JPH08172015A - Thin-film laminated magnetic induction element - Google Patents

Thin-film laminated magnetic induction element

Info

Publication number
JPH08172015A
JPH08172015A JP27165095A JP27165095A JPH08172015A JP H08172015 A JPH08172015 A JP H08172015A JP 27165095 A JP27165095 A JP 27165095A JP 27165095 A JP27165095 A JP 27165095A JP H08172015 A JPH08172015 A JP H08172015A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic core
coil
thin film
induction element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27165095A
Other languages
Japanese (ja)
Inventor
Yasuaki Motoi
康朗 本井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP27165095A priority Critical patent/JPH08172015A/en
Publication of JPH08172015A publication Critical patent/JPH08172015A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To improve the performance of a magnetic induction element, such as the reactor constituted by laminating thin film coils or magnetic cores, transformer, etc., by sufficiently utilizing the magnetic anisotropy of the magnetic material constituting the magnetic cores. CONSTITUTION: Magnetic cores 20 composed of a magnetic material having magnetic anisotropy are put on both surfaces of a spiral coil 10 composed of a thin film conductor, such as copper, etc., with insulating films 30 in between and the magnetic cores 20 are divided into a plurality of magnetic core parts 21 and 22 by forming radial or diagonal slits Sd extended outward from the center of the spiral coil 10. Then the axis Me of easy magnetization of the magnetic thin film is oriented in the direction parallel or perpendicular to the direction of magnetization M caused by the coil 10 at every magnetic core part 21 or 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は薄膜導体から形成さ
れたコイルと磁性薄膜から形成された磁心を間に絶縁膜
を介して積層した薄膜積層体としてなるリアクトルや変
圧器等である薄膜積層形の磁気誘導素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film laminated type such as a reactor or a transformer which is a thin film laminated body in which a coil formed of a thin film conductor and a magnetic core formed of a magnetic thin film are laminated with an insulating film interposed therebetween. The magnetic induction element of.

【0002】[0002]

【従来の技術】スイッチング電源等の電子装置は電子回
路にリアクトルや変圧器等の磁気誘導素子を組み合わせ
て構成されることが多いが、電子機器の小型軽量化、高
集積化が進み、電子機器に占める電源部の体積及び重量
比率は高まる一方であり、電源部をいかに小型・軽量化
するかが大きな課題となってきている。これらを背景と
して電源に関しても小型化への動向が強まっている。な
かでもこの数年、磁気素子の小型化への研究が盛んにな
り、薄膜インダクタ,薄膜トランス及び薄膜バルク磁心
など、マイクロ磁気素子の開発は大きく進展している。
しかし、半導体集積回路技術に比べ、磁気素子の集積化
技術は依然として遅れており課題となっている。
2. Description of the Related Art Electronic devices such as switching power supplies are often constructed by combining magnetic induction elements such as reactors and transformers with electronic circuits. However, electronic devices are becoming smaller and lighter and highly integrated. The volume and weight ratio of the power supply unit to the total increase, and how to reduce the size and weight of the power supply unit has become a major issue. Against this background, there is an increasing trend toward miniaturization of power supplies. Above all, in recent years, research into miniaturization of magnetic elements has become popular, and development of micro magnetic elements such as thin film inductors, thin film transformers, and thin film bulk magnetic cores has made great progress.
However, as compared with the semiconductor integrated circuit technology, the magnetic element integration technology is still behind and presents a problem.

【0003】この薄膜積層形磁気誘導素子としては、磁
性薄膜の磁心にコイルを巻き付けるいわゆる内鉄構造の
ものも知られているが、薄膜導体を2層に成膜してコイ
ルを磁心に巻き付くよう形成するのが容易でなく、かつ
外側のコイルに流れる電流による発生磁束に対する遮蔽
がないので半導体チップ上に磁気誘導素子を搭載する場
合は集積回路が誤動作を起こすおそれがある。これらの
欠点は、薄膜導体から形成したコイルを一対の磁性薄膜
の磁心で両側から挟み込むいわゆる外鉄構造の採用によ
りほぼ解消できる。さらに、この外鉄構造についても大
別してコイルをつづら折れ状にする場合と渦巻き状にす
る場合の二つが知られているが、小さな面積で大きなイ
ンダクタンスを得る上では後者の方が有利である。本発
明はこの渦巻き状のコイルを用いる外鉄構造の磁気誘導
素子に関し、その基本的な構造を図6の斜視図を参照し
て以下に簡単に説明する。
As this thin film laminated magnetic induction element, a so-called inner iron structure in which a coil is wound around the magnetic core of a magnetic thin film is known, but a thin film conductor is formed into two layers and the coil is wound around the magnetic core. Since it is not easy to form and there is no shielding against the magnetic flux generated by the current flowing through the outer coil, the integrated circuit may malfunction when the magnetic induction element is mounted on the semiconductor chip. These drawbacks can be almost eliminated by adopting a so-called outer iron structure in which a coil formed of a thin film conductor is sandwiched by a pair of magnetic thin film magnetic cores from both sides. Further, regarding this outer iron structure, there are roughly known two methods, that is, a coil is formed into a zigzag shape and a coil is formed into a spiral shape, but the latter is more advantageous in obtaining a large inductance in a small area. The present invention relates to a magnetic induction element having an outer iron structure using this spiral coil, and the basic structure thereof will be briefly described below with reference to the perspective view of FIG.

【0004】図6の中央に示されたコイル10は、銅等の
高導電性金属を成膜した薄膜導体にフォトエッチングを
施して渦巻き状に形成したもので、これを磁性材料を成
膜した磁性薄膜からなる上下一対の磁心20により図のよ
うに両側からそれぞれ酸化シリコン等の薄い絶縁膜30を
介して挟み込むことにより、薄膜積層形の磁気誘導素子
40を構成する。なお、コイル10の渦巻きの外側端部から
はそのまま端子Toを導出すればよいが、内側端部からは
図示のように交差部Cを介して端子Tiを導出する必要が
あり、このため交差部Cでは端子Ti用の薄膜導体をコイ
ル10用の薄膜導体に図では細線で簡略に示す絶縁膜30a
を介して重なり合うように成膜しかつフォトエッチング
によりパターンニングする。また、図の例では一対の磁
心20が開磁路を形成するが、絶縁膜30を磁心20より小さ
く中央部に窓をもつパターンに形成して上下の磁心20を
周縁部および中央部で接触させることにより、閉磁路を
形成して磁気誘導素子40のインダクタンスを高めること
ができる。
The coil 10 shown in the center of FIG. 6 is formed by photo-etching a thin film conductor on which a highly conductive metal such as copper is formed to form a spiral, and a magnetic material is formed on this coil. By sandwiching a pair of upper and lower magnetic cores 20 made of a magnetic thin film from both sides through a thin insulating film 30 such as silicon oxide, as shown in the figure, a thin film laminated magnetic induction element.
Make up 40. The terminal To may be derived from the outer end of the spiral of the coil 10 as it is, but it is necessary to derive the terminal Ti from the inner end through the intersection C as shown in the figure. In C, the thin-film conductor for the terminal Ti is used as the thin-film conductor for the coil 10, and the insulating film 30a is schematically shown by a thin line in the figure.
The films are formed so as to overlap with each other through and patterned by photoetching. In addition, in the example shown in the figure, the pair of magnetic cores 20 form an open magnetic path.However, the insulating film 30 is formed in a pattern smaller than the magnetic core 20 and having a window in the central portion, and the upper and lower magnetic cores 20 are contacted at the peripheral edge portion and the central portion. By doing so, a closed magnetic circuit can be formed and the inductance of the magnetic induction element 40 can be increased.

【0005】[0005]

【発明が解決しようとする課題】上述の従来の薄膜積層
構造により、小面積で, インダクタンスが大きく, かつ
半導体チップへの搭載に適する薄形の磁気誘導素子40を
構成できるが、磁心20の磁性薄膜に磁気特性に優れた磁
気異方性をもつアモルファス金属等の磁性材料を採用し
ようとするとその利点を充分に活かし切れない問題があ
る。以下、これを図7を参照して説明する。
With the conventional thin film laminated structure described above, it is possible to construct a thin magnetic induction element 40 having a small area, a large inductance, and suitable for mounting on a semiconductor chip. If a thin film is made of a magnetic material such as amorphous metal having excellent magnetic anisotropy, there is a problem that the advantage cannot be fully utilized. Hereinafter, this will be described with reference to FIG. 7.

【0006】図7は図6を上から見た上面図であり、コ
イル10が方形の磁心20の中に細線で簡略に示されてお
り、かつコイル10を流れる電流が磁心20に及ぼす磁化の
方向が矢印Mで示されている。コイル10が渦巻き状の場
合はかかる磁化方向Mは図示のように磁心20の方形の各
辺に対してほぼ垂直になる。一方、磁心20に用いられる
〔高〕磁性材料からなる磁性薄膜には上述のように磁気
異方性があるので、その磁化容易軸Meを例えば図のよう
に上下に向く磁化方向Mに一致させても、左右に向く磁
化方向Mに対しては直角になるので磁化が困難になり、
このため磁心20の内部発生磁界は図の上下方向には強い
が左右方向ではずっと弱くなってしまうので、磁性薄膜
に磁性材料を折角用いても磁気誘導素子40にその磁気性
能に相応した大きなインダクタンスをもたせるのが困難
になる。
FIG. 7 is a top view of FIG. 6 viewed from above, in which the coil 10 is simply shown by a thin wire in a rectangular magnetic core 20, and the current flowing through the coil 10 exerts a magnetic field on the magnetic core 20. The direction is indicated by arrow M. When the coil 10 has a spiral shape, the magnetizing direction M is substantially perpendicular to each side of the square of the magnetic core 20 as shown. On the other hand, since the magnetic thin film made of the [high] magnetic material used for the magnetic core 20 has the magnetic anisotropy as described above, its easy axis Me is made to coincide with the magnetization direction M which is vertically oriented as shown in the figure. However, it becomes difficult to magnetize because it becomes perpendicular to the magnetizing direction M that is directed to the left and right.
For this reason, the magnetic field generated inside the magnetic core 20 is strong in the vertical direction of the figure, but becomes much weaker in the horizontal direction, so even if a magnetic material is used for the magnetic thin film, the magnetic induction element 40 has a large inductance corresponding to its magnetic performance. It becomes difficult to have.

【0007】なお、磁気誘導素子40の高周波性能を向上
させるため磁心20の磁性薄膜の磁化困難軸を磁化方向M
に合わせたい場合があるが、上下および左右の磁化方向
Mの一方に磁化困難軸を一致させても他方に磁化容易軸
が合ってしまうので、高周波特性をねらいどおり向上で
きなくなる。このため、図8に示すようにコイル10を細
長く形成して中央部10cにだけ磁心20を設けて、それに
作用する磁化方向Mに対し、例えば磁化容易軸Meを垂直
方向に合わせる構造(特開平4-363006号公報を参照) が
知られているが、コイル10の両端部10eのために余分な
面積が必要になるので、磁気誘導素子50の面積あたりの
インダクタンス値が低下して来る問題がある。また、磁
性薄膜を複数層に積層して磁心を構成し, 各層の磁性薄
膜ごとにその磁気異方性の方向を順次回転させるいわゆ
る複合違方性膜を用いたインダクタ,トランス(磁気誘
導素子)も知られているが、磁心の膜面内で等方的な透
磁率を示しコイルによる励磁に対し効果的に磁化が誘起
されるといった特徴を任意の方向で利用できる反面、そ
の逆の効果もあり、平均的に相殺され磁性薄膜に誘起し
た磁気異方性の効果を十分に活用されていない。
In order to improve the high frequency performance of the magnetic induction element 40, the hard axis of the magnetic thin film of the magnetic core 20 is set to the magnetization direction M.
However, even if the hard axis of magnetization is aligned with one of the upper and lower and left and right magnetization directions M, the axis of easy magnetization is aligned with the other, so that the high frequency characteristics cannot be improved as desired. For this reason, as shown in FIG. 8, the coil 10 is elongated and the magnetic core 20 is provided only in the central portion 10c, and for example, the easy axis Me is perpendicular to the magnetization direction M acting on the coil 20 (Japanese Patent Laid-Open No. Hei 10 (1999) -135242). 4-363006) is known, but since an extra area is required for both ends 10e of the coil 10, there is a problem that the inductance value per area of the magnetic induction element 50 decreases. is there. In addition, inductors and transformers (magnetic induction elements) that use so-called compound anisotropic films that form magnetic cores by laminating magnetic thin films in multiple layers and sequentially rotate the direction of magnetic anisotropy for each magnetic thin film in each layer It is also known that the characteristic that isotropic permeability is shown in the film surface of the magnetic core and the magnetization is effectively induced by the excitation by the coil can be used in any direction, but the opposite effect is also available. However, the effect of the magnetic anisotropy that is canceled out on average and induced in the magnetic thin film is not fully utilized.

【0008】さらに、図6の従来の磁気誘導素子40で
は、前述のようにコイル10の渦巻きの内側端部から端子
Tiを導出する際に交差部Cが発生するため磁心20に鎖交
するコイル10が発生した磁束が、端子Tiに鎖交し磁心へ
の鎖交が妨げられかつ端子Tiに流れる電流により発生し
た磁束により交差部Cの付近で乱されるため損失となり
磁気誘導素子40のインダクタンス値が低下し、また磁心
20に鎖交した磁束によって渦電流損が発生するため磁気
誘導素子40のQ値がとくに高周波領域で低下して来る問
題がある。
Further, in the conventional magnetic induction element 40 of FIG. 6, as described above, the coil 10 has a terminal from the inner end of the spiral.
The magnetic flux generated by the coil 10 interlinks with the magnetic core 20 due to the occurrence of the intersection C when deriving Ti is generated by the current flowing through the terminal Ti and interfering with the interlinkage to the magnetic core. The magnetic flux is disturbed in the vicinity of the intersection C, resulting in a loss and a decrease in the inductance value of the magnetic induction element 40.
There is a problem that the Q value of the magnetic induction element 40 decreases particularly in a high frequency region because eddy current loss occurs due to the magnetic flux linked to 20.

【0009】また、磁心の渦電流損による損失を低減す
るため、磁心にスリットを入れて分割するが、角形スパ
イラルにおいて図9に示すようなスリットSの入れ方で
は、分割された各磁心20がコイル10によって2方向に励
磁されるため磁心が有効に利用されない。このようなス
リットを入れるのでは損失は低減できても磁性材料が有
する磁気異方性の特徴を効果的に利用できない。
Further, in order to reduce the loss due to the eddy current loss of the magnetic core, the magnetic core is divided into slits. However, in the slit spiral S as shown in FIG. Since the coil 10 excites in two directions, the magnetic core is not effectively used. If such a slit is provided, the loss can be reduced, but the magnetic anisotropy feature of the magnetic material cannot be effectively utilized.

【0010】本発明は上述のような従来の問題点を解決
して、磁心用の磁性薄膜がもつ磁気異方性を活かして磁
気誘導素子の性能を高めることを目的とする。
An object of the present invention is to solve the above-mentioned conventional problems and to improve the performance of the magnetic induction element by utilizing the magnetic anisotropy of the magnetic thin film for the magnetic core.

【0011】[0011]

【課題を解決するための手段】上記の目的は本発明によ
れば、渦巻き状に形成された薄膜導体からなる面状のコ
イルと,磁気異方性をもつ磁性薄膜からなりコイルを両
側から挟み込む一対の面状の磁心とを相互間に絶縁膜を
介して積層して磁気誘導素子を構成し、磁心をコイルの
渦巻きの内側から外側に向かう放射線状のスリットによ
って複数の磁心部分に分割し、各磁心部分用の磁性薄膜
の磁化容易軸と磁化困難軸のいずれかをコイルによる磁
化方向に配向させることによって達成される。
According to the present invention, the above object is achieved by sandwiching a coil made of a thin film conductor formed in a spiral shape and a coil made of a magnetic thin film having magnetic anisotropy from both sides. A pair of planar magnetic cores are laminated with an insulating film interposed therebetween to form a magnetic induction element, and the magnetic core is divided into a plurality of magnetic core portions by radial slits extending from the inside of the spiral of the coil to the outside, This is achieved by orienting either the easy axis or the hard axis of the magnetic thin film for each magnetic core portion in the direction of magnetization by the coil.

【0012】磁心を方形に形成する場合はスリットをそ
の方形に対し対角線状に設けるのがよく、さらに必要に
応じて各磁心部分を分割するようにスリットをコイルに
よる磁化方向に平行に設けるのがよい。また、コイルと
磁心を長方形に形成する場合は長方形の頂点を通る対角
線状のスリットとその中央部を長手方向に延びるスリッ
トにより磁心を長方形の長辺と短辺をそれぞれ底辺とす
る各一対の台形と三角形の磁心部分に分割するのがよ
く、この場合も必要に応じ台形の磁心部分をコイルによ
る磁化方向に平行なスリットにより分割するのがよい。
When the magnetic core is formed in a rectangular shape, it is preferable that the slits are provided in a diagonal line with respect to the rectangular shape, and if necessary, the slits are provided in parallel with the magnetization direction of the coil so as to divide each magnetic core portion. Good. When forming the coil and the magnetic core in a rectangular shape, a pair of trapezoids each having a long side and a short side of the rectangular core as a magnetic core are formed by diagonal slits passing through the apexes of the rectangle and a slit extending in the central portion in the longitudinal direction. Is preferably divided into triangular magnetic core portions, and in this case as well, the trapezoidal magnetic core portions are preferably divided by slits parallel to the magnetization direction of the coil.

【0013】また、渦巻き状のコイルを小形にして複数
個二次元配置して一対の磁心により両側から挟み込み、
各磁心をコイルごとに放射線状に設けたスリットにより
隣接する2個のコイルに亘って連続する磁心部分に分割
するのが渦流損の減少に有利である。この態様では複数
のコイルをすべて直列接続するのがインダクタンスを増
加させる上で有利であり、さらに複数個のコイルの渦巻
き方向をすべて揃えて隣接する2個のコイルの渦巻きの
外側端部をコイルの配列面上で相互に接続するのがよ
い。高周波性能を向上させる上では複数個のコイルの直
列回路を並列接続するのが有利であり、さらに渦巻きの
方向を直列接続すべきコイルでは同じに,並列接続すべ
きコイルでは逆にし、巻き方向が逆な2個の隣接コイル
の渦巻きの外側端部をコイルの配列面上で相互に接続す
るのがよい。
Further, a plurality of spiral coils are miniaturized and two or more coils are two-dimensionally arranged and sandwiched from both sides by a pair of magnetic cores.
It is advantageous to reduce eddy current loss that each magnetic core is divided into continuous magnetic core portions over two adjacent coils by slits provided in a radial pattern for each coil. In this mode, it is advantageous to connect a plurality of coils in series in order to increase the inductance, and further, the outer ends of the spirals of two adjacent coils with all the spiral directions of the plurality of coils aligned. It is preferable to connect them to each other on the array surface. In order to improve high-frequency performance, it is advantageous to connect a series circuit of multiple coils in parallel. Furthermore, the spiral direction is the same for coils that should be connected in series, and opposite for coils that should be connected in parallel. The outer ends of the spirals of the two opposite coils adjacent to each other may be connected to each other on the arrangement plane of the coils.

【0014】本発明による磁気誘導素子では、各コイル
の渦巻きの内側端部に対する接続を磁心部分の相互間の
スリットによる隙間部分やそこに開口した窓を介して行
なうのが磁心内部の磁場の分布の乱れを防止する上でと
くに有利である。さらに、本発明では磁心のスリットに
よる分割は同一面内で磁化容易軸ないし磁化困難軸が互
いに異なる2個の磁心部分群に分離するように行なうの
がよく、そのための具体的手段としては一方の磁心部分
群を配設すべき個所をマスクした状態で磁性薄膜を成膜
してリフトオフ法によって他方の磁心部分群を残した
後、他方の磁心部分群をマスクした状態で磁性薄膜を成
膜してリフトオフ法によって一方の磁心部分群を残すよ
うにするのがよい。この際に磁性薄膜に磁気異方性をも
たせるには、所定方向に磁界を与えた状態でスパッタ法
等により〔〕磁性材料を成膜すれば磁化容易軸が磁化
方向に配向した磁性薄膜が得られる。また、磁心の高周
波における渦流損失をさらに低減するには磁性薄膜を
多層構成とするのがよく、このためには 0.1μm程度の
〔高〕磁性材料と0.05μm程度の酸化シリコン等の絶縁
膜を交互にスパッタ法により例えば10層程度に積層して
成膜するのがよい。
In the magnetic induction element according to the present invention, the distribution of the magnetic field inside the magnetic core is achieved by connecting the inner ends of the spiral of each coil through the gaps formed by the slits between the magnetic cores and the windows opened therein. It is particularly advantageous in preventing the disturbance of Further, in the present invention, the division of the magnetic core by the slit is preferably performed so as to be divided into two magnetic core subgroups having different easy magnetization axes or hard magnetization axes in the same plane, and one specific means therefor is one of them. A magnetic thin film is formed in a state where the portion where the magnetic core subgroup is to be arranged is masked and the other magnetic core subgroup is left by the lift-off method, and then the magnetic thin film is formed in a state where the other magnetic core subgroup is masked. It is preferable to leave one magnetic core subgroup by the lift-off method. At this time, in order to give the magnetic thin film magnetic anisotropy, if a [ high ] magnetic material is deposited by a sputtering method or the like while a magnetic field is applied in a predetermined direction, the magnetic thin film in which the easy axis of magnetization is oriented in the magnetization direction is obtained. can get. Also, to further reduce the eddy current losses in the magnetic core of a high frequency may have to the multilayer structure of the magnetic thin film, an insulating silicon oxide or the like [high] about magnetic material and 0.05μm of about 0.1μm is for this purpose It is preferable that the films are alternately stacked to form, for example, about 10 layers by a sputtering method.

【0015】なお、本発明による磁気誘導素子は単一層
に成膜した薄膜導体から形成されたコイルを備えるリア
クトルとして用い、または複数層に絶縁膜を介して積層
して成膜した薄膜導体からそれぞれ形成されたコイルを
複数個備える変圧器ないしは変成器として用いることが
できる。
The magnetic induction element according to the present invention is used as a reactor having a coil formed of a thin film conductor formed in a single layer, or is formed from a thin film conductor formed by laminating a plurality of layers through insulating films. It can be used as a transformer or a transformer provided with a plurality of formed coils.

【0016】本発明は、渦巻き状に形成されたコイルを
両側から挟み込む磁性薄膜からなる磁心を前項にいうよ
う渦巻きの内側から外側に向かう放射線状のスリットに
より複数の磁心部分に分割することで、磁心の渦電流損
とコイル−磁心間の浮遊容量を減少させるとともに、磁
心部分ごとにその磁性薄膜の磁化容易軸と磁化困難軸の
いずれかをコイルによる磁化方向に配向させて磁性材料
の磁性薄膜が備える磁気異方性を有効利用することによ
り磁気誘導素子の性能向上に成功したものである。
According to the present invention, a magnetic core formed of magnetic thin films sandwiching a coil formed in a spiral shape from both sides is divided into a plurality of magnetic core portions by radial slits extending from the inside to the outside of the spiral as described above. In addition to reducing the eddy current loss of the magnetic core and the stray capacitance between the coil and the magnetic core, the magnetic thin film of the magnetic material is formed by orienting either the easy axis or the hard axis of the magnetic thin film for each magnetic core portion in the magnetization direction of the coil. By effectively utilizing the magnetic anisotropy of the magnetic induction element, the performance of the magnetic induction element was successfully improved.

【0017】すなわち、渦巻き状のコイルに流れる電流
がそれを両側から挟む磁心を励磁する方向はコイルの巻
き方向に対し垂直になり、磁心内に発生する渦流損失は
この磁化方向と直角な方向の磁心の有効幅に対し双曲線
関数的に増加するので、磁化方向に沿う放射線状のスリ
ットにより磁心を磁心部分に分割してその最大幅を適宜
制限することにより渦流損失が数分の1以下に減少す
る。また、コイルの巻き方向の各部相互間の磁心を介す
る浮遊容量による結合路がスリットにより分断されるの
で、コイル全体としての内部浮遊容量がふつう半分以下
に減少する。
That is, the direction in which the current flowing in the spiral coil excites the magnetic core sandwiching it from both sides is perpendicular to the coil winding direction, and the eddy current loss generated in the magnetic core is in the direction perpendicular to this magnetization direction. Since it increases as a hyperbolic function with respect to the effective width of the magnetic core, the eddy current loss is reduced to a fraction or less by dividing the magnetic core into magnetic core parts by radial slits along the magnetization direction and limiting the maximum width appropriately. To do. Further, since the coupling path due to the stray capacitance passing through the magnetic core between the respective parts in the winding direction of the coil is divided by the slit, the internal stray capacitance of the coil as a whole is usually reduced to less than half.

【0018】さらに、磁心をスリットにより分割した各
磁心部分の磁性薄膜の磁化容易軸をコイルによる磁化方
向に配向させた場合は磁心内に発生する磁界が増加する
のでそれに応じて磁気誘導素子の単位面積あたりのイン
ダクタンス値が増加し、磁化困難軸を磁化方向に配向さ
せた場合は磁心の透磁率が高周波領域までほぼ一定に維
持されるので磁気誘導素子の使用可能な周波数領域が拡
大する。以上のように本発明の磁気誘導素子では、磁心
の渦流損失の減少によりQ値を高め,コイルの内部浮遊
容量の減少によりその共振周波数を高め,さらには磁心
部分ごとに磁性薄膜の磁気異方性の方向を適宜選択する
ことによりインダクタンス値を増加させあるいは使用周
波数を高周波領域に伸ばすことができる。
Further, when the magnetic easy axis of the magnetic thin film of each magnetic core portion divided by the slit is oriented in the direction of magnetization by the coil, the magnetic field generated in the magnetic core increases, and accordingly the unit of the magnetic induction element is increased accordingly. The inductance value per area increases, and when the hard magnetization axis is oriented in the magnetization direction, the magnetic permeability of the magnetic core is maintained substantially constant up to the high frequency region, so that the usable frequency region of the magnetic induction element is expanded. As described above, in the magnetic induction element of the present invention, the Q value is increased by decreasing the eddy current loss of the magnetic core, the resonance frequency thereof is increased by decreasing the internal stray capacitance of the coil, and further, the magnetic anisotropy of the magnetic thin film is increased for each magnetic core portion. The inductance value can be increased or the operating frequency can be extended to a high frequency region by appropriately selecting the direction of sex.

【0019】[0019]

【発明の実施の形態】以下、図を参照しながら本発明の
実施例を説明する。図1に本発明による磁気誘導素子の
基本的な実施例を,図2にコイルを複数個に分けた実施
例を,図3に本発明を変圧器に適用した実施例を,図4
に磁心部分が細分化された実施例を,図5にコイルを長
方形に形成した実施例をそれぞれ示す。これらの図の前
に説明した図6〜図8との対応部分には同じ符号が付け
られている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a basic embodiment of a magnetic induction element according to the present invention, FIG. 2 shows an embodiment in which a plurality of coils are divided, and FIG. 3 shows an embodiment in which the present invention is applied to a transformer.
FIG. 5 shows an embodiment in which the magnetic core portion is subdivided, and FIG. 5 shows an embodiment in which the coil is formed in a rectangular shape. 6 to 8 described before these figures are denoted by the same reference numerals.

【0020】図1では、同図(a) に磁気誘導素子40の展
開斜視図を,同図(b) と同図(c) に磁心部分21と22の磁
化容易軸Meがコイル10による磁化方向Mに対して平行方
向と直角方向にそれぞれ配向された磁心20の上面図を示
す。図1(a) の中央部に示すコイル10は銅等の高導電率
の金属を成膜した薄膜導体をフォトエッチングにより図
の例では方形の渦巻き状に形成してなる。一対の磁心20
は〔高〕磁性材料からなる磁性薄膜をコイル10に対応し
てほぼ正方形状に形成して、コイル10を図の上下の両側
から酸化シリコン等の絶縁膜30を介して挟み込むように
設けられる。なお、これらの実際の積層順序は図の下側
から上側に向けてなされる。
In FIG. 1, (a) is a developed perspective view of the magnetic induction element 40, and (b) and (c) of FIG. 1 show that the easy axes Me of the magnetic core portions 21 and 22 are magnetized by the coil 10. The top view of the magnetic core 20 orient | assigned respectively to the parallel direction and the orthogonal direction with respect to the direction M is shown. The coil 10 shown in the center of FIG. 1A is formed by photo-etching a thin film conductor on which a metal having a high conductivity such as copper is formed into a rectangular spiral shape in the example of the drawing. A pair of magnetic cores 20
Is formed so that a magnetic thin film made of a [high] magnetic material is formed into a substantially square shape corresponding to the coil 10, and the coil 10 is sandwiched from both upper and lower sides of the drawing with an insulating film 30 such as silicon oxide interposed therebetween. The actual stacking order of these layers is from the bottom to the top of the drawing.

【0021】この図1の実施例では、各磁心20のスリッ
トSdはその方形に対して対角線状に設けられ、これによ
り磁心20が図1(b) や(c) に示す各一対の磁心部分21と
22に分割される。コイル10の渦巻きの外側端部からは端
子Toが側方に導出されるが、内側端部からは端子Ti用の
接続線がスリットSdによる磁心部分21と22の相互間の隙
間を利用して設けられた窓Wを介して図の例では下側の
磁心20を通して下方に向けて導出される。
In the embodiment of FIG. 1, the slits Sd of each magnetic core 20 are provided in a diagonal line with respect to the rectangular shape, so that the magnetic core 20 forms a pair of magnetic core portions shown in FIGS. 1 (b) and 1 (c). 21 and
Divided into 22. The terminal To is led out laterally from the outer end of the spiral of the coil 10, but the connecting wire for the terminal Ti is utilized from the inner end by utilizing the gap between the magnetic core portions 21 and 22 by the slit Sd. In the example shown in the figure, it is led out downward through the window W provided and through the lower magnetic core 20.

【0022】なお、図の例では絶縁膜30を磁心20より端
子Toを絶縁しつつ若干小さく形成して中央部に開口31を
設けることにより、上下の磁心20をコイル10の渦巻きの
内側および外側で互いに接触させて閉磁路を形成させ
る。高周波用の磁気誘導素子40では開磁路としてもよい
が、閉磁路は比較的低い周波数領域でのインダクタンス
値を大きくする上で有利である。また、絶縁膜30には磁
心20側の窓Wに対応して端子Tiの接続線用に窓32が明け
られる。この接続線用にはコイル10の薄膜導体を成膜時
に窓32やWの中に充填して端子Ti用のアルミ配線膜等と
接続することでよい。
In the illustrated example, the insulating film 30 is formed to be slightly smaller than the magnetic core 20 while insulating the terminals To, and the opening 31 is provided in the central portion, so that the upper and lower magnetic cores 20 are arranged inside and outside the spiral of the coil 10. To contact each other to form a closed magnetic circuit. The high frequency magnetic induction element 40 may have an open magnetic circuit, but the closed magnetic circuit is advantageous in increasing the inductance value in a relatively low frequency region. Further, a window 32 is opened in the insulating film 30 so as to correspond to the window W on the side of the magnetic core 20 and for the connection wire of the terminal Ti. For this connecting wire, the thin film conductor of the coil 10 may be filled in the window 32 or W at the time of film formation and connected to the aluminum wiring film for the terminal Ti or the like.

【0023】図1(b) や図1(c) に示すように、この実
施例の磁心部分21と22は直角2等辺三角形であり、コイ
ル10による磁化方向Mはその底辺に対してほぼ直角にな
る。図1(b) の例では磁心部分21と22の磁性薄膜の磁化
容易軸Meがこの磁化方向Mに合わされ、図1(c) の例で
は磁化容易軸Meが磁化方向Mに対して直角とされる。図
1(b) の例は小さなコイル電流でも磁心部分21や22に高
磁場が発生するので、比較的低周波領域の高インダクタ
ンス用に適し、図1(c) の例は磁性薄膜の磁化困難軸が
磁化方向Mになって磁心部分21や22内の発生磁場が低く
はなるが, その透磁率がかなり高周波領域までほぼ一定
になるので、高周波領域の比較的低インダクタンス用に
適する。なお、磁気誘導素子50のリアクタンス値につい
てはインダクタンスと周波数の積に比例するので両例間
に大差はない。
As shown in FIG. 1 (b) and FIG. 1 (c), the magnetic core portions 21 and 22 of this embodiment are right-angled isosceles triangles, and the direction of magnetization M by the coil 10 is substantially perpendicular to the bottom side. become. In the example of FIG. 1 (b), the easy magnetization axis Me of the magnetic thin films of the magnetic core portions 21 and 22 is aligned with this magnetization direction M. In the example of FIG. 1 (c), the easy magnetization axis Me is perpendicular to the magnetization direction M. To be done. In the example of Fig. 1 (b), a high magnetic field is generated in the magnetic core parts 21 and 22 even with a small coil current, so it is suitable for high inductance in a relatively low frequency region, and the example of Fig. 1 (c) is difficult to magnetize the magnetic thin film. Although the axis is in the magnetization direction M and the generated magnetic field in the magnetic core portions 21 and 22 is low, its magnetic permeability is substantially constant up to the high frequency region, and is therefore suitable for relatively low inductance in the high frequency region. Since the reactance value of the magnetic induction element 50 is proportional to the product of the inductance and the frequency, there is no great difference between the two examples.

【0024】このように、本発明では磁心20がスリット
Sdにより磁気異方性の方向が互いに異なる2個の磁心部
分群21と22に分割されるが、これら用の磁性薄膜の具体
的な成膜方法の例を説明する。まず、例えば磁心部分群
22の配設個所をポジのフォトレジストでマスクした状態
で磁性薄膜を全面に成膜した後に、フォトレジストをリ
ムーバ液で溶解するいわゆるリフトオフ法により磁心部
分群22を除去して磁心部分群21だけを残す。次に、磁心
部分群21をフォトレジストでそれよりやや広いめにマス
クした状態で磁性薄膜を全面成膜した後に、同様にリフ
トオフ法により磁心部分群21に重なった部分を除去して
磁心部分群22を残す。これにより、同一面上にスリット
Sdで隔てられた2個の磁心部分群21と22を成膜できる。
これらの磁心部分群21や22に磁気異方性をそれぞれ所望
方向に配向させるためには、その磁性薄膜を例えばスパ
ッタ法により成膜する際に静磁界を磁化容易軸Meとすべ
き方向に数十Oe 程度の強さで掛けておくことでよい。
As described above, in the present invention, the magnetic core 20 has the slit.
Sd divides the magnetic core into two magnetic core subgroups 21 and 22 having different magnetic anisotropy directions. An example of a specific method of forming a magnetic thin film for these magnetic core subgroups 21 and 22 will be described. First, for example, the magnetic core subgroup
After the magnetic thin film is formed on the entire surface in a state where 22 locations are masked with a positive photoresist, the magnetic core subgroup 22 is removed by removing the magnetic core subgroup 22 by a so-called lift-off method in which the photoresist is dissolved with a remover liquid, and only the magnetic core subgroup 21 is removed. Leave. Next, after forming the magnetic thin film on the entire surface in a state where the magnetic core subgroup 21 is masked with a photoresist so as to be slightly wider than that, a portion overlapping the magnetic core subgroup 21 is similarly removed by the lift-off method to remove the magnetic core subgroup. Leave 22 This allows slitting on the same plane
Two magnetic core subgroups 21 and 22 separated by Sd can be deposited.
In order to orient the magnetic anisotropy in each of the magnetic core subgroups 21 and 22 in a desired direction, when the magnetic thin film is formed by, for example, the sputtering method, the static magnetic field is set in the direction that should be the easy axis Me of magnetization. It should be applied with a strength of about 10 Oe.

【0025】また、上述のリフトオフ法を利用しない場
合は、磁心部分群21を通常のように磁性薄膜の全面成膜
とフォトエッチングにより形成した後に絶縁膜で覆い、
次に磁心部分群22を同様に形成して両磁心部分群21と22
を僅かにずれた2面に分けて配設した磁心20とする。数
MHz以上の高周波数用では渦電流損失を減少させるため
磁心部分群21や22を多層構成の磁性薄膜で構成するのが
有利であり、この場合は例えばCo系のアモルファスの磁
性材料と酸化シリコンを交互にそれぞれ 0.1μmと0.05
μm程度の膜厚にRFマグネトロンスパッタ法等により数
〜10層に積層するのがよい。いずれの場合も静磁場下で
磁性薄膜を成膜して磁化容易軸を所定方向に配向させる
のは同じである。
If the above-mentioned lift-off method is not used, the magnetic core subgroup 21 is formed on the entire surface of the magnetic thin film by the usual film formation and photoetching, and then covered with an insulating film.
Next, a magnetic core subgroup 22 is formed in the same manner, and both magnetic core subgroups 21 and 22 are formed.
Is a magnetic core 20 arranged on two surfaces which are slightly displaced from each other. For high frequencies of several MHz or more, it is advantageous to configure the magnetic core subgroups 21 and 22 with multilayer magnetic thin films in order to reduce eddy current loss. In this case, for example, Co-based amorphous magnetic material and silicon oxide are used. Alternating 0.1 μm and 0.05
It is preferable that a film having a thickness of about μm is laminated in several to 10 layers by the RF magnetron sputtering method or the like. In any case, it is the same to form a magnetic thin film under a static magnetic field and orient the easy axis of magnetization in a predetermined direction.

【0026】以上説明した図1の実施例からわかるよう
に、本発明では各磁心部分21や22の磁性薄膜の磁化容易
軸Meをコイル10による磁化方向Mに配向させることによ
り,磁心20内の発生磁界を強めて磁気誘導素子50の面積
あたりのインダクタンス値を従来より増加させ、あるい
は磁化容易軸Meを磁化方向Mに対し直角に配向させるこ
とにより, 磁心20の透磁率を高周波領域まで一定に保っ
てインダクタンス値やQ値がほとんど低下しない周波数
領域を従来より高周波側に拡大できる。また、磁心20を
磁化方向Mにほぼ沿った放射線状のスリットSdにより磁
心部分21や22に分割して磁化方向Mに直角な方向の幅を
縮小することにより, 渦電流損失を従来の数〜10分の1
に減少させることができる。さらには、コイル10の巻き
方向の各部相互間の分布浮遊容量の磁心20を介する結合
経路をスリットSdで分断することにより, コイル10の内
部浮遊容量を従来の半分程度以下に減少させて共振周波
数を高めながら磁気誘導素子40の適用可能な周波数範囲
を拡大できる。
As can be seen from the embodiment shown in FIG. 1 described above, in the present invention, the magnetic easy axis Me of the magnetic thin film of each magnetic core portion 21 or 22 is oriented in the magnetization direction M by the coil 10 so that By increasing the generated magnetic field to increase the inductance value per unit area of the magnetic induction element 50 or by orienting the easy axis of magnetization Me at right angles to the magnetization direction M, the magnetic permeability of the magnetic core 20 can be kept constant up to the high frequency region. The frequency range in which the inductance value and the Q value are hardly reduced can be expanded to the high frequency side as compared with the conventional case. Further, the magnetic core 20 is divided into magnetic core portions 21 and 22 by radial slits Sd substantially along the magnetizing direction M to reduce the width in the direction perpendicular to the magnetizing direction M, thereby reducing the eddy current loss from the conventional number to 1/10
Can be reduced to Furthermore, by dividing the coupling path of the distributed stray capacitance between each part in the winding direction of the coil 10 through the magnetic core 20 with the slit Sd, the internal stray capacitance of the coil 10 is reduced to about half or less of the conventional value and the resonance frequency is reduced. It is possible to increase the applicable frequency range of the magnetic induction element 40 while increasing the above.

【0027】次の図2の実施例ではコイルを二次元配置
した複数個の小形の部分コイルから構成する。図2(a)
および図2(b) はこの実施例の磁心20の正面図であり、
部分コイル10aを細線で示す。いずれの場合も部分コイ
ル10aは4個であるが接続の態様が異なる。これらの方
形の部分コイル10aは正方形状に配置され、それらを両
側から挟む込む各磁心20には部分コイル10ごとにその方
形に対して対角線状にスリットSdが設けられる。これに
より磁心20は図1の場合と同様に三角形の磁心部分21や
22に分割されるほか、隣接する2個の部分コイル10aに
亘って連続する正方形の磁心部分23や24に分割される。
In the next embodiment shown in FIG. 2, the coil is composed of a plurality of small partial coils arranged two-dimensionally. Figure 2 (a)
2 (b) is a front view of the magnetic core 20 of this embodiment,
The partial coil 10a is shown by a thin line. In any case, the number of partial coils 10a is four, but the mode of connection is different. These square partial coils 10a are arranged in a square shape, and the magnetic cores 20 sandwiching them from both sides are provided with slits Sd diagonally to each square for each partial coil 10. As a result, the magnetic core 20 has a triangular magnetic core portion 21 and
In addition to being divided into 22, the magnetic core is divided into square magnetic core portions 23 and 24 which are continuous over two adjacent partial coils 10a.

【0028】図2(a) の態様では複数個の部分コイル10
aをすべて直列に接続してインダクタンス値を増加させ
る。このため、例えば図のようにすべての部分コイル10
aの渦巻きの方向を揃え, かつ図では上下方向に隣接す
る2個の渦巻きの外側端部をコイル10の配設面上で相互
に接続して、内側端部から磁心20のスリットSdによる隙
間部分を介して接続用端子を導出するのがよい。図の例
では上下方向に並んだ2個の部分コイル10aの直列回路
の上端から導出した端子Tcが相互に接続され、各直列回
路の下端から外部接続用の端子TaとTbが導出される。
In the embodiment shown in FIG. 2A, a plurality of partial coils 10 are provided.
All of a are connected in series to increase the inductance value. Therefore, for example, all partial coils 10
The outer ends of the two spirals that are aligned in the vertical direction in the figure are aligned with each other, and the outer ends of the two adjacent spirals are connected to each other on the surface where the coil 10 is arranged. It is preferable to lead the connection terminal through the portion. In the illustrated example, the terminals Tc derived from the upper ends of the series circuits of the two partial coils 10a arranged in the vertical direction are connected to each other, and the external connection terminals Ta and Tb are derived from the lower ends of the series circuits.

【0029】図2(b) はインダクタンスやQ値の高周波
性能の向上に有利な態様であって、2個ずつの部分コイ
ル10aの直列回路を並列に接続する。このためには、例
えば直列接続する部分コイル10aの巻き方向を逆に,並
列接続する部分コイル10aの巻き方向を同じにして、図
のように巻き方向が逆な渦巻きの外側端部をコイルの配
設面上で相互接続した上で外部接続用の端子TaやTbを導
出し、巻き方向が同じ部分コイル10aの渦巻きの内側端
部から磁心20の隙間部分を介して端子TcやTdを導出して
相互接続するのがよい。図の例では端子Taは一対の磁心
20の相互間から側方に, 端子Tbは磁心20の中央窓Wcを介
しそれぞれ下方に導出される。この実施態様では、図2
(a) とは逆に磁心部分21〜24の磁性薄膜の磁化困難軸を
コイルによる磁化方向に配向させるのが有利である。図
2(a) と図2(b) のいずれの実施態様でもコイルが複数
個の小形の部分コイル10aから構成され、従って磁心20
が小パターンの磁心部分21〜24に分割されるので、図1
の場合よりも磁心20の渦流損失とコイルの内部浮遊容量
を一層減少させることができる。
FIG. 2 (b) shows an advantageous mode for improving the high frequency performance of the inductance and Q value, in which a series circuit of two partial coils 10a is connected in parallel. For this purpose, for example, the winding directions of the partial coils 10a connected in series are reversed, the winding directions of the partial coils 10a connected in parallel are made the same, and the outer ends of the spirals whose winding directions are opposite to each other as shown in FIG. The terminals Ta and Tb for external connection are derived after interconnecting on the arrangement surface, and the terminals Tc and Td are derived from the inner end of the spiral of the partial coil 10a having the same winding direction through the gap portion of the magnetic core 20. And then interconnect. In the illustrated example, the terminal Ta is a pair of magnetic cores.
The terminals Tb are led out downwardly through the central window Wc of the magnetic core 20 from the mutual side to the side. In this embodiment, FIG.
Contrary to (a), it is advantageous to orient the hard magnetization axes of the magnetic thin films of the magnetic core portions 21 to 24 in the magnetization direction of the coil. 2 (a) and 2 (b), the coil is composed of a plurality of small partial coils 10a and thus the magnetic core 20
1 is divided into small magnetic core portions 21 to 24.
It is possible to further reduce the eddy current loss of the magnetic core 20 and the internal stray capacitance of the coil, as compared with the above case.

【0030】図3に本発明の磁気誘導素子の変圧器41へ
の適用例を図1に対応する斜視図で示す。ふつうは巻数
が互いに異なる2個のコイル11と12は相互に 180度回転
したパターンで2層に配設されて一対の方形の磁心20に
より挟み込まれる。これらの相互間に配設される絶縁膜
は図では省かれている。磁心20は図1の実施例と同じ要
領で対角線状のスリットSdにより磁心部分21と22に分割
され、コイル11と12の渦巻きの外側端部から端子To1と
To2が側方に, 内側端部から端子Ti1とTi2が磁心20の
隙間部の窓Wを介してそれぞれ導出されている。
FIG. 3 is a perspective view corresponding to FIG. 1, showing an application example of the magnetic induction element of the present invention to the transformer 41. Usually, two coils 11 and 12 having different numbers of turns are arranged in two layers in a pattern of mutually rotating 180 degrees and sandwiched by a pair of rectangular magnetic cores 20. The insulating film disposed between these is omitted in the figure. The magnetic core 20 is divided into magnetic core portions 21 and 22 by a diagonal slit Sd in the same manner as the embodiment of FIG. 1, and the coils 11 and 12 are connected to the terminal To1 from the outer ends of the spirals.
To2 is led out laterally, and terminals Ti1 and Ti2 are led out from the inner end through the window W in the gap of the magnetic core 20, respectively.

【0031】図4に磁心20がさらに細かく磁心部分に分
割された実施例を示す。図4(a) は図1の実施例に, 図
4(b) と図4(c) は図2の実施例にそれぞれ対応し、図
1のコイル10や図2の部分コイル10aは図4では省略さ
れている。いずれの態様でも磁心20が対角線状のスリッ
トSdのほかに前述のコイルによる磁化方向Mに沿った十
字状のスリットScにより分割される。図示のように、こ
のスリットScによって図1と図2の磁心部分21と22が各
2個の磁心部分21dと22dに, 図4(b) および図4(c)
の実施態様ではさらに図2の磁心部分23と24が各2個の
磁心部分23dと24dにそれぞれ分割される。なお、図4
(b) および図4(c) の磁心20を分割するパターンは同じ
であるが窓Wの位置が若干異なり、後者の場合は図2
(b) の実施態様に対応して中央窓Wcを備える点が前者と
異なる。この図4の実施例では磁心部分を細分化するこ
とにより、磁心の渦流損失とコイルの内部浮遊容量を
図1や図2の実施例よりさらに減少させることができ
る。
FIG. 4 shows an embodiment in which the magnetic core 20 is finely divided into magnetic core portions. 4 (a) corresponds to the embodiment of FIG. 1, and FIGS. 4 (b) and 4 (c) correspond to the embodiment of FIG. 2, respectively. The coil 10 of FIG. 1 and the partial coil 10a of FIG. Is omitted in. In any of the embodiments, the magnetic core 20 is divided not only by the diagonal slits Sd but also by the cross-shaped slits Sc along the magnetization direction M by the above-mentioned coil. As shown in the figure, this slit Sc causes the magnetic core portions 21 and 22 of FIGS. 1 and 2 to be divided into two magnetic core portions 21d and 22d, respectively, as shown in FIGS. 4 (b) and 4 (c).
2 further divides the core portions 23 and 24 of FIG. 2 into two core portions 23d and 24d, respectively. Note that FIG.
The patterns for dividing the magnetic core 20 in (b) and FIG. 4 (c) are the same, but the position of the window W is slightly different.
It differs from the former in that a central window Wc is provided corresponding to the embodiment of (b). By subdividing the cores in the embodiment of FIG. 4, it can be further reduced than the embodiment of FIGS. 1 and 2 the internal stray capacitance of the eddy current loss and the coil of the magnetic core.

【0032】図5にコイルや部分コイルを長方形に形成
する実施例を示す。図5(a) の実施態様ではコイル10を
縦長な長方形に形成し、磁心20もこれに応じて長方形に
形成するとともに、長方形の各頂点を通る対角線状のス
リットSdと中央部を縦方向に通るスリットScにより、長
方形の短辺を底辺とする一対の三角形の磁心部分22と長
辺を底辺とする一対の台形の磁心部分25に分割する。
FIG. 5 shows an embodiment in which the coil and the partial coil are formed in a rectangular shape. In the embodiment shown in FIG. 5 (a), the coil 10 is formed in a vertically long rectangular shape, the magnetic core 20 is also formed in a rectangular shape accordingly, and a diagonal slit Sd passing through each vertex of the rectangle and a central portion are formed in the vertical direction. The slit Sc that passes through divides into a pair of triangular magnetic core portions 22 having the short sides as the base and a pair of trapezoidal magnetic core portions 25 having the long sides as the base.

【0033】次の図5(b) の実施態様では、長方形の部
分コイル10aを横方向に図の例では2個並べて配設し、
かつ磁心20をそれらを覆う方形に形成して図5(a) と同
様なスリットSdとScによりこれを分割する。これにより
磁心20は同様に三角形の磁心部分22および台形の磁心部
分25に分割されるほか、その中央部分では2個の部分コ
イル10aに亘って台形が連続した六角形状の磁心部分26
に分割される。なお、図示の例では2個の部分コイル10
は直列に接続され、両者の巻き方向は同じでスパイラル
の外側端子で相互接続されている。
In the next embodiment shown in FIG. 5 (b), two rectangular partial coils 10a are arranged side by side in the lateral direction,
Moreover, the magnetic core 20 is formed in a rectangular shape to cover them, and the slits Sd and Sc similar to those in FIG. As a result, the magnetic core 20 is similarly divided into a triangular magnetic core portion 22 and a trapezoidal magnetic core portion 25, and a hexagonal magnetic core portion 26 in which the trapezoid is continuous over the two partial coils 10a in the central portion.
Is divided into In the illustrated example, two partial coils 10
Are connected in series and have the same winding direction and are connected to each other by the outer terminals of the spiral.

【0034】図5(c) の実施態様は同図(b) とほぼ同じ
であるが、図5(b) のスリットScを十字状に設けて磁心
部分25と26をさらに各2個の磁心部分25dと26dに分割
する点が異なる。図5に示したこれらの実施態様のいず
れでも磁心20をスリットSdやScによって必要に応じた適
宜な大きさの磁心部分に分割して、磁心の渦流損失とコ
イルの内部浮遊容量を減少させることができる。
The embodiment of FIG. 5 (c) is almost the same as that of FIG. 5 (b), but the slits Sc of FIG. 5 (b) are provided in a cross shape so that two magnetic core portions 25 and 26 are further provided. The difference is that it is divided into parts 25d and 26d. In any of these embodiments shown in FIG. 5, the magnetic core 20 is divided by slits Sd and Sc into magnetic core portions of an appropriate size to reduce the eddy current loss of the magnetic core and the internal stray capacitance of the coil. You can

【0035】以上説明した本発明による磁気誘導素子で
は、例えばコイル用の薄膜導体には銅を3〜10μmの膜
厚に,磁心用の磁性薄膜にはCo系等の合金であるアモル
ファス磁性材料を1〜2μmの膜厚にそれぞれ成膜す
る。絶縁膜には酸化シリコンを1μm程度の膜厚に成膜
することでよいが、コイルの上側に配設する絶縁膜には
その下地に平坦化膜を用いてコイルの上面の凹部を充填
しておくのがよい。磁気誘導素子は半導体チップ上に搭
載ないし作り込むに適するごく薄形の面状素子であっ
て、これが数〜10mm角のサイズのリアクトルの場合は数
μH程度のインダクタンス値と10〜数十のQ値を賦与す
ることができ、設計によりもちろん異なるが数十kHz〜
10MHzの周波数領域で使用が可能である。その電流容量
は用途により設定されるが数百mAとするのがふつうであ
る。
In the magnetic induction element according to the present invention described above, for example, the thin film conductor for the coil is made of copper with a thickness of 3 to 10 μm, and the magnetic thin film for the magnetic core is made of an amorphous magnetic material such as an alloy of Co type. A film having a thickness of 1 to 2 μm is formed. The insulating film may be formed of silicon oxide with a film thickness of about 1 μm. However, the insulating film provided on the upper side of the coil is filled with the flattening film as the base to fill the concave portion on the upper surface of the coil. It's good to leave. The magnetic induction element is a very thin planar element that is suitable for being mounted on or built in a semiconductor chip. In the case of a reactor having a size of several to 10 mm square, an inductance value of about several μH and a Q of 10 to several tens of Q. It is possible to give a value, and it depends on the design, of course, several tens of kHz
It can be used in the frequency range of 10 MHz. The current capacity is set depending on the application, but it is usually several hundred mA.

【0036】[0036]

【発明の効果】以上のとおり本発明の磁気誘導素子で
は、渦巻き状に形成された薄膜導体からなる面状のコイ
ルと,磁気異方性をもつ磁性薄膜からなりコイルを両側
から挟み込む一対の面状の磁心とを相互間に絶縁膜を介
して順次積層し、磁心をコイルの渦巻きの内側から外側
に向かう放射線状のスリットで複数の磁心部分に分割
し、各磁心部分の磁性薄膜の磁化容易軸と磁化困難軸の
いずれかをコイルによる磁化方向に配向させることによ
り、次の効果が得られる。
As described above, in the magnetic induction device of the present invention, a planar coil made of a thin film conductor formed in a spiral shape and a pair of faces made of a magnetic thin film having magnetic anisotropy sandwiching the coil from both sides. Magnetic cores are sequentially laminated with an insulating film between them, and the magnetic cores are divided into multiple magnetic core parts by radial slits that go from the inside to the outside of the spiral of the coil, and the magnetic thin film in each magnetic core part is easily magnetized. The following effects can be obtained by orienting either the axis or the hard axis of magnetization in the direction of magnetization by the coil.

【0037】(a) 各磁心部分の磁性薄膜の磁化容易軸を
コイルによる磁化方向に配向させた場合は磁心内の発生
磁界を増大させて磁気誘導素子の単位面積あたりのイン
ダクタンス値を増加させ、磁化困難軸を磁化方向に配向
させた場合は磁心の透磁率を高周波領域までほぼ一定に
保って磁気誘導素子の使用可能周波数を高周波領域の方
に拡大でき、いずれの場合も磁性薄膜用の高磁性材料が
もつ磁気異方性を有効利用しながら磁気誘導素子の性能
を用途に応じて高めることができる。
(A) When the easy axis of magnetization of the magnetic thin film of each magnetic core portion is oriented in the direction of magnetization by the coil, the magnetic field generated in the magnetic core is increased to increase the inductance value per unit area of the magnetic induction element, When the hard axis is oriented in the magnetization direction, the magnetic permeability of the magnetic core can be kept almost constant up to the high frequency range, and the usable frequency of the magnetic induction element can be expanded toward the high frequency range. The performance of the magnetic induction element can be enhanced according to the application while effectively utilizing the magnetic anisotropy of the magnetic material.

【0038】(b) 磁心が渦巻き状のコイルから受ける磁
化方向にほぼ合わせて、放射線状のスリットにより磁心
を複数の磁心部分に分割して各磁心部分の磁化方向と直
角な方向の有効幅を許容最大限度以下に適宜に制限して
磁心の渦流損失を減少させることができるので、とく
に高周波領域で使用される磁気誘導素子の磁心内の渦
流損失を従来の数分の1以下に減少させることにより高
Q値を保証できる周波数を従来よりも高周波側に広げる
ことができる。
(B) The magnetic core is divided into a plurality of magnetic core portions by radial slits so that the effective width of each magnetic core portion in a direction perpendicular to the magnetization direction is substantially aligned with the magnetization direction received from the spiral coil. since then appropriately limited to less than the allowable maximum limit can reduce eddy current loss of the magnetic core, especially conventional number of eddy current <br/> current losses in the magnetic core of the magnetic induction device used in a high frequency range By reducing the frequency to less than or equal to one-half, the frequency that can guarantee a high Q value can be expanded to a higher frequency side than in the conventional case.

【0039】(c) 磁心の分割用のスリットによってコイ
ルの巻き方向のコイル部分相互間の磁心を介する分布浮
遊容量の結合路をも効果的に分断することにより、磁気
誘導素子の内部浮遊容量を従来の半分程度以下に減少さ
せてその共振周波数を高め、適用可能な周波数領域の上
限を高めることができる。かかる特長をもつ本発明によ
る磁気誘導素子は小形でかつ薄形の薄膜積層形のリアク
トルや変圧器として種々の電子装置への組み込み用や半
導体チップ上への搭載用に適し、とくにスイッチング電
源等の小容量の電子装置の小形化とコスト低減に顕著な
貢献をなし得るものである。
(C) By effectively dividing the coupling path of the distributed stray capacitance between the coil portions in the winding direction of the coil through the magnetic core by the slit for dividing the magnetic core, the internal stray capacitance of the magnetic induction element is reduced. It is possible to increase the resonance frequency by reducing it to about half or less of the conventional value and increase the upper limit of the applicable frequency range. The magnetic induction element according to the present invention having such features is suitable for being incorporated into various electronic devices as a small and thin thin film laminated reactor or transformer, or mounted on a semiconductor chip. This can make a significant contribution to downsizing and cost reduction of small-capacity electronic devices.

【0040】なお、コイルを二次元配置された複数の小
形の部分コイルから構成して磁心を部分コイルごとに放
射線状に設けたスリットにより磁心部分に分割する本発
明の実施態様は、磁心の渦流損失とコイルの内部浮遊
容量をさらに減少させる効果があり、この際に複数の部
分コイルをすべて直列接続する態様は比較的低周波用の
磁気誘導素子のインダクタンスを増加させる上で有利
で、部分コイルを直並列に接続する態様はとくに高周波
用の磁気誘導素子に適する。
The embodiment of the present invention in which the coil is composed of a plurality of small partial coils arranged two-dimensionally and the magnetic core is divided into magnetic core parts by slits provided in a radial pattern for each partial coil is has the effect of reducing further the internal stray capacitance of the current loss and a coil, aspects all connected in series a plurality of partial coils when this is advantageous in increasing the inductance of the magnetic induction unit for relatively low frequency, The mode in which the partial coils are connected in series and parallel is particularly suitable for a magnetic induction element for high frequencies.

【0041】また、コイルの渦巻きの内側端部に対する
接続を磁心部分相互間のスリットによる隙間部分を介し
て行なう実施態様は、従来のようなコイルとその端子導
出用接続線との交差部による磁心内部の磁場分布の乱れ
を防止して、磁気誘導素子の性能を高める上で非常に有
利である。磁心をその面内で磁化容易軸ないしは磁化困
難軸が異なる2個の磁心部分群に分割する際にリフトオ
フ法を利用して両磁心部分群を1群ずつ順次に成膜かつ
形成する実施態様は、多数の磁心部分から構成される磁
心の成膜形成工程を極力簡易化する上で有利である。さ
らに、磁心用の磁性薄膜をごく薄い膜厚の磁性材料膜と
絶縁膜の多層構成とする実施態様は、磁心の渦流損失
を大幅に減少させて磁気誘導素子の適用可能範囲を高周
波領域の方にさらに拡大する上でとくに有利である。
Further, in the embodiment in which the coil is connected to the inner end of the spiral through the gap portion formed by the slits between the magnetic core portions, the magnetic core formed by the intersection of the coil and the terminal lead-out connecting wire as in the prior art. It is very advantageous in preventing the disturbance of the internal magnetic field distribution and improving the performance of the magnetic induction element. When the magnetic core is divided into two magnetic core subgroups having different axes of easy magnetization or hard magnetization in the plane, a lift-off method is used to sequentially form and form both magnetic core subgroups one by one. This is advantageous in simplifying the film forming process of the magnetic core composed of a large number of magnetic core parts as much as possible. Furthermore, embodiments of the magnetic thin film of the magnetic core for a very thin film thickness of the magnetic material film and the multilayer structure of the insulating film, a high-frequency region the applicable range of the magnetic induction significantly reduces the eddy current loss of the magnetic core It is especially advantageous for further expansion to

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気誘導素子の基本的な実施例を示
し、同図(a) はその展開斜視図、同図(b) は磁心部分の
磁化容易軸が磁化方向と平行な磁心の上面図、同図(c)
は磁心部分の磁化容易軸が磁化方向と直角な磁心の上面
図である。
FIG. 1 shows a basic embodiment of a magnetic induction element according to the present invention. FIG. 1 (a) is a developed perspective view thereof, and FIG. 1 (b) shows a magnetic core whose easy axis of magnetization is parallel to the magnetization direction. Top view, same figure (c)
FIG. 4 is a top view of a magnetic core in which the easy axis of magnetization of the magnetic core portion is perpendicular to the magnetization direction.

【図2】コイルを複数個の部分コイルに分ける本発明の
実施例を示し、同図(a) は部分コイルが直列接続される
磁気誘導素子の正面図、同図(b) は部分コイルが直並列
接続される磁気誘導素子の正面図である。
FIG. 2 shows an embodiment of the present invention in which a coil is divided into a plurality of partial coils. FIG. 2 (a) is a front view of a magnetic induction element in which partial coils are connected in series, and FIG. It is a front view of the magnetic induction element connected in series and parallel.

【図3】本発明の磁気誘導素子を変圧器に適用した実施
例を示す展開斜視図である。
FIG. 3 is a developed perspective view showing an embodiment in which the magnetic induction element of the present invention is applied to a transformer.

【図4】磁心部分を細分化する本発明の実施例を示し、
同図(a) は単一コイルの場合の磁心の上面図、同図(b)
はコイルを複数個の直列接続の部分コイルから構成する
場合の磁心の上面図、同図(c) はコイルを複数個の直並
列接続の部分コイルから構成する場合の磁心の上面図で
ある。
FIG. 4 shows an embodiment of the present invention for subdividing a magnetic core portion,
The figure (a) is a top view of the magnetic core in the case of a single coil, the figure (b)
FIG. 3A is a top view of a magnetic core when the coil is composed of a plurality of partial coils connected in series, and FIG. 6C is a top view of a magnetic core when the coil is composed of a plurality of partial coils connected in series / parallel.

【図5】コイルを長方形状に形成する本発明の実施例を
示し、同図(a) は単一コイルの場合の磁気誘導素子の正
面図、同図(b) はコイルを2個の直列接続の部分コイル
から構成する場合の磁気誘導素子の正面図、同図(c) は
磁心部分が細分化される場合の磁気誘導素子の正面図で
ある。
5A and 5B show an embodiment of the present invention in which a coil is formed in a rectangular shape. FIG. 5A is a front view of a magnetic induction element in the case of a single coil, and FIG. 5B is a series of two coils. FIG. 3C is a front view of the magnetic induction element in the case of being composed of connected partial coils, and FIG. 6C is a front view of the magnetic induction element in the case where the magnetic core portion is subdivided.

【図6】従来の磁気誘導素子の代表例を示す展開斜視図
である。
FIG. 6 is a developed perspective view showing a typical example of a conventional magnetic induction element.

【図7】従来技術の問題点を説明するため図6の磁気誘
導素子における磁心がもつ磁気異方性とコイルによる磁
化方向との関連性を示す磁心の上面図である。
7 is a top view of the magnetic core showing the relationship between the magnetic anisotropy of the magnetic core in the magnetic induction element of FIG. 6 and the magnetization direction of the coil in order to explain the problems of the prior art.

【図8】従来の問題点を解決するためにコイルを細長く
形成した従来の磁気誘導素子の上面図である。
FIG. 8 is a top view of a conventional magnetic induction element in which a coil is formed elongated in order to solve the conventional problems.

【図9】従来の磁心部分が細分化される場合の磁気誘導
素子の上面図である。
FIG. 9 is a top view of a magnetic induction element when a conventional magnetic core portion is subdivided.

【符号の説明】[Explanation of symbols]

10 コイル 10a 部分コイル 11 磁気誘導素子が変圧器の場合の一次コイル 12 磁気誘導素子が変圧器の場合の二次コイル 20 磁心 21,22 三角形状の磁心部分 21d,22d さらに分割された磁心部分 23,24 正方形状の磁心部分 23d,24d さらに分割された磁心部分 25 台形状の磁心部分 25d さらに分割された台形状の磁心部分 26 六角形状の磁心部分 26d さらに分割された六角形状の磁心部分 30 絶縁膜 31 絶縁膜の中央開口 32 絶縁膜の窓 40 磁気誘導素子ないしはリアクトル 41 磁気誘導素子としての変圧器 M コイルによる磁化方向 Me 磁化容易軸 Sc 十字状のスリット Sd 対角線状のスリット W 磁心部分相互間の隙間部の窓 Wc 磁心の中央窓 10 coil 10a partial coil 11 primary coil when magnetic induction element is a transformer 12 secondary coil when magnetic induction element is a transformer 20 magnetic core 21,22 triangular magnetic core portion 21d, 22d further divided magnetic core portion 23 , 24 Square magnetic core part 23d, 24d Further divided magnetic core part 25 Trapezoidal magnetic core part 25d Further divided trapezoidal magnetic core part 26 Hexagonal magnetic core part 26d Further divided hexagonal magnetic core part 30 Insulation Film 31 Central opening of insulating film 32 Window of insulating film 40 Magnetic induction element or reactor 41 Transformer as magnetic induction element Magnetization direction by M coil Easy magnetization axis Sc Cross slit Sd Diagonal slit W Between core parts The window of the gap Wc The center window of the magnetic core

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】渦巻き状に形成された薄膜導体からなる面
状のコイルと,磁気異方性をもつ磁性薄膜からなりコイ
ルを両側から挟み込む一対の面状の磁心とを相互間に絶
縁膜を介して積層してなり、磁心をコイルの渦巻きの内
側から外側に向かう放射線状のスリットにより複数の磁
心部分に分割し、各磁心部分について磁性薄膜の磁化容
易軸と磁化困難軸のいずれかをコイルによる磁化方向に
揃えて配向させるようにしたことを特徴とする薄膜積層
形磁気誘導素子。
1. An insulating film is provided between a planar coil made of a thin film conductor formed in a spiral shape and a pair of planar magnetic cores made of a magnetic thin film having magnetic anisotropy and sandwiching the coil from both sides. The magnetic core is divided into a plurality of magnetic core portions by radial slits extending from the inside to the outside of the spiral of the coil, and for each magnetic core portion, either the easy axis or the hard axis of the magnetic thin film is coiled. A thin-film laminated magnetic induction element characterized in that it is oriented in the same direction as the magnetization direction.
【請求項2】請求項1に記載の素子において、磁心が方
形に形成され、スリットがこの方形に対して対角線状に
設けられたことを特徴とする薄膜積層形磁気誘導素子。
2. The thin-film laminated magnetic induction element according to claim 1, wherein the magnetic core is formed in a square shape and the slits are provided in a diagonal line with respect to the square shape.
【請求項3】請求項2に記載の素子において、各磁心部
分を分割するようにコイルによる磁化方向に平行なスリ
ットをさらに設けるようにしたことを特徴とする薄膜積
層形磁気誘導素子。
3. The thin-film laminated magnetic induction element according to claim 2, further comprising slits parallel to the magnetization direction of the coil so as to divide each magnetic core portion.
【請求項4】請求項1に記載の素子において、コイルお
よび磁心が長方形に形成され、磁心が長方形の頂点を通
る対角線状のスリットと長方形の長手方向に延びるスリ
ットにより長方形の長辺と短辺をそれぞれ底辺とする各
一対の台形と三角形の磁心部分に分割されることを特徴
とする薄膜積層形磁気誘導素子。
4. The device according to claim 1, wherein the coil and the magnetic core are formed in a rectangular shape, and the magnetic core has a long side and a short side of the rectangle formed by diagonal slits passing through the vertices of the rectangle and slits extending in the longitudinal direction of the rectangle. A thin film laminated magnetic induction element characterized by being divided into a pair of trapezoids each having a base as a base and a triangular magnetic core portion.
【請求項5】請求項1に記載の素子において、コイルの
渦巻きの内側端部に対する接続を磁心部分の相互間のス
リットによる隙間部分を介して行なうようにしたことを
特徴とする薄膜積層形磁気誘導素子。
5. The thin-film laminated magnetic device according to claim 1, wherein the coil is connected to the inner end of the spiral through a gap portion formed by slits between the magnetic core portions. Inductive element.
【請求項6】請求項1に記載の素子において、複数個の
渦巻き状のコイルを二次元配置して方形に形成された磁
性薄膜からなる一対の磁心によって両側から挟み込み、
磁心をコイルごとに放射線状に設けたスリットにより互
いに隣接する2個のコイルに亘って連続する磁心部分に
分割するようにしたことを特徴とする薄膜積層形磁気誘
導素子。
6. The device according to claim 1, wherein a plurality of spiral coils are two-dimensionally arranged and sandwiched from both sides by a pair of magnetic cores formed of a rectangular magnetic thin film,
A thin film laminated magnetic induction element, wherein a magnetic core is divided into continuous magnetic core portions over two coils adjacent to each other by slits provided in a radial pattern for each coil.
【請求項7】請求項6に記載の素子において、複数個の
コイルを隣接したコイルに生じる磁束の方向が互いに逆
方向となるように、渦巻き状コイルの巻き方をかえて配
列し、すべてのコイルを直列接続するようにしたことを
特徴とする薄膜積層形磁気誘導素子。
7. The element according to claim 6, wherein a plurality of coils are arranged so that the directions of magnetic flux generated in adjacent coils are opposite to each other, and the spiral coils are arranged in different winding directions. A thin film laminated magnetic induction element characterized in that coils are connected in series.
【請求項8】請求項6に記載の素子において、複数個の
コイルの直列回路を隣接したコイルに生じる磁束の方向
が互いに逆方向となるように、直列コイルの方向をかえ
て並列接続するようにしたことを特徴とする薄膜積層形
磁気誘導素子。
8. The device according to claim 6, wherein a series circuit of a plurality of coils is connected in parallel by changing the directions of the series coils so that the directions of magnetic flux generated in adjacent coils are opposite to each other. A thin-film laminated magnetic induction device characterized by the above.
【請求項9】請求項1に記載の素子において、磁心が磁
化容易軸ないし磁化困難軸が異なる2個の磁心部分群に
同一面内でスリットにより分割されることを特徴とする
薄膜積層形磁気誘導素子。
9. The thin-film laminated magnetic device according to claim 1, wherein the magnetic core is divided into two magnetic core subgroups having different easy axis or hard axis by a slit in the same plane. Inductive element.
【請求項10】請求項9に記載の素子において、一方の
磁心部分群を配設すべき個所をマスクした状態で磁性薄
膜を成膜してリフトオフ法により他方の磁心部分群を残
した後に、他方の磁心部分群をマスクした状態で磁性薄
膜を成膜してリフトオフ法により一方の磁心部分群を残
すことにより両磁心部分群を成膜するようにしたことを
特徴とする薄膜積層形磁気誘導素子。
10. The device according to claim 9, wherein a magnetic thin film is formed in a state where one magnetic core subgroup is to be disposed in a masked state, and the other magnetic core subgroup is left by a lift-off method. A thin film laminated magnetic induction characterized in that a magnetic thin film is formed with the other magnetic core subgroup masked, and one magnetic core subgroup is left by a lift-off method to form both magnetic core subgroups. element.
【請求項11】請求項1に記載の素子において、磁気誘
導素子が単一の層に成膜された薄膜導体から形成された
コイルを備えるリアクトルであることを特徴とする薄膜
積層形磁気誘導素子。
11. The thin-film laminated magnetic induction element according to claim 1, wherein the magnetic induction element is a reactor including a coil formed of a thin-film conductor formed in a single layer. .
【請求項12】請求項1に記載の素子において、磁気誘
導素子が複数の層に絶縁膜を介して積層成膜された薄膜
導体からそれぞれ形成されたコイルを備える変圧器であ
ることを特徴とする薄膜積層形磁気誘導素子。
12. The element according to claim 1, wherein the magnetic induction element is a transformer including coils each formed of a thin film conductor laminated in a plurality of layers with insulating films interposed therebetween. Thin film laminated magnetic induction element.
JP27165095A 1994-10-21 1995-10-20 Thin-film laminated magnetic induction element Pending JPH08172015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27165095A JPH08172015A (en) 1994-10-21 1995-10-20 Thin-film laminated magnetic induction element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-255929 1994-10-21
JP25592994 1994-10-21
JP27165095A JPH08172015A (en) 1994-10-21 1995-10-20 Thin-film laminated magnetic induction element

Publications (1)

Publication Number Publication Date
JPH08172015A true JPH08172015A (en) 1996-07-02

Family

ID=26542476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27165095A Pending JPH08172015A (en) 1994-10-21 1995-10-20 Thin-film laminated magnetic induction element

Country Status (1)

Country Link
JP (1) JPH08172015A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7791836B2 (en) 2006-03-31 2010-09-07 Tdk Corporation Thin film magnetic device having strip-shaped magnetic films with their magnetization easy axes arranged orthogonal to a thin film coil and method of manufacturing the same
US7973630B2 (en) 2007-01-31 2011-07-05 Tdk Corporation Thin film magnetic device and method of manufacturing the same
JP2011193093A (en) * 2010-03-12 2011-09-29 Institute Of National Colleges Of Technology Japan Transmission line device using magnetic thin film
US9159778B2 (en) 2014-03-07 2015-10-13 International Business Machines Corporation Silicon process compatible trench magnetic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7791836B2 (en) 2006-03-31 2010-09-07 Tdk Corporation Thin film magnetic device having strip-shaped magnetic films with their magnetization easy axes arranged orthogonal to a thin film coil and method of manufacturing the same
US7973630B2 (en) 2007-01-31 2011-07-05 Tdk Corporation Thin film magnetic device and method of manufacturing the same
JP2011193093A (en) * 2010-03-12 2011-09-29 Institute Of National Colleges Of Technology Japan Transmission line device using magnetic thin film
US9159778B2 (en) 2014-03-07 2015-10-13 International Business Machines Corporation Silicon process compatible trench magnetic device
US9406740B2 (en) 2014-03-07 2016-08-02 International Business Machines Corporation Silicon process compatible trench magnetic device

Similar Documents

Publication Publication Date Title
US6404317B1 (en) Planar magnetic element
JP3441082B2 (en) Planar magnetic element
JP3141562B2 (en) Thin film transformer device
JPH09134820A (en) Planar magnetic device
JP2002158112A (en) Fine element of type such as minute inductor and minute transformer
US6573818B1 (en) Planar magnetic frame inductors having open cores
JP3359099B2 (en) Thin film inductor and thin film transformer
JPH1140438A (en) Planar magnetic element
JP3540733B2 (en) Planar magnetic element and semiconductor device using the same
JP4706927B2 (en) Thin film device
JP2001267155A (en) Planar magnetic element
JPH08172015A (en) Thin-film laminated magnetic induction element
JPH06124843A (en) High frequency use thin film transformer
US9831026B2 (en) High efficiency on-chip 3D transformer structure
JP3382215B2 (en) Planar magnetic element, method of manufacturing the same, and semiconductor device having flat magnetic element
JP2003257739A (en) High-frequency device
JP2001319813A (en) Inductive element
JP4736902B2 (en) Thin film device
US6529110B2 (en) Microcomponent of the microinductor or microtransformer type
JP3620623B2 (en) Planar magnetic element
Shirakawa et al. Thin film inductor with multilayer magnetic core
JP2000269035A (en) Planar magnetic element
JP3033262B2 (en) Planar inductance components
JP2002093624A (en) Minute element of type such as minute inductor, and minute transformer
JP2522612B2 (en) Thin film inductance element