JPH08172053A - Crystal growth method - Google Patents

Crystal growth method

Info

Publication number
JPH08172053A
JPH08172053A JP31503894A JP31503894A JPH08172053A JP H08172053 A JPH08172053 A JP H08172053A JP 31503894 A JP31503894 A JP 31503894A JP 31503894 A JP31503894 A JP 31503894A JP H08172053 A JPH08172053 A JP H08172053A
Authority
JP
Japan
Prior art keywords
group
iii
insulating film
raw material
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31503894A
Other languages
Japanese (ja)
Inventor
Hironobu Narui
啓修 成井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP31503894A priority Critical patent/JPH08172053A/en
Publication of JPH08172053A publication Critical patent/JPH08172053A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To grow a III-V compound semiconductor crystal such as AlGaAs selectively by alternately supplying the upper section of a III-V compound semiconductor substrate selectively masked with an insulating film with a group III material and a group V material and choicely growing the III-V compound semiconductor crystal. CONSTITUTION: A GaAs substrate 23, in which a surface is covered with an insulating film mask 32, is arranged into a reaction chamber for a normal- pressure MOCVD device. A changeover valve is changed over selectively, and the inside of the reaction chamber is supplied alternately with the group III raw material of TWA+TMG and the group V raw material of AsH3 at a certain period. The group III raw material of TMA+TMG and the group V raw material of AsH3 are supplied continuously and alternately at no interval at that tome. Accordingly, no polycrystal deposits on the insulating film mask 32, and an AlGaAs layer 33 having extremely excellent grown surface morphology is grown choicely only on a GaAs surface, on which no insulating film mask 32 is shaped.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、III −V族化合物半導
体の結晶成長法、特に、常圧MOCVD(有機金属化学
気相成長)法を用いてGaAs基板上へのAlGaAs
結晶の選択成長を可能にする結晶成長法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal growth method for III-V group compound semiconductors, and in particular to AlGaAs on a GaAs substrate by using atmospheric pressure MOCVD (metal organic chemical vapor deposition) method.
The present invention relates to a crystal growth method that enables selective growth of crystals.

【0002】[0002]

【従来の技術】従来、SiNX やSiO2 等による絶縁
膜マスクを選択的に施したGaAs基板上に、例えばG
aAs結晶を選択成長する場合、常圧MOCVD法でも
選択性よくGaAs結晶を成長させることができる。し
かし、同様にしてGaAs基板上に、AlGaAs結晶
を成長させたときには、絶縁膜マスク上にも多結晶成長
し選択性が悪くなり、Alの混晶比が高い程この傾向が
強くなる。
2. Description of the Related Art Conventionally, for example, G is formed on a GaAs substrate on which an insulating film mask made of SiN x or SiO 2 is selectively applied.
When the aAs crystal is selectively grown, the GaAs crystal can be grown with good selectivity even by the atmospheric pressure MOCVD method. However, when an AlGaAs crystal is grown on a GaAs substrate in the same manner, polycrystal growth also occurs on the insulating film mask and the selectivity deteriorates. This tendency becomes stronger as the Al mixed crystal ratio increases.

【0003】この点を図8を用いて更に詳述する。図8
は、通常のAlGaAs常圧MOCVD装置を示す。同
図において、1は常圧MOCVD装置を全体として示
し、2はその反応室で、この反応室2内にAlGaAs
を結晶成長すべき基板例えばGaAs基板3が配置され
る。4はAsの原料であるアルシン(AsH3 )を収め
たAsH3 ボンベ、5はAlの原料であるトリメチルア
ルミニウム(TMA)を収めたTMA浴槽、6はGaの
原料であるトリメチルガリウム(TMG)を収めたTM
G浴槽である。TMA,TMGは、いずれもH2 ガスで
バブルされて反応室2に供給される。7は配管、8は排
気管を示す。
This point will be described in more detail with reference to FIG. FIG.
Shows a normal AlGaAs atmospheric pressure MOCVD apparatus. In the figure, 1 is an atmospheric pressure MOCVD apparatus as a whole, 2 is its reaction chamber, and AlGaAs is provided in the reaction chamber 2.
A substrate, for example, a GaAs substrate 3 on which crystals are to be grown is arranged. 4 is an AsH 3 cylinder containing arsine (AsH 3 ) which is a raw material of As, 5 is a TMA bath containing trimethylaluminum (TMA) which is a raw material of Al, and 6 is trimethylgallium (TMG) which is a raw material of Ga Stored TM
It is a G bathtub. Both TMA and TMG are bubbled with H 2 gas and supplied to the reaction chamber 2. Reference numeral 7 is a pipe, and 8 is an exhaust pipe.

【0004】この常圧MOCVD装置1では、通常、図
9に示すように、TMA,TMGのIII 族原料ガスとA
sH3 のV族原料ガスが同時に配管7を通して反応室2
内に供給され、熱分解されてGaAs基板3上にAlG
aAs結晶が成長される。
In this atmospheric pressure MOCVD apparatus 1, normally, as shown in FIG. 9, TMA and TMG group III source gases and A
Group V source gas of sH 3 is simultaneously passed through the pipe 7 to the reaction chamber 2
Is supplied to the GaAs substrate 3 and thermally decomposed to form AlG on the GaAs substrate 3.
The aAs crystal is grown.

【0005】この結晶成長法を用いて、SiNX やSi
2 等の絶縁膜マスクで選択的に覆ったGaAs基板3
上にAlGaAsの選択成長を行うと、絶縁膜マスク上
に多結晶が成長し、選択性が悪くなる。Alの混晶比が
高いほど絶縁膜マスク上の多結晶析出の割合が大きくな
り、ますます選択性が悪化する。GaAs成長の場合に
は、ほとんど絶縁膜マスク上に多結晶が析出されず、極
めて選択性が良い。
Using this crystal growth method, SiN x and Si
GaAs substrate 3 selectively covered with an insulating film mask such as O 2
When selective growth of AlGaAs is performed on top, a polycrystal grows on an insulating film mask and the selectivity deteriorates. The higher the mixed crystal ratio of Al, the greater the proportion of polycrystalline precipitation on the insulating film mask, and the worse the selectivity. In the case of GaAs growth, almost no polycrystal is deposited on the insulating film mask, and the selectivity is extremely good.

【0006】これが為、従来、このAlGaAs選択成
長は、減圧MOCVD、HClガス添加の常圧MOCV
D等によって行われることがあった。
For this reason, conventionally, this selective growth of AlGaAs has been performed under reduced pressure MOCVD and normal pressure MOCV with addition of HCl gas.
It was done by D etc.

【0007】[0007]

【発明が解決しようとする課題】しかし、減圧MOCV
Dは減圧システムを必要とするため、装置構成が複雑と
なり、またHCl添加の常圧MOCVDではHClガス
による汚染、配管の腐食などの問題があった。
However, the reduced pressure MOCV
Since D requires a decompression system, the apparatus configuration is complicated, and there are problems such as HCl gas-contaminated HCl gas contamination and pipe corrosion.

【0008】本発明は、上述の点に鑑み、常圧MOCV
Dにより例えばAlGaAs等のIII −V族化合物半導
体結晶の選択成長を可能にした結晶成長法を提供するも
のである。
In view of the above points, the present invention is directed to a normal pressure MOCV.
D provides a crystal growth method that enables selective growth of a III-V group compound semiconductor crystal such as AlGaAs.

【0009】[0009]

【課題を解決するための手段】第1の本発明に係る結晶
成長法は、絶縁膜で選択的にマスクされたIII −V族化
合物半導体基板上に、III 族材料とV族材料とを交互に
供給してIII −V族化合物半導体結晶を選択成長させる
ことを特徴とする。
The crystal growth method according to the first aspect of the present invention comprises alternating group III and group V materials on a group III-V compound semiconductor substrate selectively masked with an insulating film. And a group III-V compound semiconductor crystal is selectively grown.

【0010】第2の本発明に係る結晶成長法は、第1の
発明において、III 族材料とV族材料とを間隔を置かず
に連続して交互に供給することを特徴とする。
A crystal growth method according to a second aspect of the present invention is characterized in that, in the first aspect, the group III material and the group V material are continuously and alternately supplied without a gap.

【0011】第3の本発明に係る結晶成長法は、第1又
は第2の発明において、III 族材料の一回の供給量を9
原子層相当以下とすることを特徴とする。
According to a third aspect of the present invention, in the crystal growth method according to the first or second aspect of the invention, the amount of the group III material supplied at one time is set to 9 times.
It is characterized in that the thickness is equal to or less than the atomic layer.

【0012】第4の本発明に係る結晶成長法は、第1、
第2又は第3の発明において、III−V族化合物半導体
基板をGaAs基板とし、III −V族化合物半導体結晶
をAlGaAs結晶とすることを特徴とする。
The crystal growth method according to the fourth aspect of the present invention is the first,
In the second or third invention, the III-V group compound semiconductor substrate is a GaAs substrate, and the III-V group compound semiconductor crystal is an AlGaAs crystal.

【0013】[0013]

【作用】第1の本発明においては、絶縁膜32で選択的
にマスクされたIII −V族化合物半導体基板23上に、
III 族材料とV族材料とを交互に供給することにより、
常圧MOCVD法にて絶縁膜32が形成されないIII −
V族化合物半導体面にのみ選択的にIII −V族化合物半
導体結晶33を成長させることができる。
In the first aspect of the present invention, the III-V group compound semiconductor substrate 23 selectively masked by the insulating film 32 is provided,
By alternately supplying Group III material and Group V material,
The insulating film 32 is not formed by the atmospheric pressure MOCVD method III −
The III-V compound semiconductor crystal 33 can be selectively grown only on the V compound semiconductor surface.

【0014】第2の本発明においては、第1の発明の交
互供給において、III 族材料とV族材料とを間隔を置か
ずに連続して交互に供給することにより、絶縁膜32上
には多結晶が析出せず、且つ成長表面モフォロジーの良
好なIII −V族化合物半導体結晶33が選択成長され
る。
In the second aspect of the present invention, in the alternate supply of the first aspect of the present invention, the group III material and the group V material are continuously and alternately supplied without a gap, so that the insulating film 32 is formed on the insulating film 32. A III-V group compound semiconductor crystal 33 having no growth of polycrystal and good growth surface morphology is selectively grown.

【0015】第3の本発明においては、第1又は第2の
発明でそのIII 族材料の一回の供給量を9原子層相当以
下にすることにより、さらに選択性良く且つ良好な膜質
のIII −V族半導体結晶33を選択成長させることがで
きる。
In the third aspect of the present invention, the group III material in the first or second aspect of the present invention is supplied at a rate of 9 atomic layers or less, so that the selectivity III and the film quality III are further improved. The -V semiconductor crystal 33 can be selectively grown.

【0016】第4の本発明においては、第1、第2又は
第3の発明でそのIII −V族化合物半導体基板32をG
aAs基板とし、III −V族化合物半導体結晶33をA
lGaAs結晶とすることにより、常圧MOCVDでG
aAs基板上にAlGaAs結晶33を選択成長させる
ことができる。
In the fourth aspect of the present invention, the III-V compound semiconductor substrate 32 of the first, second or third aspect of the invention is G
The III-V compound semiconductor crystal 33 is used as an AAs substrate.
By using lGaAs crystal, G can be obtained by atmospheric pressure MOCVD.
The AlGaAs crystal 33 can be selectively grown on the aAs substrate.

【0017】[0017]

【実施例】以下、図面を参照して本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0018】図1は、本発明に係るAlGaAsの常圧
MOCVD装置を示す。同図において、21は常圧MO
CVD装置を全体として示し、22はその反応室で、こ
の反応室22内にAlGaAs結晶を成長すべて基板例
えばGaAs基板23が配置される。24はAsの原料
となるアルシン(AsH3 )を収めたAsH3 ボンベ、
25はAlの原料となるトリメチルアルミニウム(TM
A)を収めたTMA浴槽、26はGaの原料となるトリ
メチルガリウム(TMG)を収めたTMG浴槽である。
TMA,TMGは、いずれもH2 ガスでバブルされて反
応室22に供給されるようになされる。各AsH3 ボン
ベ24、TMA浴槽25及びTMG浴槽26は、反応室
22に通ずる第1の配管27と、排気管29に通ずる第
2の配管28に夫々切換バルブ30を介して連通され
る。
FIG. 1 shows an AlGaAs atmospheric pressure MOCVD apparatus according to the present invention. In the figure, 21 is a normal pressure MO
A CVD apparatus is shown as a whole, and 22 is a reaction chamber in which an AlGaAs crystal is grown and a substrate, for example, a GaAs substrate 23 is arranged. 24 is an AsH 3 cylinder containing arsine (AsH 3 ) which is a raw material of As,
25 is trimethyl aluminum (TM) which is a raw material of Al
A) is a TMA bath containing 26, and 26 is a TMG bath containing trimethylgallium (TMG) which is a raw material of Ga.
Both TMA and TMG are bubbled with H 2 gas and supplied to the reaction chamber 22. Each AsH 3 cylinder 24, TMA bath 25, and TMG bath 26 are connected to a first pipe 27 that communicates with the reaction chamber 22 and a second pipe 28 that communicates with an exhaust pipe 29 via a switching valve 30, respectively.

【0019】この常圧MOCVD装置21を用いてGa
As基板23上にAlGaAs層を選択成長させるに
は、次のようにして行う。ここでは、図5Aに示す基
板、即ち、表面をSiNX 又はSiO2 等による絶縁膜
マスク32で選択的に覆ったGaAs基板23を用い
る。
Using this atmospheric pressure MOCVD apparatus 21, Ga
The selective growth of the AlGaAs layer on the As substrate 23 is performed as follows. Here, the substrate shown in FIG. 5A, that is, the GaAs substrate 23 whose surface is selectively covered with an insulating film mask 32 made of SiN x or SiO 2 is used.

【0020】このGaAs基板23を常圧MOCVD装
置21の反応室22内に配置した後、切換バルブ34を
選択的に切換えて、反応室22内へ図2に示すように、
TMA+TMGのIII 族原料(即ち原料ガス)とAsH
3 のV族原料(即ち原料ガス)とをある周期で交互に供
給する。即ち、このとき、TMA+TMGのIII 族原料
とAsH3 のV族原料とは時間間隔を置かずに連続して
交互に供給する。さらに、1回(Taの期間に相当)の
III 族原料の供給量としては、9原子層相当分以下に設
定する。
After arranging the GaAs substrate 23 in the reaction chamber 22 of the atmospheric pressure MOCVD apparatus 21, the switching valve 34 is selectively switched to the inside of the reaction chamber 22 as shown in FIG.
TMA + TMG group III source (ie source gas) and AsH
3 of V group raw material (i.e., raw material gas) and alternately supplied in a cycle in the. That is, at this time, the TMA + TMG group III raw material and the AsH 3 group V raw material are continuously and alternately supplied without a time interval. Furthermore, once (corresponding to the period of Ta)
The supply amount of the Group III raw material is set to 9 atomic layers or less.

【0021】このように、III 族原料とV族原料を間隔
を置かずに連続して交互に供給することにより、図5B
に示すように、絶縁膜マスク32上には多結晶が析出せ
ず、絶縁膜マスク32が形成されていないGaAs表面
上のみに成長表面モフォロジーが極めて良好なAlGa
As層33が選択成長される。
As described above, the group III raw material and the group V raw material are continuously and alternately supplied with no interval, and thus, FIG.
As shown in FIG. 3, no polycrystal is deposited on the insulating film mask 32, and the growth surface morphology is extremely good only on the GaAs surface on which the insulating film mask 32 is not formed.
The As layer 33 is selectively grown.

【0022】従来の常圧MOCVD法でのAlGaAs
成長の選択性が悪いのは、Gaが十分にマイグレートす
るのに対してAlのマイグレーション長が極めて短く、
このため絶縁膜マスク32上に析出してしまうと考えら
れる。そこで、AlGaAs成長の選択性を上げるに
は、絶縁膜マスク32上に吸着したAlを取り除くこと
である。上述の実施例によれば、III 族原料とV族原料
とを交互に供給することにより、絶縁膜マスク32上に
吸着したAlがAsの欠乏のためマイグレートし脱離す
ることが可能となってAlGaAsの選択成長が実現さ
れる。
AlGaAs by the conventional atmospheric pressure MOCVD method
The poor growth selectivity is due to the fact that Ga migrates sufficiently, whereas the migration length of Al is extremely short.
For this reason, it is considered that they are deposited on the insulating film mask 32. Therefore, in order to improve the selectivity of AlGaAs growth, Al adsorbed on the insulating film mask 32 is removed. According to the above-described embodiment, by alternately supplying the group III material and the group V material, the Al adsorbed on the insulating film mask 32 can be migrated and desorbed due to the lack of As. As a result, selective growth of AlGaAs is realized.

【0023】また、III 族原料ガスの供給量によって
も、絶縁膜マスク32上の多結晶析出及び成長表面モフ
ォロジーに影響を与える。交互供給の際の一回のIII 族
原料の供給量が9原子層相当分を越える量であると、多
結晶析出が生じ、成長表面モフォロジーが悪化する。し
かし、1回のIII 族原料の供給量を9原子層相当分以下
の量とするときには、多結晶析出或いは成長表面モフォ
ロジーの悪化の影響はなく、良好な選択成長が行える。
Further, the supply amount of the group III source gas also affects the polycrystalline deposition on the insulating film mask 32 and the growth surface morphology. If the supply amount of the group III raw material at the time of alternate supply exceeds the equivalent of 9 atomic layers, polycrystalline precipitation occurs and the growth surface morphology deteriorates. However, when the supply amount of the group III raw material once is equal to or less than the amount equivalent to 9 atomic layers, there is no influence of polycrystalline precipitation or deterioration of growth surface morphology, and good selective growth can be performed.

【0024】一方、III 族原料及びV族原料の交互供給
の仕方によって、絶縁膜マスク7上に多結晶が析出した
り、成長表面のモフォロジーが悪くなる等の影響が生じ
ることがある。例えば、図3に示すように、TMA,T
MGのIII 族原料の供給と、AsH3のV族原料の供給
との間に時間間隔Taを置くと、絶縁膜マスク32上で
の多結晶の析出は見られないが、成長表面モフォロジー
が極めて悪くなる。これは、アルシン(AsH3 )の供
給が少ないことによって成長表面からAs抜けを起こし
ているためと考えられる。
On the other hand, depending on the alternating supply of the group III material and the group V material, there are cases in which polycrystals are deposited on the insulating film mask 7 or the morphology of the growth surface is deteriorated. For example, as shown in FIG. 3, TMA, T
When a time interval Ta is provided between the supply of the group III source material of MG and the supply of the group V source material of AsH 3 , no polycrystal precipitation is observed on the insulating film mask 32, but the growth surface morphology is extremely high. Deteriorate. It is considered that this is because the supply of arsine (AsH 3 ) was small and As was released from the growth surface.

【0025】逆に、図4に示すように、III 族原料ガス
とV族原料ガスとを一部重なるように交互供給した場
合、重ね合わせの時間Tbが長い時は、通常の成長方法
と変わりがなくなってきて成長表面モフォロジーは良く
なるが、絶縁膜マスク32上の多結晶析出が激しくな
る。従って、図2のような交互供給が最も良好となる。
On the contrary, as shown in FIG. 4, when the group III source gas and the group V source gas are alternately supplied so as to partially overlap with each other, when the superposition time Tb is long, the method is different from the normal growth method. However, the growth surface morphology is improved and the polycrystalline precipitation on the insulating film mask 32 becomes severe. Therefore, the alternate supply as shown in FIG. 2 is the best.

【0026】尚、上例では、III 族原料としてトリメチ
ル系を例にしたが、トリエチル系のものでも同様であ
る。
In the above example, the trimethyl group material was used as an example of the group III raw material, but a triethyl group material may be used.

【0027】図6は本実施例の結晶成長法、即ちAlG
aAs選択成長法をリアルインデックスガイドレーザの
作製に応用した場合を示す。
FIG. 6 shows the crystal growth method of this embodiment, that is, AlG.
The case where the aAs selective growth method is applied to the production of a real index guide laser is shown.

【0028】なお、比較のために、図7を用いて従来技
術によるリアルインデックスガイドレーザの製法を説明
する。従来は、図7Aに示すように、n型のGaAs基
板41上にn型のAlGaAsクラッド層42、活性層
43、p型のAlGaAsクラッド層44、ガイド層4
5、p型のAlGaAsクラッド層46及びp型のGa
Asキャップ層47を順次通常のMOCVD法により結
晶成長する。
For comparison, a conventional method of manufacturing a real index guide laser will be described with reference to FIG. Conventionally, as shown in FIG. 7A, an n-type AlGaAs clad layer 42, an active layer 43, a p-type AlGaAs clad layer 44, and a guide layer 4 are formed on an n-type GaAs substrate 41.
5, p-type AlGaAs cladding layer 46 and p-type Ga
The As cap layer 47 is sequentially crystal-grown by a normal MOCVD method.

【0029】次に、図7Bに示すように、最上層のp型
GaAsキャップ層47上にストライプ状に形成した絶
縁膜48をマスクに両側をp型AlGaAsクラッド層
44の中間までメサ状のエッチングを施す。次に、図7
Cに示すように、絶縁膜48を除去し、上面全体に横方
向のインデックスステップをつけるため、Alの混晶比
の高いn型のAlGaAs電流ブロック層49を形成
し、このn型のAlGaAs電流ブロック層49でスト
ライプリッジ50を埋め込む。次に、図7Dに示すよう
に、電流パス領域を形成するためにp型GaAsキャッ
プ層47上のn型AlGaAs層49をエッチング除去
する。しかる後、電極を形成して目的のリアルインデッ
クスガイドレーザを作製する。
Next, as shown in FIG. 7B, the insulating film 48 formed in stripes on the uppermost p-type GaAs cap layer 47 is used as a mask to etch both sides up to the middle of the p-type AlGaAs cladding layer 44 in a mesa shape. Give. Next, FIG.
As shown in C, the insulating film 48 is removed and an n-type AlGaAs current block layer 49 having a high Al mixed crystal ratio is formed in order to form an index step in the lateral direction on the entire upper surface. The stripe ridge 50 is embedded in the block layer 49. Next, as shown in FIG. 7D, the n-type AlGaAs layer 49 on the p-type GaAs cap layer 47 is etched away to form a current path region. After that, the electrodes are formed to manufacture the target real index guide laser.

【0030】之に対し、本例においては、図6Aに示す
ように、n型のGaAs基板41上にn型のAlGaA
sクラッド層42、活性層43、p型のAlGaAsク
ラッド層44、ガイド層45、p型のAlGaAsクラ
ッド層46及びp型のGaAsキャップ層47を順次M
OCVD法により結晶成長する。
On the other hand, in this example, as shown in FIG. 6A, n-type AlGaA is formed on the n-type GaAs substrate 41.
The s clad layer 42, the active layer 43, the p-type AlGaAs clad layer 44, the guide layer 45, the p-type AlGaAs clad layer 46, and the p-type GaAs cap layer 47 are sequentially M.
Crystal growth is performed by the OCVD method.

【0031】次に、図6Bに示すように、最上層のp型
GaAsキャップ層47上にストライプ状に形成した絶
縁膜48をマスクに両側をp型AlGaAsクラッド層
44の中間までメサ状のエッチングを施す。これまでの
工程は前述の従来の図7A及びBの工程と同じである。
Next, as shown in FIG. 6B, the insulating film 48 formed in stripes on the uppermost p-type GaAs cap layer 47 is used as a mask to etch both sides up to the middle of the p-type AlGaAs clad layer 44 in a mesa shape. Give. The steps up to this point are the same as the above-described conventional steps of FIGS. 7A and 7B.

【0032】次に、図6Cに示すように、Alの混晶比
の高いn型のAlGaAs電流ブロック層49を本発明
の結晶成長法を用いて選択成長する。このときn型Al
GaAs電流ブロック層49は、絶縁膜48上に多結晶
成長せず、エッチングされ部分を埋込むように選択成長
される。しかる後、電極を形成して目的のリアルインデ
ックスガイドレーザを作製する。このように、AlGa
As層49の選択成長が容易に実現できるので、製造工
程の簡略化が図れる。
Next, as shown in FIG. 6C, an n-type AlGaAs current block layer 49 having a high Al mixed crystal ratio is selectively grown using the crystal growth method of the present invention. At this time, n-type Al
The GaAs current blocking layer 49 is selectively grown so as not to be polycrystalline grown on the insulating film 48 but to be etched so as to fill the portion. After that, the electrodes are formed to manufacture the target real index guide laser. In this way, AlGa
Since the selective growth of the As layer 49 can be easily realized, the manufacturing process can be simplified.

【0033】[0033]

【発明の効果】本発明によれば、III 族材料とV族材料
の交互供給を行うことにより、常圧MOCVDでIII −
V族化合物半導体結晶の選択成長を行うことができる。
According to the present invention, by alternately supplying a group III material and a group V material, it is possible to perform III-type atmospheric pressure MOCVD.
The group V compound semiconductor crystal can be selectively grown.

【0034】そして、III 族材料とV族材料を間隔を置
かないで連続して交互供給を行うことにより、選択性に
優れ且つ膜質のよいIII −V族化合物半導体結晶を選択
成長することができる。
By continuously and alternately supplying the group III material and the group V material with no interval, a group III-V compound semiconductor crystal having excellent selectivity and good film quality can be selectively grown. .

【0035】さらに、III 族材料の供給量を9原子層相
当量以下にすることによって、選択性良く、良好な膜質
のIII −V族化合物半導体結晶の成長を行うことができ
る。
Further, by setting the supply amount of the group III material to be equal to or less than the amount equivalent to 9 atomic layers, it is possible to grow a group III-V compound semiconductor crystal with good selectivity and good film quality.

【0036】このようにして、従来困難であった常圧M
OCVD法によるGaAs基板上への選択性のよい且つ
良好な膜質のAlGaAs結晶の選択成長を行うことが
できる。
In this way, the atmospheric pressure M, which has been difficult in the past, is obtained.
It is possible to selectively grow an AlGaAs crystal having good selectivity and good film quality on the GaAs substrate by the OCVD method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による結晶成長法に用いる常圧MOCV
D装置の構成図である。
FIG. 1 is an atmospheric pressure MOCV used in a crystal growth method according to the present invention.
It is a block diagram of a D device.

【図2】本発明による結晶成長法のIII 族原料とV族原
料の供給仕方の一例を示す説明図である。
FIG. 2 is an explanatory view showing an example of a method of supplying a group III raw material and a group V raw material in the crystal growth method according to the present invention.

【図3】本発明による結晶成長法のIII 族原料とV族原
料の供給仕方の他の例を示す説明図である。
FIG. 3 is an explanatory view showing another example of a method of supplying a group III raw material and a group V raw material of the crystal growth method according to the present invention.

【図4】本発明による結晶成長法のIII 族原料とV族原
料の供給仕方の他の例を示す説明図である。
FIG. 4 is an explanatory view showing another example of the method of supplying the group III raw material and the group V raw material of the crystal growth method according to the present invention.

【図5】A GaAs基板上にAlGaAsを選択成長
する工程図である。 B GaAs基板上にAlGaAsを選択成長する工程
図である。
FIG. 5 is a process drawing for selectively growing AlGaAs on an A GaAs substrate. It is a process drawing of selectively growing AlGaAs on a B GaAs substrate.

【図6】A 本発明の結晶成長法を用いたリアルインデ
ックスガイドレーザの製法を示す工程図である。 B 本発明の結晶成長法を用いたリアルインデックスガ
イドレーザの製法を示す工程図である。 C 本発明の結晶成長法を用いたリアルインデックスガ
イドレーザの製法を示す工程図である。
FIG. 6A is a process drawing showing the manufacturing method of a real index guide laser using the crystal growth method of the present invention. B is a process drawing showing a method for producing a real index guide laser using the crystal growth method of the present invention. FIG. C is a process drawing showing a method for producing a real index guide laser using the crystal growth method of the present invention. FIG.

【図7】A 従来のリアルインデックスガイドレーザの
製法を示す工程図である。 B 従来のリアルインデックスガイドレーザの製法を示
す工程図である。 C 従来のリアルインデックスガイドレーザの製法を示
す工程図である。 D 従来のリアルインデックスガイドレーザの製法を示
す工程図である。
FIG. 7A is a process drawing showing a method of manufacturing a conventional real index guide laser. B is a process diagram showing a method for manufacturing a conventional real index guide laser. C is a process diagram showing a method for manufacturing a conventional real index guide laser. D is a process diagram showing a method of manufacturing a conventional real index guide laser.

【図8】従来の常圧MOCVD装置を示す構成図であ
る。
FIG. 8 is a block diagram showing a conventional atmospheric pressure MOCVD apparatus.

【図9】従来の結晶成長法のIII 族原料とV族原料の供
給仕方を示す説明図である。
FIG. 9 is an explanatory diagram showing a method of supplying a group III raw material and a group V raw material in a conventional crystal growth method.

【符号の説明】[Explanation of symbols]

1,21 常圧MOCVD装置 2,22 反応室 3,23 基板 4,24 AsH3 ボンベ 5,25 TMA浴槽 6,26 TMG浴槽 7,27,28 配管 8,29 排気管 30 切換バルブ1,21 Normal pressure MOCVD apparatus 2,22 Reaction chamber 3,23 Substrate 4,24 AsH 3 cylinder 5,25 TMA bath 6,26 TMG bath 7,27,28 Piping 8,29 Exhaust pipe 30 Switching valve

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 絶縁膜で選択的にマスクされたIII −V
族化合物半導体基板上に、III 族材料とV族材料とを交
互に供給してIII −V族化合物半導体結晶を選択成長さ
せることを特徴とする結晶成長法。
1. III-V selectively masked with an insulating film
A crystal growth method characterized in that a group III material and a group V material are alternately supplied onto a group compound semiconductor substrate to selectively grow a group III-V compound semiconductor crystal.
【請求項2】 前記III 族材料と前記V族材料とを間隔
を置かずに連続して交互に供給することを特徴とする請
求項1に記載の結晶成長法。
2. The crystal growth method according to claim 1, wherein the group III material and the group V material are continuously and alternately supplied without a gap.
【請求項3】 前記III 族材料の一回の供給量を9原子
層相当以下とすることを特徴とする請求項1又は2に記
載の結晶成長法。
3. The crystal growth method according to claim 1, wherein a single supply amount of the group III material is equal to or less than 9 atomic layers.
【請求項4】 前記III −V族化合物半導体基板をGa
As基板とし、前記III−V族化合物半導体結晶をAl
GaAs結晶としたことを特徴とする請求項1,2又は
3に記載の結晶成長法。
4. The III-V compound semiconductor substrate is Ga
The As substrate is used, and the III-V compound semiconductor crystal is Al.
The crystal growth method according to claim 1, wherein the crystal growth method is a GaAs crystal.
JP31503894A 1994-12-19 1994-12-19 Crystal growth method Pending JPH08172053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31503894A JPH08172053A (en) 1994-12-19 1994-12-19 Crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31503894A JPH08172053A (en) 1994-12-19 1994-12-19 Crystal growth method

Publications (1)

Publication Number Publication Date
JPH08172053A true JPH08172053A (en) 1996-07-02

Family

ID=18060682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31503894A Pending JPH08172053A (en) 1994-12-19 1994-12-19 Crystal growth method

Country Status (1)

Country Link
JP (1) JPH08172053A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005101470A1 (en) 2004-04-13 2005-10-27 Riber Method of three-dimensional microfabrication and high-density three-dimensional fine structure
WO2014136416A1 (en) * 2013-03-08 2014-09-12 国立大学法人山口大学 Method for producing semiconductor device and method for growing crystal of group iii-v semiconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005101470A1 (en) 2004-04-13 2005-10-27 Riber Method of three-dimensional microfabrication and high-density three-dimensional fine structure
WO2014136416A1 (en) * 2013-03-08 2014-09-12 国立大学法人山口大学 Method for producing semiconductor device and method for growing crystal of group iii-v semiconductor

Similar Documents

Publication Publication Date Title
JP3395318B2 (en) Method for growing group 3-5 compound semiconductor crystal
KR102075177B1 (en) Epitaxy substrate, method for producing an epitaxy substrate and optoelectronic semiconductor chip comprising an epitaxy substrate
JP3279528B2 (en) Method for producing nitride III-V compound semiconductor
JPH08172053A (en) Crystal growth method
US20050132950A1 (en) Method of growing aluminum-containing nitride semiconductor single crystal
JPH09102461A (en) Vapor growth apparatus
JPH08316151A (en) Manufacture of semiconductor
JP3223575B2 (en) Compound semiconductor and manufacturing method thereof
JPH1174202A (en) Vapor growth device of gallium nitride iii-v compound semiconductor and gallium nitride iii-v compound semiconductor device and its manufacture
US5827365A (en) Compound semiconductor and its fabrication
JP2956619B2 (en) Method for growing III-V compound semiconductor crystal
JPH0431396A (en) Growth of semiconductor crystal
US20030198301A1 (en) Method of epitaxial lateral overgrowth
JPH11268996A (en) Method for growing compound semiconductor mixed crystal
KR20040070255A (en) Method for depositing iii-v semiconductor layers on a non iii-v substrate
JPH0684805A (en) Compound semiconductor crystalline growth method
JP2002334842A (en) Method of manufacturing nitride semiconductor device
JPH08186080A (en) Growth method for compound semiconductor crystal
JPH01290222A (en) Semiconductor vapor growth method
JPH10321963A (en) Vapor phase growth method for compound semiconductor and light-emitting element
JP2625377B2 (en) Method for selectively growing compound semiconductor and method for selectively burying compound semiconductor
JPH0334536A (en) Manufacture of iii-v compound semiconductor element
JPH04182385A (en) Growing method for crystal
JPH04175293A (en) Method for selective crystal growth
JPH0613323A (en) Vapor phase epitaxy method for compound semiconductor mixed crystal