JPH0817267B2 - Substrate for high frequency circuit - Google Patents

Substrate for high frequency circuit

Info

Publication number
JPH0817267B2
JPH0817267B2 JP2153388A JP15338890A JPH0817267B2 JP H0817267 B2 JPH0817267 B2 JP H0817267B2 JP 2153388 A JP2153388 A JP 2153388A JP 15338890 A JP15338890 A JP 15338890A JP H0817267 B2 JPH0817267 B2 JP H0817267B2
Authority
JP
Japan
Prior art keywords
epoxy resin
substrate
uhmwpe
sheet
frequency circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2153388A
Other languages
Japanese (ja)
Other versions
JPH0444386A (en
Inventor
聡 田崎
隆男 菅原
共久 太田
豊 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2153388A priority Critical patent/JPH0817267B2/en
Publication of JPH0444386A publication Critical patent/JPH0444386A/en
Publication of JPH0817267B2 publication Critical patent/JPH0817267B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子機器用の基板、特に高周波領域での使
用に好適な高周波回路用基板に関する。
Description: TECHNICAL FIELD The present invention relates to a substrate for electronic equipment, and particularly to a high-frequency circuit substrate suitable for use in a high-frequency region.

〔従来の技術〕[Conventional technology]

最近の電子工業、通信工業の各分野において使用され
る信号の周波数は次第に高周波の領域に移行し、従来多
用されていたキロヘルツの領域からメガヘルツやギガヘ
ルツの領域の方に重要性が移行している。これらの高周
波領域では信号速度や信号の損失の回路性能への影響が
大きく、使用する電気部品や積層板に対して高周波領域
での信号速度の向上、損失の低減が求められている。積
層板上の回路の信号速度は積層板の誘電体の比誘電率
(以下εrと称す)に依存しており、εrが低いほど信
号速度は速くなる。また信号の損失は誘電体のεrとta
nδ(δ:誘電損角)に依存しており、εrやtanδが低
いほど損失が少なくなる。このため高周波用基板に使用
される誘電体にはεrやtanδの低いものが要求され
る。εrやtanδの低い誘電体としてポリテトラフルオ
ロエチレンやポリエチレンなどの樹脂をガラスクロスに
含浸させたものが用いられ、これに銅箔を積層させた高
周波用基板が一般的に使用されている。
The frequencies of signals used in recent fields of electronics industry and communication industry are gradually shifting to the high frequency region, and the importance is shifting from the conventionally frequently used region of kilohertz to the region of megahertz and gigahertz. . In these high-frequency regions, the signal speed and the loss of signals have a great influence on the circuit performance, and there is a demand for improvement of the signal speed and reduction of the loss in the high-frequency region for the electric components and laminated plates used. The signal speed of the circuit on the laminate depends on the relative permittivity (hereinafter referred to as εr) of the dielectric of the laminate, and the lower εr, the faster the signal speed. Also, the signal loss depends on the εr and ta of the dielectric.
It depends on nδ (δ: dielectric loss angle), and the loss decreases as εr and tanδ decrease. Therefore, the dielectric used for the high frequency substrate is required to have a low εr or tanδ. A glass cloth impregnated with a resin such as polytetrafluoroethylene or polyethylene is used as a dielectric material having a low εr or tan δ, and a high frequency substrate in which a copper foil is laminated on this is generally used.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

ガラスクロスにポリテトラフルオロエチレンを含浸さ
せた誘電体を用いたポリテトラフルオロエチレンのガラ
スクロス基板は、ポリテトラフルオロエチレンの高融
点、低流動性のため、その製造に高温度で長時間の成形
を要しコストが高くなるという問題があった。一方、ガ
ラスクロスにポリエチレンを含浸させたポリエチレン/
ガラスクロス基板はポリエチレンの融点が低いため、は
んだ耐熱性に劣る欠点があった。
The glass cloth substrate of polytetrafluoroethylene, which uses a dielectric material in which glass cloth is impregnated with polytetrafluoroethylene, has a high melting point and low flowability of polytetrafluoroethylene. However, there is a problem that the cost becomes high. On the other hand, polyethylene / glass cloth impregnated with polyethylene /
Since the glass cloth substrate has a low melting point of polyethylene, it has a defect of poor soldering heat resistance.

〔課題を解決するための手段〕[Means for solving the problem]

これらの点を改良するために、本発明者らは、特開平
3−109791号公報及び特開平3−109792号公報において
超高分子量ポリエチレン(以下UHMWPEと称することがあ
る)の多孔質シートと未硬化の硬化性樹脂が含浸された
補強層(以下プリプレグと称することがある)を積層
し、加熱加圧して多孔質を損失させると同時に硬化性樹
脂の硬化を行う高周波回路用基板の製造方法を提案し
た。これはUHMWPEの低εr及び低tanδの利点を生かし
つつ、溶融時の低流動性により耐熱性を改良し、プリプ
レグとUHMWPE多孔質シートの積層により、加工の難点を
克服したものである。
In order to improve these points, the inventors of the present invention disclosed in JP-A-3-109791 and JP-A-3-109792 that a porous sheet of ultra-high molecular weight polyethylene (hereinafter sometimes referred to as UHMWPE) was not used as a porous sheet. A method of manufacturing a substrate for a high-frequency circuit, in which a reinforcing layer (hereinafter also referred to as a prepreg) impregnated with a curable resin for curing is laminated, and heat and pressure are applied to lose porosity and at the same time, the curable resin is cured. Proposed. This is because, while taking advantage of the low εr and low tanδ of UHMWPE, the heat resistance is improved by the low fluidity at the time of melting and the process difficulty is overcome by laminating the prepreg and the UHMWPE porous sheet.

しかしプリプレグに使用する未硬化の硬化性樹脂の溶
融粘度が3000ポイズを超える場合にはUHMWPE多孔質への
浸入が表層のみであり、スルーホールに表面処理を施さ
ずにめっきを行った場合、無極性のUHMWPEの壁面におい
てめっきが剥離するという問題があった。また部品実装
時のはんだの熱によるUHMWPEと硬化性樹脂の平板方向の
熱膨張量が異なるために、界面においてスルーホールの
めっき銅にクラックが生じるという欠点もあった。
However, if the melt viscosity of the uncured curable resin used for the prepreg exceeds 3000 poise, the penetration into the UHMWPE porous layer is only the surface layer, and if the through hole is plated without surface treatment, there is no There was a problem that the plating would peel off on the wall surface of the flexible UHMWPE. In addition, since the thermal expansion amount of UHMWPE and the curable resin in the flat plate direction due to the heat of the solder when mounting the components is different, there is a drawback that the plated copper in the through hole is cracked at the interface.

なおここでいうプリプレグに使用する未硬化の硬化性
樹脂の溶融粘度とは、プリプレグを補強層が壊れないよ
うもみほぐし、プリプレグから脱落した樹脂粉をふるい
にかけ100メッシュのふるいを透過したものを試料と
し、フローテスタ(島津製作所製 島津フローテスタCF
T−500C)を用いて温度130℃、荷重3Kgで測定したとき
の最低粘度である。
Note that the melt viscosity of the uncured curable resin used for the prepreg here is a sample of the prepreg that is crushed so that the reinforcing layer does not break, and the resin powder that has fallen from the prepreg is sifted through a 100-mesh sieve. And flow tester (Shimadzu CF tester manufactured by Shimadzu Corporation)
T-500C) is the minimum viscosity when measured at a temperature of 130 ° C and a load of 3 kg.

本発明は以上のような事情に鑑みてなされたものであ
って、耐熱性を有し、加工が容易で、スルーホールめっ
きの密着性及び導通信頼性のよい高周波回路用基板を提
供するものである。
The present invention has been made in view of the above circumstances, and provides a substrate for a high-frequency circuit that has heat resistance, is easy to process, and has good adhesion and conduction reliability in through-hole plating. is there.

本発明者らは前記課題を解決するために鋭意研究を重
ねた結果、UHMWPE中に硬化したエポキシ樹脂が分散され
てなるシートに硬化したエポキシ樹脂含浸補強層及び金
属導体層が積層された基板により前記課題が解決される
ことを見出し、この知見に基づいて本発明を完成するに
至った。
As a result of repeated intensive studies to solve the above-mentioned problems, the inventors of the present invention used a substrate in which a cured epoxy resin-impregnated reinforcing layer and a metal conductor layer are laminated on a sheet in which a cured epoxy resin is dispersed in UHMWPE. The inventors have found that the above problems can be solved, and have completed the present invention based on this finding.

すなわち、本発明は超高分子量ポリエチレン中に硬化
したエポキシ樹脂が分散されてなるシートの両面又は片
面に硬化したエポキシ樹脂含浸補強層が積層され、更に
金属導体層が設けられていることを特徴とする高周波回
路用基板を提供するものである。
That is, the present invention is characterized in that a cured epoxy resin-impregnated reinforcing layer is laminated on both sides or one side of a sheet in which a cured epoxy resin is dispersed in ultrahigh molecular weight polyethylene, and further a metal conductor layer is provided. The present invention provides a substrate for a high frequency circuit.

以下、本発明を図面に基づいて詳細に説明する。第1
図は本発明の高周波回路用基板にスルーホールを設け、
基板表面及びスルーホール内壁にめっき銅を施したもの
の断面図である。第2図は硬化したエポキシ樹脂がUHMW
PE中に分散されていない高周波回路用基板の断面図であ
る。第1図に示す如く、めっき銅1がスルーホール内壁
の中央部においてもUHMWPE4より銅との密着がよい硬化
したエポキシ樹脂5と接する部分があるため、内壁全域
においてめっき銅との密着が確保される。第3図及び第
4図は、第1図及び第2図に示す基板に熱がかかった場
合の断面図である。基板に熱がかかった場合の平板方向
のUHMWPEと硬化したエポキシ樹脂含浸補強層の熱膨張量
の差を比較すると、第3図ではUHMWPE中の硬化したエポ
キシ樹脂が熱膨張を抑制するため、Δl1<Δl2となり、
めっき銅の界面における変形量がより小さくなる。した
がって、第3図の基板では導通信頼性が向上する。
Hereinafter, the present invention will be described in detail with reference to the drawings. First
The figure shows that a through hole is provided in the high-frequency circuit board of the present invention,
It is a sectional view of what plated copper is given to the substrate surface and the inner wall of a through hole. Figure 2 shows that the cured epoxy resin is UHMW
FIG. 3 is a cross-sectional view of a high-frequency circuit substrate that is not dispersed in PE. As shown in Fig. 1, there is a portion where the plated copper 1 is in contact with the cured epoxy resin 5 that has better adhesion to copper than UHMWPE4 even in the center of the inner wall of the through hole, so that adhesion to the plated copper is secured over the entire inner wall. It 3 and 4 are cross-sectional views when the substrate shown in FIGS. 1 and 2 is heated. Comparing the difference in the amount of thermal expansion between UHMWPE in the flat plate direction and the cured epoxy resin-impregnated reinforcing layer when heat is applied to the substrate, in Fig. 3 the cured epoxy resin in UHMWPE suppresses thermal expansion. 1 <Δl 2 , and
The amount of deformation at the interface of the plated copper becomes smaller. Therefore, the substrate of FIG. 3 has improved conduction reliability.

本発明の高周波回路用基板は、例えば超高分子量ポリ
エチレンの多孔質シートの両面又は片面に未硬化で溶融
粘度3000ポイズ以下のエポキシ樹脂が含浸された補強シ
ート(以下プリプレグと称することがある)を積層し、
更に金属導体層を積層し、これを加熱加圧して多孔質シ
ートの多孔質を消失させると同時に未硬化のエポキシ樹
脂を多孔質に浸入させ、硬化を行うことにより製造する
ことができる。
The high-frequency circuit substrate of the present invention, for example, a reinforcing sheet (hereinafter sometimes referred to as prepreg) in which an epoxy resin having a melt viscosity of 3000 poise or less is impregnated on both surfaces or one surface of a porous sheet of ultra-high molecular weight polyethylene. Stacked
Further, it can be manufactured by laminating a metal conductor layer, heating and pressing the metal conductor layer to eliminate the porosity of the porous sheet, and at the same time infiltrating the uncured epoxy resin into the porosity to cure.

プリプレグとしては、印刷回路用基板として通常用い
られているガラス布、ガラス不織布、プラスチック繊維
の織布、不織布等の補強材にエポキシ樹脂ワニスを含浸
乾燥させたものが挙げられる。エポキシ樹脂の溶融粘度
が3000ポイズ以下であると、基板を作成する際の加熱加
圧によりUHMWPEの多孔質の内部までエポキシ樹脂が十分
含浸され、第1図のようなUHMWPE中にエポキシ樹脂が分
散した構造を得ることができる。また、プリプレグの使
用量は50〜200g/m2が好ましく、補強層の厚みは30〜200
μmが好ましい。
Examples of the prepreg include those obtained by impregnating and drying an epoxy resin varnish on a reinforcing material such as glass cloth, glass non-woven cloth, plastic fiber woven cloth, non-woven cloth and the like which are usually used for printed circuit boards. If the melt viscosity of the epoxy resin is less than 3000 poise, the epoxy resin is sufficiently impregnated into the UHMWPE porous interior by heating and pressing when creating the substrate, and the epoxy resin is dispersed in the UHMWPE as shown in Fig. 1. The obtained structure can be obtained. The amount of prepreg used is preferably 50 to 200 g / m 2 , and the thickness of the reinforcing layer is 30 to 200.
μm is preferred.

本発明の超高分子量ポリエチレンの多孔質シートに用
いられるUHMWPEは、チーグラー法重合技術により製造さ
れ、その平均分子量は粘度法による測定で100万〜500万
と一般のポリエチレンの2万〜20万に比べて極めて大き
い分子量をもつものである。例えば、三井石油化学工業
(ハイゼックスミリオン、ミペロン)、旭化成工業(サ
ンテック)、西独ヘキスト社(HOSTALEN.GUR)、米国ハ
ーキュレス社(HIFAX.1000)などで上市しているものが
好適に用いられる。
UHMWPE used for the porous sheet of ultra-high molecular weight polyethylene of the present invention is produced by the Ziegler method polymerization technology, and its average molecular weight is 1-5 million as measured by the viscosity method and 20,000-200,000 of general polyethylene. It has an extremely large molecular weight. For example, those commercially available from Mitsui Petrochemical Industry (Hi-Zex Million, Miperon), Asahi Kasei Kogyo (Suntech), West German Hoechst Company (HOSTALEN.GUR), USA Hercules Company (HIFAX.1000) and the like are preferably used.

UHMWPEの多孔質シートはUHMWPE粉末粒子を焼結させ、
粒子同士を融着により接合し、厚み0.5〜5mmのシートに
成形したものである。接合した粒子の外側には空気の連
続層が存在する。
The UHMWPE porous sheet sinters UHMWPE powder particles,
The particles are fused together to form a sheet having a thickness of 0.5 to 5 mm. There is a continuous layer of air outside the bonded particles.

UHMWPEの多孔質シートの製造法は、例えばフイルム、
金属ベルトなどの基材上にUHMWPEの粉末粒子を投入し、
これをロールやバーによりそれらと基材との間隔を一定
に保つようにして得た間隔に通しUHMWPEの粉末粒子を一
定厚みに賦形させ、更に加熱炉に通し粒子同士を加熱焼
結させて、UHMWPEの多孔質シートを連続して成形する方
法がある。このとき、UHMWPE粉末粒子に接着剤をコート
したり、接着性を有する粒子や安定剤、難燃剤、着色剤
などを添加することもできる。
UHMWPE porous sheet manufacturing method, for example, a film,
Put powder particles of UHMWPE on a base material such as a metal belt,
This is passed through the obtained distance by keeping the distance between them and the substrate constant with a roll or bar to shape the UHMWPE powder particles to a certain thickness, and then passed through a heating furnace to heat and sinter the particles. , UHMWPE porous sheet can be continuously formed. At this time, the UHMWPE powder particles may be coated with an adhesive, or particles having adhesiveness, a stabilizer, a flame retardant, a coloring agent, etc. may be added.

UHMWPEの粉末は平均粒子径が0.001〜1mmであるものが
好ましい。得られるUHMWPEの多孔質シートの表面が平滑
になるためには、平均粒子径が0.001〜0.1mmであるもの
が特に好ましい。
The UHMWPE powder preferably has an average particle size of 0.001 to 1 mm. In order to make the surface of the obtained UHMWPE porous sheet smooth, it is particularly preferable that the average particle size is 0.001 to 0.1 mm.

金属導体層は、銅、銅合金、アルミニウム、ニッケ
ル、鉄、鉄合金、ステンレス、金、銀、白金等の箔又は
板である。好ましくは銅箔、アルミニウム箔、アルミニ
ウム板、鉄合金板である。また、金属箔又は板の代わり
に所定の回路を形成するためのめっきでもよい。これら
の厚さは通常、10〜50μmである。
The metal conductor layer is a foil or plate of copper, copper alloy, aluminum, nickel, iron, iron alloy, stainless steel, gold, silver, platinum or the like. Preferred are copper foil, aluminum foil, aluminum plate, and iron alloy plate. Further, plating for forming a predetermined circuit may be used instead of the metal foil or plate. Their thickness is usually 10 to 50 μm.

加熱加圧の条件は、通常、130〜250℃、印加加圧20〜
80Kg/cm2(2.0〜7.8MPa)、印加時間20〜120分で行わ
れ、UHMWPE多孔質シート、プリプレグ、金属シートを鏡
板に挟み、均一な条件で加熱加圧することが好ましい。
The heating and pressurizing conditions are usually 130 to 250 ° C, and the applied pressure is 20 to 20 ° C.
It is preferable to perform the heating at 80 kg / cm 2 (2.0 to 7.8 MPa) for 20 to 120 minutes, sandwich the UHMWPE porous sheet, prepreg and metal sheet between the end plates and heat and pressurize under uniform conditions.

〔作用〕[Action]

本発明の高周波回路用基板は、UHMWPE中にエポキシ樹
脂が分散されているため、UHMWPEの平板方向の熱膨張量
が抑制され、プリプレグとの界面の熱膨張差が小さくな
り、スルーホールの導通信頼性が向上するものと思われ
る。また、スルーホール内壁にめっき銅との密着がよい
エポキシ樹脂が分散されているため、内壁全域において
めっき銅との密着が確保されるものと思われる。
Since the epoxy resin is dispersed in the UHMWPE, the high-frequency circuit substrate of the present invention suppresses the amount of thermal expansion of UHMWPE in the flat plate direction, reduces the thermal expansion difference at the interface with the prepreg, and improves the reliability of through-hole conduction. It seems that the sexuality is improved. Further, since the epoxy resin having good adhesion to the plated copper is dispersed on the inner wall of the through hole, it is considered that the adhesion to the plated copper is secured on the entire inner wall.

〔実施例〕〔Example〕

以下、本発明を実施例に基づいて詳細に説明するが、
本発明はこれに限定されるものではない。
Hereinafter, the present invention will be described in detail based on Examples,
The present invention is not limited to this.

実施例1 UHMWPEとしてミペロンXM220(平均粒子径0.03mm、融
点136℃、嵩密度0.4g/cm3、ポリエチレンの真密度0.94g
/cm3、三井石油化学工業株式会社商品名)をガラス板上
に0.8mm厚みに賦形し、160℃の加熱炉中で20分間加熱焼
結を行い、みかけ密度0.5g/cm3のUHMWPEの多孔質シート
を得た。
Example 1 Miperon XM220 as UHMWPE (average particle size 0.03 mm, melting point 136 ° C., bulk density 0.4 g / cm 3 , true density of polyethylene 0.94 g
/ cm 3 , Mitsui Petrochemical Co., Ltd. product name) is shaped on a glass plate to a thickness of 0.8 mm, and sintered by heating in a heating furnace at 160 ° C for 20 minutes to give an apparent density of 0.5 g / cm 3 of UHMWPE. A porous sheet of

この多孔質シートを2枚重ね、両面に厚さ60μmのガ
ラス布に溶融粘度2000ポイズの臭素化ビスフェノールA
型エポキシ樹脂(Tg130℃)を含浸させたプリプレグ
(樹脂分60重量%)を介して厚さ35μmの電解銅箔(古
河サーキットフォイル株式会社)を積層し、ステンレス
製の鏡板を用い、175℃、40Kg/cm2の条件で90分間加熱
加圧し、厚さ0.95mmの高周波回路用基板を得た。
Two sheets of this porous sheet were stacked, and brominated bisphenol A with a melt viscosity of 2000 poise was applied to both sides of glass cloth with a thickness of 60 μm.
35 μm-thick electrolytic copper foil (Furukawa Circuit Foil Co., Ltd.) was laminated through a prepreg (resin content 60% by weight) impregnated with a type epoxy resin (Tg130 ° C.), and a stainless steel end plate was used at 175 ° C. The substrate was heated and pressed for 90 minutes under the condition of 40 kg / cm 2 to obtain a high-frequency circuit substrate having a thickness of 0.95 mm.

比較例1 溶融粘度が4000ポイズのエポキシ樹脂を含浸させたプ
リプレグを用いたほかは実施例1と同様にして、厚さ0.
95mmの高周波回路用基板を得た。
Comparative Example 1 A prepreg impregnated with an epoxy resin having a melt viscosity of 4000 poise was used in the same manner as in Example 1 to obtain a thickness of 0.
A 95 mm high frequency circuit board was obtained.

上記2種類の高周波回路用基板の断面を走査型電子顕
微鏡で観察した。実施例ではUHMWPEの中心までエポキシ
樹脂が分散されていたのに対し、比較例においては界面
から0.25mm付近までの分散は認められたが、中心はUHMW
PEのみであった。
The cross sections of the above two types of high frequency circuit substrates were observed with a scanning electron microscope. In the example, the epoxy resin was dispersed up to the center of UHMWPE, whereas in the comparative example, dispersion up to 0.25 mm from the interface was observed, but the center was UHMWPE.
It was only PE.

またJIS C5012によるテストパターンに適合させてド
リルで穴明けし、無電解銅めっき液CUST201(日立化成
工業株式会社商品名)を用い、0.5μm厚のめっきの
後、硫酸銅電気めっきにより40μm厚のめっきを行い、
スルーホールめっきが成された試料を得た。このとき実
施例1ではめっきの付着は十分であったが、比較例1に
おいてはUHMWPEとの壁面で剥離を生じた。60℃、2時間
のクロム酸硫酸混液処理により、比較例1においてもめ
っきが付着可能となったので、実施例、比較例ともに処
理を行ったスルーホールめっき試料にテストパターンを
形成し、めっきスルーホールの引き抜き強さの試験と、
260℃のオイルによる熱衝撃試験を行った。その結果を
第1表に示す。
In addition, the test pattern conforming to JIS C5012 was used to drill holes, and electroless copper plating solution CUST201 (trade name of Hitachi Chemical Co., Ltd.) was used to perform plating of 0.5 μm thick, followed by copper sulfate electroplating to 40 μm thick. Plating,
A sample with through-hole plating was obtained. At this time, the adhesion of plating was sufficient in Example 1, but in Comparative Example 1, peeling occurred on the wall surface with UHMWPE. Plating became possible even in Comparative Example 1 by the chromic acid / sulfuric acid mixed solution treatment at 60 ° C. for 2 hours. Therefore, a test pattern was formed on the through-hole plated sample treated in both the Example and Comparative Example, and the plating through was performed. Withdrawal strength test of the hole,
A thermal shock test was performed using 260 ° C. oil. The results are shown in Table 1.

実施例1においてスルーホールめっきの密着性、導通
信頼性は大きく向上している。
In Example 1, the adhesion and conduction reliability of through-hole plating are greatly improved.

熱膨張の抑制の効果を調べるため、UHMWPEのみ、エポ
キシ樹脂のみのシート、そして実施例に用いたエポキシ
樹脂のプリプレグ及び実施例の基板と同じ分率になるよ
うにエポキシ樹脂のワニスを含浸し、プレスして得たエ
ポキシ樹脂分散UHMWPEシートの平板方向の熱膨張量を、
それぞれ熱機械分析装置(理学電気製TMA8140)により
(20℃〜260℃)測定した。その値をもとに、テストパ
ターンのスルーホールの間隔と同じ5.08mmの試料の熱膨
張量を計算した。結果を第2表に示す。
In order to investigate the effect of suppressing thermal expansion, UHMWPE only, a sheet of epoxy resin only, and prepreg of the epoxy resin used in the examples and impregnated with a varnish of the epoxy resin to the same fraction as the substrate of the example, The amount of thermal expansion in the flat plate direction of the epoxy resin-dispersed UHMWPE sheet obtained by pressing,
Each was measured by a thermomechanical analyzer (TMA8140 manufactured by Rigaku Denki) (20 ° C to 260 ° C). Based on this value, the thermal expansion amount of the 5.08 mm sample, which is the same as the spacing between the through holes of the test pattern, was calculated. The results are shown in Table 2.

プリプレグとUHMWPEシートの積層体では、第2表の数
値がそのまま界面における平板方向のひずみの差(第
3、4図のΔl1、Δl2)とはならない。しかしシートの
熱膨張量が少ないほど、プリプレグとの界面におけるひ
ずみの差が小さくなる。したがって、エポキシ樹脂分散
UHMWPEシートを用いることにより、スルーホール内壁の
めっき銅の変形量を減少させ、導通信頼性を向上でき
る。
In the laminated body of the prepreg and the UHMWPE sheet, the numerical values in Table 2 do not directly represent the difference in the strain in the plate direction at the interface (Δl 1 and Δl 2 in FIGS. 3 and 4). However, the smaller the amount of thermal expansion of the sheet, the smaller the difference in strain at the interface with the prepreg. Therefore, epoxy resin dispersion
By using the UHMWPE sheet, it is possible to reduce the amount of deformation of the plated copper on the inner wall of the through hole and improve the conduction reliability.

〔発明の効果〕〔The invention's effect〕

本発明によれば、UHMWPE中にエポキシ樹脂が分散され
ていることにより、スルーホールめっきの密着性がよ
く、UHMWPEの平板方向の熱膨張が抑制されるため導通信
頼性のよい基板を得ることができる。またプリプレグに
溶融粘度3000ポイズ以下のエポキシ樹脂を用いることに
より、UHMWPEに硬化したエポキシ樹脂が分散された基板
の製作が可能である。
According to the present invention, since the epoxy resin is dispersed in UHMWPE, the adhesion of through-hole plating is good, and the thermal expansion of UHMWPE in the flat plate direction is suppressed, so that a substrate having good conduction reliability can be obtained. it can. Further, by using an epoxy resin having a melt viscosity of 3000 poise or less for the prepreg, it is possible to manufacture a substrate in which the cured epoxy resin is dispersed in UHMWPE.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る高周波回路用基板、第2図は硬化
したエポキシ樹脂が分散していない基板にそれぞれスル
ーホールめっきを施した場合の基板の部分断面図であ
る。また、第3図及び第4図はそれぞれ第1図及び第2
図の基板に熱がかかった場合の熱膨張を模式的に示した
部分断面図である。 符号の説明 1……めっき銅、2、2′……金属導体層 3、3′……硬化した硬化性樹脂含浸補強層 4……超高分子量ポリエチレン 5……硬化したエポキシ樹脂
FIG. 1 is a partial cross-sectional view of a substrate for high-frequency circuits according to the present invention, and FIG. 2 is a substrate when through-hole plating is applied to a substrate on which a cured epoxy resin is not dispersed. Further, FIGS. 3 and 4 are respectively FIGS.
It is a fragmentary sectional view showing typically thermal expansion when heat is applied to the substrate of a figure. Explanation of symbols 1 ... Plated copper, 2, 2 '... Metal conductor layer 3, 3' ... Hardened curable resin impregnated reinforcing layer 4 ... Ultra high molecular weight polyethylene 5 ... Hardened epoxy resin

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 豊 茨城県下館市大字小川1500番地 日立化成 工業株式会社下館研究所内 (56)参考文献 特開 平1−173695(JP,A) 特開 昭63−237948(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yutaka Yamaguchi 1500 Ogawa, Shimodate, Ibaraki Prefecture Shimodate Laboratory, Hitachi Chemical Co., Ltd. (56) Reference JP-A-1-173695 (JP, A) JP-A-63 -237948 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】超高分子量ポリエチレンの多孔質シートの
両面または片面に未硬化で溶融粘度3000ポイズ以下のエ
ポキシ樹脂が含浸された補強シートを積層し、更に金属
導体層を積層し、これを加熱加圧して多孔質シートの多
孔質を消失させると同時に未硬化のエポキシ樹脂を多孔
質に浸入させ、硬化させることにより、超高分子量ポリ
エチレン中に硬化したエポキシ樹脂が分散されてなるシ
ートの両面または片面に硬化したエポキシ樹脂含浸補強
層が積層され、更に金属導体層が設けられていることを
特徴とする高周波回路用基板。
1. A reinforcing sheet, which is uncured and is impregnated with an epoxy resin having a melt viscosity of 3000 poise or less, is laminated on both sides or one side of an ultrahigh molecular weight polyethylene porous sheet, and a metal conductor layer is further laminated and heated. Both sides of the sheet formed by dispersing the cured epoxy resin in ultra-high molecular weight polyethylene by applying pressure to eliminate the porosity of the porous sheet and at the same time infiltrating the uncured epoxy resin into the porous body and curing it A substrate for a high-frequency circuit, characterized in that a cured epoxy resin-impregnated reinforcing layer is laminated on one side, and a metal conductor layer is further provided.
JP2153388A 1990-06-12 1990-06-12 Substrate for high frequency circuit Expired - Lifetime JPH0817267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2153388A JPH0817267B2 (en) 1990-06-12 1990-06-12 Substrate for high frequency circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2153388A JPH0817267B2 (en) 1990-06-12 1990-06-12 Substrate for high frequency circuit

Publications (2)

Publication Number Publication Date
JPH0444386A JPH0444386A (en) 1992-02-14
JPH0817267B2 true JPH0817267B2 (en) 1996-02-21

Family

ID=15561396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2153388A Expired - Lifetime JPH0817267B2 (en) 1990-06-12 1990-06-12 Substrate for high frequency circuit

Country Status (1)

Country Link
JP (1) JPH0817267B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5449427A (en) * 1994-05-23 1995-09-12 General Electric Company Processing low dielectric constant materials for high speed electronics

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63237948A (en) * 1987-03-27 1988-10-04 日本石油化学株式会社 Composite laminate and manufacture thereof
JPH01173695A (en) * 1987-12-28 1989-07-10 Nippon Petrochem Co Ltd Laminated sheet for high-frequency circuit

Also Published As

Publication number Publication date
JPH0444386A (en) 1992-02-14

Similar Documents

Publication Publication Date Title
US6500529B1 (en) Low signal loss bonding ply for multilayer circuit boards
EP3025566B1 (en) Circuit materials, circuit laminates, and methods of manufacture thereof
WO2019188087A1 (en) Copper-clad laminate
JP2005529448A (en) Nickel-plated copper as an electrode for built-in passive elements
CN112440534B (en) Metal foil laminated plate, printed circuit board and method for manufacturing metal foil laminated plate
TWI713610B (en) Manufacturing method of wiring board, wiring board and antenna
US20070107931A1 (en) Circuit board
CN112109391A (en) Metal foil laminate and method for producing the same
WO2008004399A1 (en) Bonding resin composition for fluororesin substrates and metal-clad laminates made by using the composition
CN112703107B (en) Laminate, printed board, and method for producing same
JP2002265647A (en) Method for producing prepreg
JPH0817267B2 (en) Substrate for high frequency circuit
JP2004234900A (en) Conductive paste using conductive particle, and sheet for connection using the paste
JPH05299796A (en) Multi-layer printed wiring board adhesive sheet and metal clad laminated board using the sheet
US20190274221A1 (en) Catalytic Laminate with Conductive Traces formed during Lamination
KR20230161954A (en) Roughened copper foil, copper clad laminate and printed wiring board
EP3816237A1 (en) Organic substrate, metal-clad laminate and wiring board
JPH0521910A (en) Substrate for high-frequency circuit
JP4089671B2 (en) Circuit forming substrate manufacturing method and circuit forming substrate
JP3342565B2 (en) Method for producing sintered sheet and laminate for high-frequency circuit
JPH0521950A (en) Manufacture of board for high-frequency circuit
JPH05167211A (en) Laminated board for printed circuit and manufacture thereof
JPH07245456A (en) High-frequency circuit board
JPH04188691A (en) Manufacture of high frequency board
JP3932635B2 (en) Insulating varnish and multilayer printed wiring board using the same