least two layers in the order of the substrate and the superconducting layer from the magnetic source side for the magnetic source to be shielded.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、液体窒
素中で超電導特性を発揮する超電導性酸化物を用いた磁
気シールド体は、未だ開発段階である。特に、実用性の
ある大型な磁気シールド体にあっては、機械的強度を保
持するためには金属等の基板が必須とされている。金属
基板と超電導性酸化物、特にBi-Sr-Ca-Cu-O 系超電導性
酸化物の反応を防止するため、金属基板上に貴金属層を
形成し、貴金属層上に超電導層を形成するのが一般的と
なっている。超電導層の隙間、クラック等の欠陥から磁
場が漏洩するため、高い磁気シールド性能を得る場合に
は、一体成形により超電導層を得る必要がある。しか
し、超電導磁気シールド体を大型化するほど、超電導層
を一体成形しても、超電導層の欠陥より磁場が漏洩する
ことを防ぐことは困難となる。特開平4−199700
号公報は、金属基板と貴金属層とが拡散接合された積層
板を用いて、金属基板−貴金属層−超電導層の3層構造
からなる超電導磁気シールド体を開示する。積層板どう
しを側面で接合して、超電導磁気シールド体の金属基板
及び貴金属層を形成し、最後に貴金属層の表面に超電導
層を形成する。特開平4−206695号公報は、金属
基板−中間層−超電導層の構造からなる筒状の超電導磁
気シールド体で、分割基板を接合して金属基板を形成す
ることを開示し、分割基板の配置及び形状、並びに、分
割基板同士の接合態様を記載する。However, a magnetic shield body using a superconducting oxide which exhibits superconducting properties in liquid nitrogen is still in the development stage. In particular, in a practical large-scale magnetic shield, a substrate made of metal or the like is indispensable for maintaining mechanical strength. To prevent the reaction between the metal substrate and the superconducting oxide, especially Bi-Sr-Ca-Cu-O-based superconducting oxide, a noble metal layer is formed on the metal substrate, and a superconducting layer is formed on the noble metal layer. Is common. Since the magnetic field leaks from defects such as gaps and cracks in the superconducting layer, it is necessary to obtain the superconducting layer by integral molding in order to obtain high magnetic shield performance. However, as the size of the superconducting magnetic shield increases, it becomes more difficult to prevent the magnetic field from leaking due to defects in the superconducting layer, even if the superconducting layer is integrally molded. JP-A-4-199700
The publication discloses a superconducting magnetic shield having a three-layer structure of a metal substrate, a noble metal layer, and a superconducting layer, using a laminated plate in which a metal substrate and a noble metal layer are diffusion-bonded. The laminated plates are joined at their side surfaces to form a metal substrate and a noble metal layer of the superconducting magnetic shield, and finally a superconducting layer is formed on the surface of the noble metal layer. Japanese Unexamined Patent Application Publication No. 4-206695 discloses a cylindrical superconducting magnetic shield body having a structure of a metal substrate-intermediate layer-superconducting layer, in which divided substrates are joined to form a metallic substrate. The shape and shape, and the manner of joining the divided substrates will be described.
【0004】しかし、金属板と貴金属層とが拡散接合さ
れた積層板を用いて、超電導磁気シールド体を作成する
とき、貴金属層どうしの接合部等で、貴金属層を横断す
るように微小なクラックが生じることがある。この貴金
属層の表面に、焼成により超電導層を形成すると、焼成
時に、インコネル等の金属基板中に存在するニッケル、
クロム、モリブデン等の金属が、貴金属層のクラックを
介して拡散していき、超電導層のBi系超電導体と反応
し、超電導特性が低い欠陥部が超電導層に生じる。この
ような超電導層の欠陥部では、磁場が漏洩し易い。そこ
で、本発明では、上記したような問題が生じることがな
い超電導磁気シールド体を提供することを目的とする。
即ち、貴金属層を横断するクラックが貴金属層に生じ難
い超電導磁気シールド体を提供することを目的とする。
なお、貴金属層は、超電導層に含有するBi-Sr-Ca-Cu-O
系超電導性酸化物と金属基板に含有しているニッケル、
クロム、モリブデン等の金属との反応を防止するため
に、金属基板と超電導層との間に設けられるので、貴金
属層に、ニッケル等の金属を含有させることは、従来、
全く、考慮されていなかった。However, when a superconducting magnetic shield is manufactured by using a laminated plate in which a metal plate and a noble metal layer are diffusion-bonded, a minute crack is formed at the joint between the noble metal layers so as to cross the noble metal layer. May occur. When a superconducting layer is formed on the surface of this noble metal layer by firing, nickel present in the metal substrate such as Inconel at the time of firing,
Metals such as chromium and molybdenum diffuse through the cracks in the noble metal layer and react with the Bi-based superconductor in the superconducting layer, resulting in defects in the superconducting layer having low superconducting properties. The magnetic field is apt to leak in such a defective portion of the superconducting layer. Therefore, it is an object of the present invention to provide a superconducting magnetic shield that does not cause the above problems.
That is, it is an object of the present invention to provide a superconducting magnetic shield in which cracks that cross the noble metal layer are unlikely to occur in the noble metal layer.
The noble metal layer is Bi-Sr-Ca-Cu-O contained in the superconducting layer.
-Based superconducting oxide and nickel contained in the metal substrate,
In order to prevent reaction with a metal such as chromium or molybdenum, it is provided between the metal substrate and the superconducting layer.
It wasn't considered at all.
【0005】[0005]
【課題を解決するための手段】本発明によれば、金属基
板と、金属基板に積層する貴金属層と、貴金属層に積層
する超電導層とを有し、超電導層は臨界温度が77K以
上の超電導性酸化物を含有する超電導磁気シールド体に
おいて、貴金属層が貴金属合金から実質的に構成されて
いて、貴金属合金は、Ni、Fe、Co、Mg、Sn、
Si、Cd及びMnからなる群から選ばれた少なくとも
一つの金属を、0.01〜0.5重量%含有し、残部が
貴金属及び不可避不純物からなることを特徴とする超電
導磁気シールド体が提供される。According to the present invention, there is provided a metal substrate, a noble metal layer laminated on the metal substrate, and a superconducting layer laminated on the noble metal layer, the superconducting layer having a critical temperature of 77 K or higher. In a superconducting magnetic shield containing a conductive oxide, the noble metal layer is substantially composed of a noble metal alloy, and the noble metal alloy is Ni, Fe, Co, Mg, Sn,
There is provided a superconducting magnetic shield comprising at least one metal selected from the group consisting of Si, Cd and Mn in an amount of 0.01 to 0.5% by weight, the balance being a noble metal and inevitable impurities. It
【0006】本発明において、上記貴金属が、銀である
ことが好ましい。また、本発明において、上記貴金属合
金は、Ni、Fe、Co、Mg、Sn、Si、Cd及び
Mnからなる群から選ばれた少なくとも一つの金属を、
0.01〜0.2重量%含有し、残部が貴金属及び不可
避不純物からなることが好ましい。更に本発明におい
て、上記貴金属合金が、Niを含有することが好まし
い。更にまた本発明において、上記貴金属層が、50〜
2000μmの厚さを有することが好ましい。更に本発
明において、上記超電導性酸化物がBi-Sr-Ca-Cu-O 系酸
化物で多層ペロブスカイト構造を有する酸化物であるこ
とが好ましい。In the present invention, the above-mentioned noble metal is preferably silver. In the present invention, the noble metal alloy comprises at least one metal selected from the group consisting of Ni, Fe, Co, Mg, Sn, Si, Cd and Mn.
It is preferable that the content is 0.01 to 0.2% by weight, and the balance is a noble metal and unavoidable impurities. Further, in the present invention, it is preferable that the noble metal alloy contains Ni. Furthermore, in the present invention, the noble metal layer has a thickness of 50 to 50.
It preferably has a thickness of 2000 μm. Further, in the present invention, the superconducting oxide is preferably a Bi—Sr—Ca—Cu—O 2 -based oxide having a multi-layer perovskite structure.
【0007】また、本発明によれば、金属基板と、金属
基板に積層する貴金属層とを有する構造物を作成し、貴
金属層が貴金属合金から実質的に構成されていて、貴金
属合金は、Ni、Fe、Co、Mg、Sn、Si、Cd
及びMnからなる群から選ばれた少なくとも一つの金属
を、0.01〜0.5重量%含有し、残部が貴金属及び
不可避不純物からなっていて、次いで、臨界温度が77
K以上の超電導性酸化物を含有する超電導層を、当該超
電導性酸化物が部分溶融する温度で焼成して、当該貴金
属層に積層するように形成することを特徴とする超電導
磁気シールド体の製造方法が提供される。更に、本発明
によれば、金属基板と、金属基板に積層する超電導層と
を有し、超電導層は臨界温度が77K以上の超電導性酸
化物を含有する超電導磁気シールド体において、金属基
板が貴金属合金から実質的に構成されていて、貴金属合
金は、Ni、Fe、Co、Mg、Sn、Si、Cd及び
Mnからなる群から選ばれた少なくとも一つの金属を、
0.01〜0.5重量%含有し、残部が貴金属及び不可
避不純物からなることを特徴とする超電導磁気シールド
体が提供される。Further, according to the present invention, a structure having a metal substrate and a noble metal layer laminated on the metal substrate is prepared, and the noble metal layer is substantially composed of a noble metal alloy, and the noble metal alloy is Ni. , Fe, Co, Mg, Sn, Si, Cd
And at least one metal selected from the group consisting of Mn and 0.01 to 0.5% by weight, the balance being noble metal and unavoidable impurities, and then having a critical temperature of 77.
Production of a superconducting magnetic shield body, characterized in that a superconducting layer containing a superconducting oxide of K or more is fired at a temperature at which the superconducting oxide is partially melted and formed so as to be laminated on the noble metal layer. A method is provided. Further, according to the present invention, in a superconducting magnetic shield having a metal substrate and a superconducting layer laminated on the metal substrate, the superconducting layer containing a superconducting oxide having a critical temperature of 77 K or higher, the metal substrate is a noble metal. The noble metal alloy is substantially composed of an alloy, and the noble metal alloy contains at least one metal selected from the group consisting of Ni, Fe, Co, Mg, Sn, Si, Cd, and Mn.
There is provided a superconducting magnetic shield body characterized by containing 0.01 to 0.5% by weight, and the balance being a noble metal and unavoidable impurities.
【0008】[0008]
【作用】本発明では、貴金属層を実質的に構成する貴金
属合金に、微量のNi等の金属を含有させる。これによ
り、超電導層を形成する焼成工程で、貴金属層を構成す
る結晶粒の粗大化を軽減し、貴金属層にクラックが生じ
難くする。圧延された銀箔等では、銀の結晶粒は、数μ
m程度の粒径を有する。このような銀箔を金属基板に被
覆させて銀層とし、その銀層上に、溶融法により超電導
性酸化物を含有する超電導層を形成すると、溶融法の焼
成工程で、銀層を構成する銀結晶粒が成長して粗大化す
る。銀結晶粒が300μm以上の粒径に成長することが
あり、また、1mm以上の粒径にまで成長する場合すら
あった。超電導磁気シールド体の銀層がこのように粗大
化した銀結晶粒からなるとき、粒界にクラックや気孔が
生じやすく、このようなクラックは上記したように、超
電導層の欠陥の原因となる。ところが、本発明では、貴
金属層を実質的に構成する貴金属合金に、微量のNi等
の金属を含有させることにより、超電導層を形成する焼
成工程で、貴金属層を構成する結晶粒の粗大化を軽減
し、貴金属層にクラックが生じ難くする。本発明では、
超電導層を形成する焼成工程の後で、貴金属層を構成す
る結晶粒の粒径は、約10〜100μmに分布する。In the present invention, a trace amount of metal such as Ni is contained in the noble metal alloy that substantially constitutes the noble metal layer. As a result, in the firing step of forming the superconducting layer, coarsening of the crystal grains forming the noble metal layer is reduced, and cracks are less likely to occur in the noble metal layer. In rolled silver foil, etc., the silver crystal grains are several μ
It has a particle size of about m. When such a silver foil is coated on a metal substrate to form a silver layer, and a superconducting layer containing a superconducting oxide is formed on the silver layer by a melting method, the silver forming the silver layer is formed in the melting step of the melting method. Crystal grains grow and become coarse. In some cases, silver crystal grains grew to a grain size of 300 μm or more, and even to a grain size of 1 mm or more. When the silver layer of the superconducting magnetic shield is composed of such coarsened silver crystal grains, cracks and pores are likely to occur at grain boundaries, and such cracks cause defects in the superconducting layer as described above. However, in the present invention, the noble metal alloy that substantially forms the noble metal layer contains a trace amount of a metal such as Ni, so that the crystal grains that form the noble metal layer are coarsened in the firing step for forming the superconducting layer. It reduces and makes it difficult for the noble metal layer to crack. In the present invention,
After the firing step of forming the superconducting layer, the grain size of the crystal grains forming the noble metal layer is distributed to about 10 to 100 μm.
【0009】本発明では、貴金属合金は、Ni、Fe、
Co、Mg、Sn、Si、Cd及びMnからなる群から
選ばれた少なくとも一つの金属を、0.01〜0.5重
量%含有し、残部が貴金属及び不可避不純物からなって
いる。この範囲では、これらの微量金属と、超電導層に
含有する超電導性酸化物との反応は、無視できる。これ
らの微量元素の含有量が0.01重量%より小さいと
き、超電導層を形成する焼成工程で、貴金属結晶粒の成
長を、十分に抑制することができない。一方、これらの
微量元素の含有量が0.5重量%より大きいと、微量元
素が貴金属層に均一に分布せず、凝集又は偏析したり
し、また、超電導層に含有する超電導性酸化物と反応
し、超電導特性が低減することがあるので好ましくな
い。本発明では、貴金属合金が、Ni、Fe、Co、M
g、Sn、Si、Cd及びMnからなる群の金属を2種
以上含有するとき、それらの微量金属の含有量の合計
が、貴金属合金の0.01〜0.5重量%である。In the present invention, the noble metal alloy is Ni, Fe,
At least one metal selected from the group consisting of Co, Mg, Sn, Si, Cd, and Mn is contained in an amount of 0.01 to 0.5% by weight, and the balance is a noble metal and unavoidable impurities. In this range, the reaction between these trace metals and the superconducting oxide contained in the superconducting layer can be ignored. When the content of these trace elements is less than 0.01% by weight, the growth of noble metal crystal grains cannot be sufficiently suppressed in the firing step for forming the superconducting layer. On the other hand, when the content of these trace elements is larger than 0.5% by weight, the trace elements are not evenly distributed in the noble metal layer and agglomerate or segregate, and the superconducting oxide contained in the superconducting layer is It may react and reduce the superconducting property, which is not preferable. In the present invention, the noble metal alloy is Ni, Fe, Co, M.
When two or more metals of the group consisting of g, Sn, Si, Cd and Mn are contained, the total content of these trace metals is 0.01 to 0.5% by weight of the noble metal alloy.
【0010】本発明では、貴金属合金は、Ni、Fe、
Co、Mg、Sn、Si、Cd及びMnからなる群から
選ばれた少なくとも一つの金属を、0.01〜0.2重
量%含有し、残部が貴金属及び不可避不純物からなって
いることが好ましい。この範囲では、微量金属が超電導
性酸化物と反応する可能性が更に低いからである。In the present invention, the noble metal alloy is Ni, Fe,
It is preferable that at least one metal selected from the group consisting of Co, Mg, Sn, Si, Cd, and Mn is contained in an amount of 0.01 to 0.2% by weight, and the balance is a noble metal and unavoidable impurities. This is because in this range, the trace metals are less likely to react with the superconducting oxide.
【0011】貴金属層中の上記微量金属は、超電導層を
形成する焼成工程で酸化されて酸化物となり、この微細
な酸化物が、貴金属からなる結晶粒が構成するマトリッ
クスに分散している。従って、上記微量金属は、貴金属
合金に固溶しているのではないと考えられる。上記した
微量金属でも、貴金属合金が、Ni、Fe及びCoの鉄
族金属を含有することが好ましく、貴金属合金が、Ni
を含有することが更に好ましい。The above trace amount metal in the noble metal layer is oxidized into an oxide in the firing step for forming the superconducting layer, and this fine oxide is dispersed in the matrix formed by the crystal grains of the noble metal. Therefore, it is considered that the above trace metal is not in solid solution with the noble metal alloy. Among the above trace metals, it is preferable that the noble metal alloy contains an iron group metal of Ni, Fe and Co, and the noble metal alloy is Ni.
It is more preferable to contain
【0012】モリブデンは、上記した範囲の含有量で
も、超電導層の超電導性酸化物と反応し、超電導層の超
電導特性を低下させるので、上記の微量元素に含まれて
いない。上記の微量金属と異なり、モリブデンが超電導
性酸化物と反応することは、モリブデンが貴金属と複合
酸化物を形成し、融点が500℃以下の化合物を生成す
るからと思われる。また、パラジウムも、上記した範囲
の含有量でも、超電導層の超電導性酸化物と反応し、超
電導層の超電導特性を低下させるので、上記の微量元素
に含まれていない。しかし、微量のパラジウムを含有す
る貴金属合金でも、結晶粒が粗大化することを抑制する
ことができ、クラックの低減には役立つ。[0012] Molybdenum, even if contained in the above range, reacts with the superconducting oxide of the superconducting layer and deteriorates the superconducting properties of the superconducting layer, so it is not contained in the above trace elements. It is considered that molybdenum reacts with the superconducting oxide, unlike the above-mentioned trace metals, because molybdenum forms a complex oxide with a noble metal and forms a compound having a melting point of 500 ° C. or lower. Further, even if the content of palladium is in the above range, it reacts with the superconducting oxide of the superconducting layer and deteriorates the superconducting properties of the superconducting layer, so it is not included in the above trace elements. However, even with a precious metal alloy containing a small amount of palladium, it is possible to prevent the crystal grains from coarsening, which is useful for reducing cracks.
【0013】以下に本発明について更に詳細に説明す
る。本発明の超電導磁気シールド体は、金属基板と、こ
の金属基板の表面に積層する貴金属層と、この貴金属層
に積層する超電導層とを有する場合がある。金属基板が
超電導磁気シールド体の構造を支持する。超電導層は臨
界温度が77K以上の超電導性酸化物を含有し、臨界温
度以下の超電導状態でマイスナー効果により、磁気遮蔽
をすることができる。貴金属層は、超電導層を形成する
焼成工程等で、金属基板と超電導性酸化物との化学反応
を防止する。The present invention will be described in more detail below. The superconducting magnetic shield of the present invention may include a metal substrate, a noble metal layer laminated on the surface of the metal substrate, and a superconducting layer laminated on the noble metal layer. The metal substrate supports the structure of the superconducting magnetic shield. The superconducting layer contains a superconducting oxide having a critical temperature of 77 K or higher, and can perform magnetic shielding by the Meissner effect in the superconducting state of the critical temperature or lower. The noble metal layer prevents a chemical reaction between the metal substrate and the superconducting oxide in a firing process or the like for forming the superconducting layer.
【0014】貴金属層は、金属基板の表面に被覆するこ
とが好ましく、貴金属層と金属基板とが拡散接合で接合
することが更に好ましい。しかし、金属基板と貴金属層
との間に、ガラス層との中間層が介在し、中間層により
金属基板と貴金属層とが接合してもよい。超電導層は、
貴金属層の表面に被覆することが好ましい。しかし、貴
金属層と超電導層との間に中間層が介在することを妨げ
ない。The noble metal layer is preferably coated on the surface of the metal substrate, and more preferably the noble metal layer and the metal substrate are bonded by diffusion bonding. However, an intermediate layer with the glass layer may be interposed between the metal substrate and the noble metal layer, and the metal substrate and the noble metal layer may be joined by the intermediate layer. The superconducting layer is
It is preferable to coat the surface of the noble metal layer. However, it does not prevent the intermediate layer from being interposed between the noble metal layer and the superconducting layer.
【0015】以下、超電導磁気シールド体が、金属基
板、貴金属層、及び超電導層の少なくとも3層を有する
場合を中心に説明する。しかし、本発明は、貴金属から
なる金属基板とこの金属基板の表面に被覆する超電導層
との2層構造の超電導磁気シールド体を包含する。本発
明を貴金属からなる金属基板に適用できるからである。
図1は、本発明の超電導磁気シールド体の一具体例の断
面説明図である。図1に示すように、超電導磁気シール
ド体は、筒形状の筒状部21を有することが好ましい。
このとき、図1に示すように、超電導磁気シールド体の
内側から外側に、金属基板25、貴金属層26、超電導
層27がこの順序に積層してもよい。または、超電導磁
気シールド体の外側から内側に、金属基板、貴金属層、
超電導層がこの順序に積層してもよい。しかし、超電導
磁気シールド体は、平板又は湾曲している板形状であっ
てもよい。また、超電導磁気シールド体が、筒状部21
の一端部を閉じる底部22を有することが更に好まし
い。底部は、筒状部より外側に凸状に突き出しているこ
とが好ましい。超電導磁気シールド体が、筒状部及びそ
れに接合する底部を有するとき、筒状部及び底部は、共
に、金属基板と、この金属基板に積層する貴金属層と、
この貴金属層に積層する超電導層とを有する。Hereinafter, the case where the superconducting magnetic shield body has at least three layers of the metal substrate, the noble metal layer, and the superconducting layer will be mainly described. However, the present invention includes a superconducting magnetic shield having a two-layer structure including a metal substrate made of a noble metal and a superconducting layer covering the surface of the metal substrate. This is because the present invention can be applied to a metal substrate made of a noble metal.
FIG. 1 is a sectional explanatory view of a specific example of the superconducting magnetic shield of the present invention. As shown in FIG. 1, the superconducting magnetic shield body preferably has a tubular portion 21 having a tubular shape.
At this time, as shown in FIG. 1, the metal substrate 25, the noble metal layer 26, and the superconducting layer 27 may be laminated in this order from the inside to the outside of the superconducting magnetic shield. Or, from the outside to the inside of the superconducting magnetic shield, a metal substrate, a noble metal layer,
The superconducting layers may be laminated in this order. However, the superconducting magnetic shield may have a flat plate shape or a curved plate shape. In addition, the superconducting magnetic shield body has a cylindrical portion 21.
It is more preferable to have a bottom portion 22 that closes one end of the. The bottom portion preferably protrudes outward from the cylindrical portion. When the superconducting magnetic shield body has a tubular portion and a bottom portion joined to the tubular portion, the tubular portion and the bottom portion are both a metal substrate and a noble metal layer laminated on the metal substrate,
A superconducting layer laminated on the noble metal layer.
【0016】筒状部は、円柱形状の側壁であることが好
ましい。また、底部の水平断面も円であって、底部の中
心軸と、筒状部の中心軸が共通であることが好ましい。
しかし、筒状部の水平断面の形状が、楕円、正多角形で
あることを妨げるものではなく、また、底部の水平断面
の形状が、それに対応する形状でもよい。本発明に用い
る金属基板としては、超電導磁気シールド体の機械強度
を保持するものであればよい。超電導磁気シールド体が
貴金属層を有しない場合は、金属基板に超電導性酸化物
と反応性が低い素材を用いる。即ち、銀、金等の貴金属
に所定量の上記した微量金属が含有する貴金属合金を用
いる。金属基板が、銀を主成分とする銀合金から実質的
になることが好ましい。The tubular portion is preferably a cylindrical side wall. Further, it is preferable that the horizontal cross section of the bottom portion is also circular, and the central axis of the bottom portion and the central axis of the tubular portion are common.
However, the shape of the horizontal cross section of the tubular portion does not prevent the shape of an ellipse or a regular polygon, and the shape of the horizontal cross section of the bottom may be a corresponding shape. The metal substrate used in the present invention may be any one that maintains the mechanical strength of the superconducting magnetic shield. When the superconducting magnetic shield does not have a noble metal layer, a material having low reactivity with the superconducting oxide is used for the metal substrate. That is, a noble metal alloy containing a predetermined amount of the above-mentioned trace amount metal in a noble metal such as silver or gold is used. It is preferable that the metal substrate substantially consists of a silver alloy containing silver as a main component.
【0017】超電導磁気シールド体が貴金属層を有する
場合を中心に以下、説明する。金属基板は、貴金属層と
密着性よく接合されるものであり、且つ、貴金属層上の
超電導層形成工程に安定であるものが好ましい。金属基
板と貴金属層の積層方法としては、拡散接合法、圧延
法、溶射法、メッキ法、化学的蒸着法、物理的蒸着法等
が挙げられる。金属基板として、耐酸化性金属を好適に
用いることができる。例えば、SUS430、SUS3
10、インコネル600、インコネル625、インコロ
イ、ハステロイ等の金属を好ましく用いることができ
る。金属基板に、鉄、ニッケル、銅及びSUS304も
金属基板に用いることができる。上記金属基板の耐酸化
性は、約900℃の酸化雰囲気下において24時間保持
した時の酸化増量が0.25mg/cm2以下、好ましくは
0.2mg/cm2以下であるものが好ましい。 上記金属基
板の厚さは、特に制限されない。The case where the superconducting magnetic shield has a noble metal layer will be mainly described below. The metal substrate is preferably one that is bonded to the noble metal layer with good adhesion and is stable in the step of forming the superconducting layer on the noble metal layer. Examples of the method for laminating the metal substrate and the noble metal layer include a diffusion bonding method, a rolling method, a thermal spraying method, a plating method, a chemical vapor deposition method, and a physical vapor deposition method. An oxidation resistant metal can be preferably used as the metal substrate. For example, SUS430, SUS3
Metals such as 10, Inconel 600, Inconel 625, Incoloy, and Hastelloy can be preferably used. For the metal substrate, iron, nickel, copper and SUS304 can also be used for the metal substrate. Regarding the oxidation resistance of the above-mentioned metal substrate, it is preferable that the increase in oxidation when kept in an oxidizing atmosphere at about 900 ° C. for 24 hours is 0.25 mg / cm 2 or less, preferably 0.2 mg / cm 2 or less. The thickness of the metal substrate is not particularly limited.
【0018】貴金属層は、金属基板と超電導層とに間に
配置される。貴金属層の素材は、上記したような貴金属
合金からなる。この貴金属合金は、超電導性酸化物と反
応性が低い。貴金属合金が、銀と所定量の上記微量元素
から実質的になることが好ましい。貴金属層は、金属基
板と超電導層の反応を防止し、本発明では、貴金属層に
クラックが生じ難いため、金属基板中の元素が、超電導
層を形成する焼成工程で、貴金属層を拡散して、超電導
層と反応することを効果的に防止することができる。貴
金属層を配置しないで、超電導層を直接、ステンレス等
の金属基板に被覆すると、超電導層を形成する工程の焼
成中に金属基板が超電導体との反応をするので、超電導
層の超電導特性は低くなる。貴金属層の厚さは、上記の
反応を防止する厚さであればよい。厚さが30μm以上
あれば上記反応を防止することができる。また、厚さが
50μm以上とするのが、金属基板と超電導層との熱衝
撃に対して緩和材として作用するので、好ましい。ま
た、貴金属層の厚さが2000μmを超える場合は、緩
和材としての作用よりも、超電導体及び貴金属中間層の
熱膨張差による熱応力が支配的となる場合があり、ま
た、緩和材としての作用が厚みに比し向上することなく
コスト増加となり好ましくない。従って、貴金属層の厚
さは、50〜2000μmが好ましく、より好ましくは
100〜1500μmである。貴金属層を形成する材料
としては、一般に上記所定の厚みを有し、拡散接合する
基板の形状に応じた形状の箔や薄板等を用いることがで
きる。The noble metal layer is arranged between the metal substrate and the superconducting layer. The material of the noble metal layer is the noble metal alloy as described above. This noble metal alloy has low reactivity with superconducting oxides. It is preferable that the noble metal alloy substantially consists of silver and a predetermined amount of the above trace elements. The noble metal layer prevents the reaction between the metal substrate and the superconducting layer, and in the present invention, since the noble metal layer is unlikely to crack, the element in the metal substrate diffuses the noble metal layer in the firing step for forming the superconducting layer. It is possible to effectively prevent the reaction with the superconducting layer. If the superconducting layer is directly coated on a metal substrate such as stainless steel without disposing a noble metal layer, the metal substrate reacts with the superconductor during firing in the step of forming the superconducting layer, so the superconducting property of the superconducting layer is low. Become. The noble metal layer may have any thickness as long as it prevents the above reaction. If the thickness is 30 μm or more, the above reaction can be prevented. Further, it is preferable that the thickness is 50 μm or more because it acts as a relaxation material against thermal shock between the metal substrate and the superconducting layer. When the thickness of the noble metal layer exceeds 2000 μm, the thermal stress due to the difference in thermal expansion between the superconductor and the noble metal intermediate layer may be dominant rather than the action as the relaxing material. The action is not improved as compared with the thickness, and the cost is increased, which is not preferable. Therefore, the thickness of the noble metal layer is preferably 50 to 2000 μm, more preferably 100 to 1500 μm. As a material for forming the noble metal layer, generally, a foil or a thin plate having the above-mentioned predetermined thickness and having a shape corresponding to the shape of the substrate to be diffusion-bonded can be used.
【0019】拡散接合とは、近年、溶接が不可能な金属
を接合し、接合される異種金属双方の性質を併せ持つク
ラッド材として開発されている接合方法であり、接合面
で接合金属双方が拡散状態を形成することから拡散接合
と呼ばれている。拡散接合の方法としては、例えば、金
属板を研磨、超音波洗浄により表面仕上げした後に、約
800〜1100℃の温度で、アルゴンガス等の不活性
ガスを含む非酸化ガス雰囲気中で約0.5〜15kgf/mm
2 の圧力で、金属板を貴金属層材と圧着させ、その後、
歪み除去、研磨等の仕上げをして得ることができる。ま
た、金属板と貴金属層材とを互いに研磨、超音波洗浄等
で表面仕上げした後、重ね合わせ、熱間圧延し、金属板
と貴金属層材とを圧着させ、その後、歪み除去、研磨等
の仕上げをして得ることもできる。このように拡散接合
により、金属板とその表面に貴金属が被覆する積層板を
得ることができる。この積層板を所望形状に配置し、隣
接する積層板の側面において、金属板どうし及び貴金属
層どうしを溶接し、積層板を接合する。溶接方法に限定
はない。この接合した積層板を所望形状に機械加工す
る。例えば、ロール加工により筒状部にする。また、絞
り加工により、底部用の鏡板にする。2枚以上の積層板
を所望形状に配置し、隣接する積層板の側面において、
この積層板の金属板同士及び貴金属層同士を溶接し、大
型化した積層板を得る場合がある。また、一枚の積層板
をロール加工等の機械加工をして、その積層板の側面同
士が接するようにし、その側面において、この積層板の
金属板同士及び貴金属層同士を溶接する場合がある。例
えば、一枚の長方形の形状の積層板をロール加工して、
筒状とし、筒の周面で長方形の対向する2辺に相当する
積層板の側面を溶接する場合である。このように、2枚
以上の積層板を接合しても、1枚の積層板からでも、溶
接部を有する貴金属層が構成される。なお、溶接方法は
問わない。Diffusion bonding is a bonding method developed in recent years as a clad material that joins metals that cannot be welded together and has the properties of both dissimilar metals to be joined. It is called diffusion bonding because it forms a state. As a method of diffusion bonding, for example, after polishing and surface-finishing a metal plate by ultrasonic cleaning, a temperature of about 800 to 1100 ° C. is applied in a non-oxidizing gas atmosphere containing an inert gas such as argon gas to about 0. 5-15kgf / mm
With pressure of 2 , the metal plate is pressure-bonded to the precious metal layer material, and then
It can be obtained by finishing such as strain removal and polishing. Further, the metal plate and the precious metal layer material are mutually polished, surface-finished by ultrasonic cleaning, etc., then laminated and hot rolled to press-bond the metal plate and the precious metal layer material, and thereafter, strain removal, polishing, etc. It can also be obtained after finishing. Thus, by diffusion bonding, it is possible to obtain a metal plate and a laminated plate whose surface is coated with a noble metal. The laminated plates are arranged in a desired shape, and the metal plates and the noble metal layers are welded to each other on the side surfaces of the adjacent laminated plates to join the laminated plates. There is no limitation on the welding method. The bonded laminate is machined to the desired shape. For example, a cylindrical portion is formed by roll processing. In addition, a bottom end plate is drawn by drawing. Arrange two or more laminated plates in a desired shape, and on the side surface of the adjacent laminated plates,
In some cases, the metal plates of this laminated plate and the precious metal layers are welded to each other to obtain a large-sized laminated plate. Further, a single laminated plate may be machined such as roll processing so that the side surfaces of the laminated plate are in contact with each other, and the metal plates of the laminated plate and the precious metal layers may be welded to each other on the side surface. . For example, roll processing a rectangular laminated plate,
This is a case of forming a cylindrical shape and welding the side surfaces of the laminated plate corresponding to the two sides of the rectangular shape that are opposed to each other on the peripheral surface of the cylindrical shape. In this way, even if two or more laminated plates are joined together, a single laminated plate constitutes a noble metal layer having a welded portion. The welding method does not matter.
【0020】貴金属層の表面に超電導層を形成する。本
発明における超電導層として用いられる超電導性組成物
は、特に限定されるものでない。例えば、Bi2Sr2CaCu2O
xやBi2Sr2Ca2Cu3Oxに代表される組成を有するビスマス
系(Bi系)超電導性酸化物を主成分として含有する組成
物があげられる。本発明における超電導層として用いら
れる超電導性組成物の主成分の例としては、組成式でRE
Ba2Cu3O7-yと表せ、REは希土類元素でY、Gd、Dy、
Ho、Er及びYbからなる群のなかの少なくとも一元
素からなる希土類系超電導酸化物を主成分として含有す
る超電導性組成物は好適に用いられる。この場合、yは
これらの化合物中の酸素組成が非化学量論的なので0以
上1以下の任意の値でよく、この値が超電導特性の発現
に直接影響を与える。REと表す希土類元素は、必ずしも
一元素のみに限られるわけではなく、Y、Gd、Dy、
Ho、Er及びYbからなる群より任意の二以上の元素
を混在させてもよく、例えば、REがYzYb1-z(zは0以
上1以下の実数)と表せる場合等がある。また、これら
化合物の結晶構造は共通の特徴があり、多層ペロブスカ
イト構造を有する。A superconducting layer is formed on the surface of the noble metal layer. The superconducting composition used as the superconducting layer in the present invention is not particularly limited. For example, Bi 2 Sr 2 CaCu 2 O
A composition containing a bismuth-based (Bi-based) superconducting oxide having a composition represented by x or Bi 2 Sr 2 Ca 2 Cu 3 O x as a main component can be given. Examples of the main component of the superconducting composition used as the superconducting layer in the present invention include RE in the composition formula.
Represented as Ba 2 Cu 3 O 7-y , RE is a rare earth element, Y, Gd, Dy,
A superconducting composition containing a rare earth superconducting oxide containing at least one element in the group consisting of Ho, Er and Yb as a main component is preferably used. In this case, y may be an arbitrary value of 0 or more and 1 or less because the oxygen composition in these compounds is non-stoichiometric, and this value directly affects the expression of superconducting properties. The rare earth element represented by RE is not necessarily limited to only one element, but Y, Gd, Dy,
Any two or more elements may be mixed from the group consisting of Ho, Er, and Yb. For example, RE may be expressed as Y z Yb 1-z (z is a real number of 0 or more and 1 or less). Further, the crystal structures of these compounds have common characteristics, and have a multi-layer perovskite structure.
【0021】超電導層を形成するには、まず、Bi2S
r2CaCu2OxあるいはYBa2Cu3O7-yの組成とな
るように、原料粉末を調合しこれを混合する。次に、こ
の混合物を所定の温度で大気中にて仮焼した後粉砕す
る。次いでこの粉砕物に対して、0.1〜5重量%の酸
化マグネシウム粉末を添加して混合してもよい。この混
合物を溶媒中でスラリーにし、得られたスラリーを基板
或いは中間層上にスプレー塗布、ハケ塗り、ディップコ
ーティング、ドクターブレード法等公知のいずれの方法
等の方法で成形する。通常は、200〜1000μmの
厚さの超電導層はスプレー塗布法やドクターブレード法
による成形体載置が用いられ、0.5〜5mmの厚さの超
電導層はプレス成形法による成形体載置が好ましい。通
常はスプレー塗布法が用いられることが多い。スラリー
を作成することに用いる溶媒は、有機溶媒であり、脱水
してあるものが好ましい。エタノール、イソプロピルア
ルコール等のアルコール又はトルエンと酢酸エチルとの
混合溶媒を用いることができる。適当な分散剤、バイン
ダーを添加し、スラリーの粘性を調整する。To form the superconducting layer, first, Bi 2 S is used.
Raw material powders are prepared and mixed so that the composition is r 2 CaCu 2 O x or YBa 2 Cu 3 O 7-y . Next, this mixture is calcined in the air at a predetermined temperature and then pulverized. Next, 0.1 to 5% by weight of magnesium oxide powder may be added to and mixed with the pulverized product. This mixture is made into a slurry in a solvent, and the obtained slurry is formed on a substrate or an intermediate layer by any known method such as spray coating, brush coating, dip coating, and doctor blade method. Usually, a superconducting layer having a thickness of 200 to 1000 μm is formed by a spray coating method or a doctor blade method, and a superconducting layer having a thickness of 0.5 to 5 mm is formed by a pressing method. preferable. Usually, a spray coating method is often used. The solvent used for preparing the slurry is an organic solvent, and preferably dehydrated. An alcohol such as ethanol or isopropyl alcohol, or a mixed solvent of toluene and ethyl acetate can be used. The viscosity of the slurry is adjusted by adding an appropriate dispersant and binder.
【0022】そして、超電導性酸化物が部分溶融する温
度で成形体を焼成することにより超電導層が形成され
る。焼成温度は超電導性酸化物の種類により適宜調節
し、例えば、YBa2Cu3O7ーyからなる時には900℃〜1
200℃であり、Bi2Sr2CaCu2Oxからなる時には875
℃〜900℃である。何れの超電導性酸化物の場合で
も、酸素濃度20%以上、好ましくは80%以上の雰囲
気中で成形体を焼成するのが好ましい。特に後者のBi系
超電導体の場合は、酸素ガスからなる雰囲気等の酸素富
化ガス雰囲気中で875〜900℃で部分溶融した後、
約850℃以下まで冷却速度1℃/分以下で徐冷し、そ
の温度で約5時間以上保持し、その後、窒素ガス等の不
活性ガス雰囲気に変えて450〜700℃で数時間以上
熱処理するのが好ましい。Then, the superconducting layer is formed by firing the compact at a temperature at which the superconducting oxide partially melts. The firing temperature is appropriately adjusted depending on the type of superconducting oxide, and for example, when it is made of YBa 2 Cu 3 O 7-y, it is 900 ° C to 1 ° C.
200 ° C., 875 when composed of Bi 2 Sr 2 CaCu 2 O x
C to 900C. In the case of any superconducting oxide, it is preferable to fire the compact in an atmosphere having an oxygen concentration of 20% or more, preferably 80% or more. Particularly in the case of the latter Bi-based superconductor, after partially melting at 875 to 900 ° C. in an oxygen-enriched gas atmosphere such as an atmosphere containing oxygen gas,
Gradually cool to about 850 ° C or less at a cooling rate of 1 ° C / min or less, hold at that temperature for about 5 hours or more, and then change to an inert gas atmosphere such as nitrogen gas and heat treat at 450 to 700 ° C for several hours or more. Is preferred.
【0023】[0023]
【実施例】以下、本発明を実施例により更に詳細に説明
する。但し、本発明は下記実施例により制限されるもの
でない。 (実施例1〜21)銀を高周波溶解炉にて溶解し、これ
に表1又は表2に示す含有金属をこれらの表に示す含有
量になるように添加し、銀合金とした後、圧延加工によ
り、表1又は2に示す厚さの銀箔とした。300mm×
600mmのサイズであり、表1又は表2に示す厚さと
材質の金属板と、300mm×600mmのサイズであ
り表1又は表2に示す厚さの銀箔を、それぞれ研磨し、
超音波で表面を洗浄した。次いで、このインコネル板上
にこの銀箔を静置して、アルゴン雰囲気中、900℃
で、0.5〜15kgf/mm2 の圧力で60分保持して加圧
接合し、積層板を得た。作製した試料の中から拡散接合
の密着性をJISG0601のクラッド鋼の試験方法に
て測定した。その結果、6kgf/mm2 以上の接合強度を有
し、いずれも密着性は良好であった。更に、加圧接合で
生じた歪みを補正除去した後、研磨して、インコネル板
に銀が被覆する積層板(300mm×600mm)を得
た。EXAMPLES The present invention will now be described in more detail with reference to examples. However, the present invention is not limited to the following examples. (Examples 1 to 21) Silver was melted in a high-frequency melting furnace, and the contained metals shown in Table 1 or Table 2 were added to the contents shown in these tables to prepare silver alloys, which were then rolled. By processing, a silver foil having a thickness shown in Table 1 or 2 was obtained. 300 mm x
A metal plate having a size of 600 mm and a thickness and material shown in Table 1 or Table 2 and a silver foil having a size of 300 mm × 600 mm and a thickness shown in Table 1 or Table 2 are respectively polished,
The surface was cleaned with ultrasonic waves. Then, the silver foil was allowed to stand on the Inconel plate, and the temperature was set to 900 ° C. in an argon atmosphere.
Then, it was held for 60 minutes at a pressure of 0.5 to 15 kgf / mm 2 and pressure-bonded to obtain a laminated plate. The adhesion of the diffusion bonding was measured from the prepared samples by the clad steel test method of JIS G0601. As a result, the bonding strength was 6 kgf / mm 2 or more, and the adhesion was good in all cases. Further, after correcting and removing the strain generated by the pressure bonding, the laminate was polished to obtain a laminated plate (300 mm × 600 mm) in which the Inconel plate was coated with silver.
【0024】得られた積層板(300mm×600m
m)から、両端部が開口していて、内径が約100m
m、高さが600mmの円筒形状の筒状部を作製した。
まず、積層板の600mmの辺に沿って縁取りをし、こ
の接合板をロール加工して、これにより、積層板が、長
さが600mmの辺のある両側面が接触する筒形状を有
するようにした。この両側面で、金属板どうし及び貴金
属層どうしを溶接して、高さが600mm、内径が約1
00mmの円筒を得た。貴金属層が筒の外側に配置し、
金属基板が筒の内側に配置した。The obtained laminated plate (300 mm × 600 m)
From m), both ends are open and the inner diameter is about 100 m
A cylindrical tubular portion having a height of m and a height of 600 mm was produced.
First, the laminated plate is trimmed along the side of 600 mm, and the joined plate is roll-processed, so that the laminated plate has a tubular shape in which both side surfaces having sides of 600 mm in length contact each other. did. Welded metal plates and precious metal layers on both sides, height 600mm, inner diameter about 1
A cylinder of 00 mm was obtained. The precious metal layer is placed on the outside of the cylinder,
The metal substrate was placed inside the tube.
【0025】最後に、貴金属層の表面に超電導層を形成
した。Bi2O3、SrCO3、CaCO3、CuOの各粉
末をBi2Sr2CaCu2Oxとなる割合で調合した。得られた混
合粉末を830〜860℃、大気中で10時間以上仮焼
した後、粉砕し仮焼粉末を得た。得られた仮焼粉末に酸
化マグネシウム粉末を所定の量と溶媒としてのエチルア
ルコールとを添加し、ZrO2球石と共にトロンメルに
て湿式粉砕及び混合をしてBi2Sr2CaCu2Oxスラリーを得
た。このスラリーに更に分散剤及びバインダーであるポ
リビニルブタノールを添加し、粘性を調整した。スプレ
ー塗布により、貴金属層の表面を、このスラリーで被覆
し、超電導成形層を得た。この超電導成形層を乾燥し、
次いで、酸素雰囲気中、890℃の電気炉で30分、磁
気シールド体前駆体を保持し、Bi2Sr2CaCu2Oxを部分溶
融した。その後、降温速度0.5℃/分で850℃まで
徐冷し、850℃で15時間放置してBi2Sr2CaCu2Oxか
らなる結晶粒を成長させた。その後、700℃まで冷却
してから、窒素雰囲気に置換し、500℃で10時間、
保持して熱処理し、図1に示す形状の超電導磁気シール
ド体を得た。超電導層の厚さは、0.3mmであった。Finally, a superconducting layer was formed on the surface of the noble metal layer. Powders of Bi 2 O 3 , SrCO 3 , CaCO 3 , and CuO were prepared in a ratio of Bi 2 Sr 2 CaCu 2 O x . The obtained mixed powder was calcined in the air at 830 to 860 ° C. for 10 hours or more and then pulverized to obtain a calcined powder. A predetermined amount of magnesium oxide powder and ethyl alcohol as a solvent were added to the obtained calcined powder, and wet pulverization and mixing were performed together with ZrO 2 spheroid with a trommel to prepare a Bi 2 Sr 2 CaCu 2 O x slurry. Obtained. To this slurry was added a dispersant and a binder, polyvinyl butanol, to adjust the viscosity. The surface of the noble metal layer was coated with this slurry by spray coating to obtain a superconducting molded layer. Dry this superconducting molded layer,
Then, the magnetic shield precursor was held in an electric furnace at 890 ° C. for 30 minutes in an oxygen atmosphere to partially melt Bi 2 Sr 2 CaCu 2 O x . Then, the temperature was gradually decreased to 850 ° C. at a temperature decreasing rate of 0.5 ° C./minute, and the mixture was allowed to stand at 850 ° C. for 15 hours to grow crystal grains of Bi 2 Sr 2 CaCu 2 O x . Then, after cooling to 700 ° C., the atmosphere is replaced with a nitrogen atmosphere, and the temperature is 500 ° C. for 10 hours
It was held and heat-treated to obtain a superconducting magnetic shield having the shape shown in FIG. The superconducting layer had a thickness of 0.3 mm.
【0026】得られた磁気シールド体を目視観察した。
超電導磁気シールド体の超電導層で、インコネル基板と
の反応に起因する超電導層の表面の色変化は見いださな
かった。これを評価で、良とした。この超電導磁気シー
ルド体の断面を顕微鏡で観察すると、銀層の結晶粒は、
約10〜100μmに分布していた。The magnetic shield obtained was visually observed.
In the superconducting layer of the superconducting magnetic shield, no color change on the surface of the superconducting layer due to the reaction with the Inconel substrate was found. This was evaluated as good. When observing the cross section of this superconducting magnetic shield with a microscope, the crystal grains of the silver layer are
It was distributed in about 10 to 100 μm.
【0027】[0027]
【表1】 [Table 1]
【0028】[0028]
【表2】 [Table 2]
【0029】(比較例1〜5)実施例1〜21と同じ大
きさの超電導磁気シールド体を、実施例1〜21と同様
に、作成した。ただし、銀層に含有する微量金属及びそ
の量、銀層の厚さ、並びに、金属板の材質及び厚さを、
表3に示すように変化させた。これらの超電導磁気シー
ルド体を目視観察すると、いずれの超電導層でも、イン
コネル基板との反応に起因する超電導層の表面の色変化
を、複数箇所で見いださした。これを外観評価で、不良
とした。例えば、比較例1の超電導磁気シールド体で
は、超電導層の表面の色変化を10箇所、見いださし
た。この超電導層の欠陥部分が銀層のクラックに起因す
るかを調べた。この色変化した部分の超電導層を除去
し、銀層の表面を露出させた。この露出面に蛍光浸透探
傷剤を塗布してから、露出面に紫外線を当てたところ、
蛍光を放つクラックがあった。いずれの超電導磁気シー
ルド体の超電導層の欠陥部分のいずれでも、クラックを
発見した。なお、蛍光浸透探傷剤としては、マークテッ
ク(株)の商品名スーパーグローを用いた。これらの結
果を表3にまとめる。(Comparative Examples 1 to 5) Superconducting magnetic shields having the same size as in Examples 1 to 21 were prepared in the same manner as in Examples 1 to 21. However, the trace metal and its amount contained in the silver layer, the thickness of the silver layer, and the material and thickness of the metal plate,
Changes were made as shown in Table 3. When these superconducting magnetic shields were visually observed, a color change on the surface of the superconducting layer due to the reaction with the Inconel substrate was found at a plurality of locations in any of the superconducting layers. This was judged to be defective in appearance evaluation. For example, in the superconducting magnetic shield of Comparative Example 1, color changes on the surface of the superconducting layer were found at 10 locations. It was investigated whether the defective portion of the superconducting layer was caused by the crack of the silver layer. The superconducting layer in the color-changed portion was removed to expose the surface of the silver layer. After applying a fluorescent penetrant agent to this exposed surface, and then exposing the exposed surface to ultraviolet light,
There was a crack that emitted fluorescence. Cracks were found in any of the defective portions of the superconducting layer of any of the superconducting magnetic shields. As the fluorescent penetrant flaw detector, Super Glow, a trade name of Mark Tech Co., Ltd. was used. The results are summarized in Table 3.
【0030】[0030]
【表3】 [Table 3]
【0031】[0031]
【発明の効果】本発明の超電導磁気シールド体では、貴
金属層を実質的に構成する貴金属合金は、Ni、Fe、
Co、Mg、Sn、Si、Cd及びMnからなる群から
選ばれた少なくとも一つの金属を、0.01〜0.5重
量%含有し、残部が貴金属及び不可避不純物からなるの
で、貴金属層にクラックが生じ難く、超電導層の欠陥が
減少する。本発明の超電導磁気シールド体の製造方法で
は、貴金属層を実質的に構成する貴金属合金は、Ni、
Fe、Co、Mg、Sn、Si、Cd及びMnからなる
群から選ばれた少なくとも一つの金属を、0.01〜
0.5重量%含有し、残部が貴金属及び不可避不純物か
らなるので、超電導層を形成する焼成工程で、貴金属層
にクラックが生じ難く、超電導層の欠陥が減少する。In the superconducting magnetic shield of the present invention, the noble metal alloy that substantially constitutes the noble metal layer is Ni, Fe,
Since at least one metal selected from the group consisting of Co, Mg, Sn, Si, Cd, and Mn is contained in an amount of 0.01 to 0.5% by weight, and the balance consists of noble metal and unavoidable impurities, the noble metal layer is cracked. Is less likely to occur, and defects in the superconducting layer are reduced. In the method for manufacturing a superconducting magnetic shield according to the present invention, the noble metal alloy that substantially constitutes the noble metal layer is Ni,
0.01 to at least one metal selected from the group consisting of Fe, Co, Mg, Sn, Si, Cd and Mn.
Since the content is 0.5% by weight and the balance consists of noble metal and unavoidable impurities, cracks are less likely to occur in the noble metal layer in the firing step of forming the superconducting layer, and defects in the superconducting layer are reduced.
【図1】本発明の超電導磁気シールド体の一具体例の断
面説明図である。FIG. 1 is a cross-sectional explanatory view of a specific example of a superconducting magnetic shield according to the present invention.
20 超電導磁気シールド体 21 筒状部 22 底部 23 接合部 25 金属基板 26 貴金属層 27 超電導層 20 Superconducting Magnetic Shield 21 Cylindrical Part 22 Bottom 23 Joining Part 25 Metal Substrate 26 Noble Metal Layer 27 Superconducting Layer
Claims (8)
金属層と、当該貴金属層に積層する超電導層とを有し、
当該超電導層は臨界温度が77K以上の超電導性酸化物
を含有する超電導磁気シールド体において、 当該貴金属層が貴金属合金から実質的に構成されてい
て、 当該貴金属合金は、Ni、Fe、Co、Mg、Sn、S
i、Cd及びMnからなる群から選ばれた少なくとも一
つの金属を、0.01〜0.5重量%含有し、残部が貴
金属及び不可避不純物からなることを特徴とする超電導
磁気シールド体。1. A metal substrate, a noble metal layer laminated on the metal substrate, and a superconducting layer laminated on the noble metal layer,
The superconducting layer is a superconducting magnetic shield containing a superconducting oxide having a critical temperature of 77 K or higher, and the noble metal layer is substantially composed of a noble metal alloy, and the noble metal alloy is Ni, Fe, Co, Mg. , Sn, S
A superconducting magnetic shield comprising at least one metal selected from the group consisting of i, Cd, and Mn in an amount of 0.01 to 0.5% by weight, the balance being a noble metal and unavoidable impurities.
る請求項1に記載の超電導磁気シールド体。2. The superconducting magnetic shield according to claim 1, wherein the noble metal is silver.
Mg、Sn、Si、Cd及びMnからなる群から選ばれ
た少なくとも一つの金属を、0.01〜0.2重量%含
有し、残部が貴金属及び不可避不純物からなることを特
徴とする請求項1又は2に記載の超電導磁気シールド
体。3. The precious metal alloy is Ni, Fe, Co,
3. 0.01 to 0.2% by weight of at least one metal selected from the group consisting of Mg, Sn, Si, Cd and Mn, and the balance being a noble metal and unavoidable impurities. Alternatively, the superconducting magnetic shield according to item 2.
を特徴とする請求項1、2又は3に記載の超電導磁気シ
ールド体。4. The superconducting magnetic shield according to claim 1, 2 or 3, wherein the noble metal alloy contains Ni.
厚さを有することを特徴とする請求項1〜4のいずれか
に記載の超電導磁気シールド体。5. The superconducting magnetic shield according to claim 1, wherein the noble metal layer has a thickness of 50 to 2000 μm.
酸化物で多層ペロブスカイト構造を有する酸化物である
ことを特徴とする請求項1〜5のいずれかに記載の超電
導磁気シールド体。6. The superconducting oxide according to claim 1, wherein the superconducting oxide is a Bi—Sr—Ca—Cu—O-based oxide having a multi-layer perovskite structure. Magnetic shield body.
金属層とを有する構造物を作成し、当該貴金属層が貴金
属合金から実質的に構成されていて、当該貴金属合金
は、Ni、Fe、Co、Mg、Sn、Si、Cd及びM
nからなる群から選ばれた少なくとも一つの金属を、
0.01〜0.5重量%含有し、残部が貴金属及び不可
避不純物からなっていて、 次いで、臨界温度が77K以上の超電導性酸化物を含有
する超電導層を、当該超電導性酸化物が部分溶融する温
度で焼成して、当該貴金属層に積層するように形成する
ことを特徴とする超電導磁気シールド体の製造方法7. A structure having a metal substrate and a noble metal layer laminated on the metal substrate is formed, and the noble metal layer is substantially composed of a noble metal alloy, and the noble metal alloy is Ni, Fe, Co, Mg, Sn, Si, Cd and M
at least one metal selected from the group consisting of n,
The superconducting oxide is partially melted in a superconducting layer containing 0.01 to 0.5% by weight, the balance consisting of a noble metal and unavoidable impurities, and then containing a superconducting oxide having a critical temperature of 77 K or higher. At a predetermined temperature, and is formed so as to be laminated on the precious metal layer, a method of manufacturing a superconducting magnetic shield body characterized by the following:
電導層とを有し、当該超電導層は臨界温度が77K以上
の超電導性酸化物を含有する超電導磁気シールド体にお
いて、 当該金属基板が貴金属合金から実質的に構成されてい
て、 当該貴金属合金は、Ni、Fe、Co、Mg、Sn、S
i、Cd及びMnからなる群から選ばれた少なくとも一
つの金属を、0.01〜0.5重量%含有し、残部が貴
金属及び不可避不純物からなることを特徴とする超電導
磁気シールド体。8. A superconducting magnetic shield comprising a metal substrate and a superconducting layer laminated on the metal substrate, wherein the superconducting layer contains a superconducting oxide having a critical temperature of 77 K or higher, wherein the metal substrate is a noble metal. The noble metal alloy is substantially composed of an alloy containing Ni, Fe, Co, Mg, Sn and S.
A superconducting magnetic shield comprising at least one metal selected from the group consisting of i, Cd, and Mn in an amount of 0.01 to 0.5% by weight, the balance being a noble metal and unavoidable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5073450A JPH06291489A (en) | 1993-03-31 | 1993-03-31 | Superconductive magnetic shield substance and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5073450A JPH06291489A (en) | 1993-03-31 | 1993-03-31 | Superconductive magnetic shield substance and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06291489A true JPH06291489A (en) | 1994-10-18 |
Family
ID=13518582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5073450A Withdrawn JPH06291489A (en) | 1993-03-31 | 1993-03-31 | Superconductive magnetic shield substance and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06291489A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6555504B1 (en) * | 1999-02-26 | 2003-04-29 | Sumitomo Electric Industries, Ltd. | Oxide superconducting wire having insulating coat and production method thereof |
-
1993
- 1993-03-31 JP JP5073450A patent/JPH06291489A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6555504B1 (en) * | 1999-02-26 | 2003-04-29 | Sumitomo Electric Industries, Ltd. | Oxide superconducting wire having insulating coat and production method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6291402B1 (en) | Method of making a superconductive oxide body | |
EP0401461B1 (en) | Oxide superconductor and method of manufacturing the same | |
BE1000344A3 (en) | Preparation and oxide composite metal oxide-superconductor. | |
JPH01163910A (en) | Superconductive composite and its manufacture | |
US5102865A (en) | Substrate for ceramic superconductor with improved barrier | |
JPH09129438A (en) | Oxide superconductive coil and manufacture thereof | |
US20030130128A1 (en) | Method of fabricating fine high temperature superconducting composites | |
JPH06291489A (en) | Superconductive magnetic shield substance and its manufacture | |
JP2008066168A (en) | MgB2 superconducting wire and manufacturing method thereof | |
US20040132624A1 (en) | Metal base material for oxide superconducting thick films and manufacturing method thereof | |
US5273959A (en) | Alloy for HTSC composite conductors made of Au-Ag-Pd | |
JP3412697B2 (en) | Superconducting coil carrier | |
JPH06283888A (en) | Superconductive magnetic shield body and its manufacture | |
JP3383799B2 (en) | Superconducting composite and manufacturing method thereof | |
JP3623868B2 (en) | High durability oxide superconductor and manufacturing method thereof | |
US5284825A (en) | Contaminant diffusion barrier for a ceramic oxide superconductor coating on a substrate | |
JPH06291488A (en) | Superconductive electromagnetic shield substance and its manufacture | |
JPH01189813A (en) | Oxide superconducting wire | |
JP3448597B2 (en) | Bismuth-based oxide superconducting composite and method for producing the same | |
JP2597704B2 (en) | Metal-coated superconducting ceramics compact and metal-coated superconducting ceramic-metal joint using the same | |
JP3150718B2 (en) | Superconductor lamination substrate and superconducting laminate using the same | |
JPS63279517A (en) | Oxide ceramic superconductive composite wire | |
JP2639513B2 (en) | Oxide superconducting magnetic shield and manufacturing method thereof | |
JPS63274017A (en) | Superconductive wire material | |
JPH03235088A (en) | Bismuth based superconductor composite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20000704 |