JPH08170674A - Energy absorber provided with local reinforcing jig - Google Patents

Energy absorber provided with local reinforcing jig

Info

Publication number
JPH08170674A
JPH08170674A JP6333608A JP33360894A JPH08170674A JP H08170674 A JPH08170674 A JP H08170674A JP 6333608 A JP6333608 A JP 6333608A JP 33360894 A JP33360894 A JP 33360894A JP H08170674 A JPH08170674 A JP H08170674A
Authority
JP
Japan
Prior art keywords
reinforcing jig
frp cylinder
energy
jig
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6333608A
Other languages
Japanese (ja)
Other versions
JP3528290B2 (en
Inventor
Mine Son
峰 孫
Masayuki Munemura
昌幸 宗村
Yoshifusa Narasaki
良房 楢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP33360894A priority Critical patent/JP3528290B2/en
Publication of JPH08170674A publication Critical patent/JPH08170674A/en
Application granted granted Critical
Publication of JP3528290B2 publication Critical patent/JP3528290B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To improve energy absorbing efficiency by increasing an average load without so changing a maximum load in collision, while an energy absorbing amount in collision is increased by stably collapsing a circular pipe with bucking destruction prevented. CONSTITUTION: An internal reinforcing jig 1 and/or an external reinforcing jig 2, fitted by suitable pressing force into an inner hole 4 and/or a periphery 5 of an FRP cylinder 3, are provided. Thus by preventing hollowed deformation and lengthwise crack of the cylinder when applied a collision load to act, deformation of a collapsing load is generated. In the vicinity of an end part in a collapse starting side of the FRP cylinder 3, by adjusting dimension, structure and a mounting position of the internal reinforcing jig and/or the external reinforcing jig set up in the inner hole and/or the periphery, a limit angle is congtrolled, and diagonally colliding energy can be stably absorbed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、車両等の衝撃力を受け
る部位に配設されるエネルギー吸収体に係り、特に座屈
破壊モードの肉厚直径比を有する中空円筒体であっても
圧潰モードによるエネルギー吸収が出来る局部補強治具
を備えるエネルギー吸収体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energy absorber arranged at a portion of a vehicle or the like which receives an impact force, and in particular, even if it is a hollow cylinder having a wall thickness / diameter ratio in a buckling failure mode, it is crushed. The present invention relates to an energy absorber including a local reinforcing jig capable of absorbing energy depending on modes.

【0002】[0002]

【従来の技術】例えば、自動車等の車両においては衝突
時における衝突エネルギーを吸収するためのエネルギー
吸収体が設けられている。このエネルギー吸収体は図2
8に示すように先端にテーパ部10を有する中空円筒体
からなり、主に繊維強化複合材料から形成されている。
以下、このエネルギー吸収体をFRP円筒3という。
2. Description of the Related Art For example, a vehicle such as an automobile is provided with an energy absorber for absorbing collision energy at the time of collision. This energy absorber is
As shown in FIG. 8, it is composed of a hollow cylindrical body having a tapered portion 10 at its tip and is mainly composed of a fiber reinforced composite material.
Hereinafter, this energy absorber will be referred to as FRP cylinder 3.

【0003】図29に示すように、前記のFRP円筒3
に衝突等により荷重11が作用すると、図示のような破
片6を伴う圧縮破壊(以下、圧潰という)が生じ、多く
のエネルギーを吸収することが出来る。図30は圧潰に
おけるエネルギー吸収を示す線図であり、例えば「En
ergy Absorption in Compos
ite Tubes,J.Comp.Mat.Vol.
16,(Nov.1982),P521」に示されてい
る。すなわち、図30において、横軸に変位をとり、縦
軸に荷重をとるとエネルギー吸収量Eは図示のように当
初急激に立上り以後なだらかに変動する曲線によって囲
まれる面積で表わされる。
As shown in FIG. 29, the FRP cylinder 3 described above is used.
When a load 11 is applied to the slab due to a collision or the like, a compression fracture (hereinafter referred to as a crush) accompanied by the fragment 6 as shown in the figure occurs, and a large amount of energy can be absorbed. FIG. 30 is a diagram showing energy absorption in crushing. For example, “En
ergy Absorption in Compos
ite Tubes, J.M. Comp. Mat. Vol.
16, (Nov. 1982), P521 ". That is, in FIG. 30, when the horizontal axis is the displacement and the vertical axis is the load, the energy absorption amount E is represented by the area surrounded by a curve that initially sharply rises and then gradually changes.

【0004】一方、エネルギー吸収体に関する公知技術
として特開平5−118370号公報に開示するものが
ある。このエネルギー吸収構造体は軸線に対し0度乃至
45度傾斜した繊維を有する繊維補強熱可塑性樹脂中空
体からなり、その両方又は片方の先端部が斜めに面取り
されているものである。かかるものにより、衝突時にお
ける衝突エネルギー又は圧縮エネルギーを十分に吸収す
るようにしている。
On the other hand, as a known technique regarding the energy absorber, there is one disclosed in Japanese Patent Laid-Open No. 5-118370. This energy absorbing structure is composed of a fiber-reinforced thermoplastic resin hollow body having fibers inclined at an angle of 0 to 45 degrees with respect to the axis, and both or one of the tips is chamfered obliquely. With this, the collision energy or the compression energy at the time of collision is sufficiently absorbed.

【0005】[0005]

【発明が解決しようとする課題】図31に示すように、
横軸に2t/D(tは肉厚,Dは外径)をとり、縦軸に
単位重量当りのエネルギー吸収量の比エネルギー吸収量
[KJ/kg]をとると、図示のように2t/Dの限界
寸法よりも小さい2t/DのFRP円筒3では圧潰モー
ドの替りに座屈破壊モードとなり、エネルギー吸収量は
極めて小さい値となりエネルギー吸収体として機能しな
い。すなわち、図32に示すように、座屈破壊モードの
場合にはFRP円筒3に荷重が加わると凹み変形12が
生じて円筒の形が崩れると共に、図33に示すように大
きな縦方向の縦クラック13が発生して全体が座屈して
しまう。しかしながら、FRP円筒3の軽量化のために
は2t/Dの小さいものを使用する必要がある。
[Problems to be Solved by the Invention] As shown in FIG.
If the horizontal axis is 2t / D (t is the wall thickness, D is the outer diameter) and the vertical axis is the specific energy absorption amount [KJ / kg] of the energy absorption amount per unit weight, as shown in the figure, In the 2 t / D FRP cylinder 3 smaller than the critical dimension of D, the buckling failure mode is set instead of the crushing mode, and the energy absorption amount becomes an extremely small value and does not function as an energy absorber. That is, as shown in FIG. 32, in the buckling failure mode, when a load is applied to the FRP cylinder 3, dent deformation 12 occurs and the shape of the cylinder collapses, and as shown in FIG. 33, large vertical cracks in the vertical direction occur. 13 occurs and the whole buckles. However, in order to reduce the weight of the FRP cylinder 3, it is necessary to use one having a small 2t / D.

【0006】一方、図34に示すような荷重−変位線図
において、FRP円筒3に加わる最大荷重をPmaxと
し平均荷重をPmeanとすると、エネルギー吸収効率
はPmean/Pmaxで表示される。後に詳説する
が、従来のFRP円筒3の場合には、このエネルギー吸
収効率は70[%]前後の低値を示している。この値を
高くしエネルギー吸収効率を上げるには平均荷重Pme
anの値を上げることが必要になる。
On the other hand, in the load-displacement diagram shown in FIG. 34, if the maximum load applied to the FRP cylinder 3 is Pmax and the average load is Pmean, the energy absorption efficiency is displayed as Pmean / Pmax. As will be described later in detail, in the case of the conventional FRP cylinder 3, this energy absorption efficiency shows a low value of around 70 [%]. To increase this value and increase the energy absorption efficiency, the average load Pme
It is necessary to increase the value of an.

【0007】更に、近年、車の斜め衝突も多発してお
り、斜め衝突時のエネルギー吸収も問題となる。一般
に、エネルギー吸収体円筒が図35に示すように円筒中
心軸から角度αの斜め方向からの衝突力Pにより圧縮さ
れるとき、αが或る角度(以下、限界角度という)以上
になると、破壊モードが変わり、円筒は圧潰されず、図
35に示すように圧縮部に凹み12aが生ずるとともに
その近傍に膨らみ12bが生じ、円筒の形が崩れると共
に図36に示すように大きな縦方向の縦クラック13が
生じて破壊してしまい、エネルギーを吸収出来なくな
る。そのため、FRP円筒を斜め方向衝突にも使用し得
るように斜めの角度のエネルギー吸収能力を上げるため
には、FRP円筒の限界角度、延いては、破壊モードを
制御する必要がある。
Further, in recent years, oblique collisions of vehicles have frequently occurred, and energy absorption during oblique collisions is also a problem. Generally, when the energy absorber cylinder is compressed by a collision force P from an oblique direction of an angle α from the center axis of the cylinder as shown in FIG. 35, if α exceeds a certain angle (hereinafter, referred to as a limit angle), the fracture occurs. The mode is changed and the cylinder is not crushed. As shown in FIG. 35, a depression 12a is formed in the compression portion and a bulge 12b is formed in the vicinity thereof, the shape of the cylinder is broken, and a large vertical crack in the vertical direction is generated as shown in FIG. 13 is generated and destroyed and cannot absorb energy. Therefore, in order to increase the energy absorption capability at an oblique angle so that the FRP cylinder can also be used in an oblique collision, it is necessary to control the limit angle of the FRP cylinder, and thus the destruction mode.

【0008】前記の特開平5−118370号公報に示
すエネルギー吸収構造体では一般的な従来のFRP円筒
3に較べてエネルギー吸収量は高い結果が示されてい
る。しかし、この公報には前記の2t/Dの値に関連し
たリサーチはなく、当該技術の場合には2t/Dの値に
よっては座屈破壊モードとなる問題点がある。更に、こ
の公報にはエネルギー吸収効率及び斜め衝突等に関する
リサーチは全然ない。
The energy absorption structure shown in the above-mentioned Japanese Patent Laid-Open No. 5-118370 shows that the energy absorption amount is higher than that of the general conventional FRP cylinder 3. However, there is no research related to the above-mentioned value of 2t / D in this publication, and there is a problem that the buckling failure mode is caused depending on the value of 2t / D in the case of this technique. Furthermore, there is no research in this publication on energy absorption efficiency and diagonal collisions.

【0009】本発明は、以上の事情に鑑みて創案された
もので、FRP円筒を安定的に圧潰させてエネルギー吸
収量を増加させる局部補強治具を備えるエネルギー吸収
体を提供することを目的とすると共に、衝突時の最大荷
重を変えないで変形時の平均荷重を増加させてエネルギ
ー吸収効率を向上する局部補強治具を備えるエネルギー
吸収体を提供し、更には斜め衝突時においてもFRP円
筒を安定的に圧潰させてエネルギー吸収量を増加させる
局部補強治具を備えるエネルギー吸収体を提供すること
を目的とする。
The present invention was devised in view of the above circumstances, and an object thereof is to provide an energy absorber provided with a local reinforcing jig for stably crushing an FRP cylinder to increase the amount of energy absorption. In addition, an energy absorber provided with a local reinforcing jig that increases the average load at the time of deformation without changing the maximum load at the time of collision and improves the energy absorption efficiency is provided. An object of the present invention is to provide an energy absorber provided with a local reinforcing jig that stably crushes and increases the amount of energy absorption.

【0010】[0010]

【課題を解決するための手段】本発明は、上記の目的を
達成するために、衝突時のエネルギーを吸収する中空円
筒状のエネルギー吸収体であって、その内孔及び/又は
外周に適宜の押圧力で嵌まり込む内部補強治具及び/又
は外部補強治具を設けてなる局部補強治具を備えるエネ
ルギー吸収体を構成するものである。また、前記内部補
強治具及び/又は外部補強治具を前記エネルギー吸収体
の軸線方向に沿って複数個配設したり、前記内部補強治
具及び/又は外部補強治具を前記エネルギー吸収体の圧
潰開始側の端部近傍の内孔及び/又は外周に配設した
り、前記内部補強治具及び/又は外部補強治具の寸法,
構造,及び配設位置を斜め衝突時に圧潰を生ずる限界角
度に関係付けて定めたり、前記内部補強治具及び/又は
外部補強治具を前記エネルギー吸収体の圧潰の進行につ
れて圧潰進行方向に移動するようにしたり、前記エネル
ギー吸収体の圧潰開始側と反対側の端部を前記外部補強
治具により取り付け部材に固定したり、前記内部補強治
具をストップリングとしたり、前記外部補強治具をチュ
ービングバンドとしたりするものである。
In order to achieve the above-mentioned object, the present invention is a hollow cylindrical energy absorber that absorbs energy at the time of collision, and has an appropriate inner hole and / or outer periphery. The energy absorber is provided with a local reinforcing jig provided with an internal reinforcing jig and / or an external reinforcing jig fitted by a pressing force. In addition, a plurality of the internal reinforcing jigs and / or the external reinforcing jigs are arranged along the axial direction of the energy absorber, and the internal reinforcing jigs and / or the external reinforcing jigs are provided in the energy absorber. It is arranged in the inner hole and / or the outer periphery in the vicinity of the end on the crushing start side, and the dimensions of the internal reinforcing jig and / or the external reinforcing jig,
The structure and arrangement position are determined in relation to the limit angle at which crushing occurs at an oblique collision, and the internal reinforcing jig and / or the external reinforcing jig are moved in the crushing progressing direction as the crushing of the energy absorber progresses. Or fixing the end portion of the energy absorber on the side opposite to the crushing start side to the mounting member by the external reinforcing jig, using the internal reinforcing jig as a stop ring, or tubing the external reinforcing jig. It is used as a band.

【0011】[0011]

【作用】薄肉化したFRP円筒の内孔及び/又は外周の
局部に内部補強治具及び/又は外部補強治具を設けてF
RP円筒を補強する。そのため、衝撃エネルギーが付加
されても前記内部及び/又は外部補強治具の拘束力によ
り前記した凹み変形や縦クラックの発生が防止される。
これにより、FRP円筒に安定的にエネルギーを吸収さ
せることが出来る。内部補強治具及び外部補強治具の配
置やその数を適宜設定することにより前記の限界寸法以
下のFRP円筒であっても圧潰モードのみしか発生しな
いようにすることが出来る。また、内部及び/又は外部
補強治具を圧潰開始側の端部近傍の内孔及び/又は外周
に取り付けることにより、衝突時における最大荷重を変
えることなく平均荷重を増加させることが可能になり、
エネルギー吸収効率を大巾に向上することが出来る。ま
た、同時に、斜め方向の衝突においても圧潰を生ずる限
界角度を大きくするように制御することが出来、エネル
ギーを安定的に吸収させることが出来る。また、内部補
強治具及び/又は外部補強治具が圧潰の進行につれて圧
潰方向に移動することにより、FRP円筒の圧潰前の部
分が順次補強されて圧潰モードが保持される。また、エ
ネルギー吸収体の圧潰開始側と反対側の端部を外部補強
治具を利用して取り付け部材に固定し、斜め方向の衝突
においてエネルギー吸収体の軸直角方向の分力によるエ
ネルギー吸収体の取り付け面からの転倒離脱を防止す
る。更に、内部補強治具としてストップリングを使用
し、外部補強治具としてチュービングバンドを使用する
ことにより、本発明のエネルギー吸収体は容易に、かつ
安価に実施することが出来る。
[Function] By providing an internal reinforcing jig and / or an external reinforcing jig on the inner hole and / or the outer peripheral part of the thinned FRP cylinder,
Reinforce the RP cylinder. Therefore, even if impact energy is applied, the occurrence of the above-mentioned dent deformation and vertical cracks can be prevented by the restraining force of the internal and / or external reinforcing jigs.
This allows the FRP cylinder to stably absorb energy. By appropriately setting the arrangement and the number of the internal reinforcing jig and the external reinforcing jig, it is possible to generate only the crushing mode even in the FRP cylinder having the above-mentioned critical dimension or less. Further, by mounting the internal and / or external reinforcing jigs on the inner hole and / or the outer periphery in the vicinity of the end on the crushing start side, it becomes possible to increase the average load without changing the maximum load at the time of collision,
The energy absorption efficiency can be greatly improved. At the same time, it is possible to control so as to increase the limit angle that causes crushing even in an oblique collision, and it is possible to stably absorb energy. Further, the internal reinforcing jig and / or the external reinforcing jig moves in the crushing direction as the crushing progresses, whereby the pre-crushing portion of the FRP cylinder is sequentially reinforced and the crushing mode is maintained. Further, the end portion of the energy absorber opposite to the crush start side is fixed to a mounting member by using an external reinforcing jig, and in an oblique collision, the energy absorber is divided by the component force in the direction perpendicular to the axis of the energy absorber. Prevents falling off the mounting surface. Furthermore, by using a stop ring as the internal reinforcing jig and using a tubing band as the external reinforcing jig, the energy absorber of the present invention can be implemented easily and inexpensively.

【0012】[0012]

【実施例】【Example】

(実施例1)本発明の実施例1を図1〜図4に示す。図
1は図2の線B−B軸断面図であり、図2は図1の線A
−A断面図である。図1及び図2に示すように本実施例
は、FRP円筒3の内孔4の軸線方向のほぼ中間部に内
部補強治具1を嵌入し、外周5の内部補強治具1と相対
向する位置に外部補強治具2を設けたものである。図2
に示すように内部補強治具1及び外部補強治具2は、例
えばその一部を切欠いたエキスパンダ状のリング状部材
よりなり、内孔4及び外周5の全円周にわたりほぼ均一
な内圧及び外圧を付加するようにFRP円筒3に作用す
るものである。以上により、FRP円筒3はその中間部
を内部補強治具1と外部補強治具2により局部的に補強
され変形を拘束される。図3は本実施例のFRP円筒3
の圧潰の状態を示す。衝突荷重の作用によりFRP円筒
3の端部には図示のように破片6が生じるが図32及び
図33に示したような凹み変形12や縦クラック13は
内部補強治具1及び外部補強治具2の存在により防止さ
れ、図示のように破片6による圧潰のみが生じる。これ
は、図4に示すように内部補強治具1及び外部補強治具
2の拘束力7,8の作用によりFRP円筒3の変形及び
座屈が抑えられるためである。以上により、2t/Dの
小さいFRP円筒3であっても座屈破壊モードが生じる
ことなく圧潰モードで変形し、衝突エネルギーを十分に
吸収することが出来る。
(Embodiment 1) Embodiment 1 of the present invention is shown in FIGS. 1 is a sectional view taken along the line BB of FIG. 2, and FIG. 2 is a line A of FIG.
It is -A sectional drawing. As shown in FIGS. 1 and 2, in the present embodiment, the internal reinforcing jig 1 is fitted into the inner hole 4 of the FRP cylinder 3 substantially in the middle in the axial direction, and faces the internal reinforcing jig 1 on the outer periphery 5. The external reinforcing jig 2 is provided at the position. Figure 2
As shown in FIG. 2, the inner reinforcing jig 1 and the outer reinforcing jig 2 are, for example, expander-shaped ring-shaped members with a part thereof cut away, and have a substantially uniform inner pressure over the entire circumference of the inner hole 4 and the outer circumference 5. It acts on the FRP cylinder 3 so as to apply external pressure. As described above, the intermediate portion of the FRP cylinder 3 is locally reinforced by the internal reinforcing jig 1 and the external reinforcing jig 2 to restrain the deformation. FIG. 3 shows the FRP cylinder 3 of this embodiment.
The crushed state of is shown. Due to the action of the collision load, a fragment 6 is generated at the end portion of the FRP cylinder 3 as shown in the drawing, but the dent deformation 12 and the vertical crack 13 as shown in FIGS. 32 and 33 are caused by the internal reinforcing jig 1 and the external reinforcing jig. It is prevented by the presence of 2 and only crushing by debris 6 occurs as shown. This is because deformation and buckling of the FRP cylinder 3 are suppressed by the action of the restraining forces 7 and 8 of the inner reinforcing jig 1 and the outer reinforcing jig 2 as shown in FIG. As described above, even the FRP cylinder 3 having a small 2t / D can be deformed in the crushing mode without causing the buckling failure mode and can sufficiently absorb the collision energy.

【0013】(実施例2)本実施例は、図5及び図6に
示すように、FRP円筒3の上方端及び下方端近傍の内
孔4及び外周5に内部補強治具1,1及び外部補強治具
2,2を設けたものである。図6に示すように、それぞ
れの拘束力7,7及び8,8によりFRP円筒3は円断
面を維持し座屈破壊が防止される。なお、図の上方側の
内部補強治具1及び外部補強治具2は圧潰の発生に伴っ
て次第に下方に移動し、下方側の内部補強治具1及び外
部補強治具2とともにFRP円筒の圧潰前の部分の補強
部材として機能する。
(Embodiment 2) In this embodiment, as shown in FIGS. 5 and 6, the internal reinforcing jigs 1, 1 and the outside are provided on the inner hole 4 and the outer periphery 5 near the upper and lower ends of the FRP cylinder 3. The reinforcing jigs 2 and 2 are provided. As shown in FIG. 6, the respective restraining forces 7, 7 and 8, 8 keep the FRP cylinder 3 in a circular cross section and prevent buckling failure. The internal reinforcing jig 1 and the external reinforcing jig 2 on the upper side of the drawing gradually move downward due to the occurrence of the crushing, and the crushing of the FRP cylinder together with the internal reinforcing jig 1 and the external reinforcing jig 2 on the lower side. It functions as a reinforcing member for the front part.

【0014】(実施例3)本実施例は、図7及び図8に
示すように、FRP円筒3の内孔4内にのみ軸線方向に
沿って複数個(図示では3個)の内部補強治具1,1,
1を設けたものである。内部補強治具1の拘束力7を適
宜設定することにより外部補強治具2を使用しなくても
FRP円筒3の変形が防止され、座屈破壊モードが生じ
ない。本実施例の場合も上方側の内部補強治具1は圧潰
の発生に伴って次第に下方に移動し補強部材として機能
する。
(Embodiment 3) In this embodiment, as shown in FIG. 7 and FIG. 8, a plurality of (3 in the figure) internal reinforcing members are provided along the axial direction only in the inner hole 4 of the FRP cylinder 3. Tools 1, 1,
1 is provided. By appropriately setting the restraining force 7 of the internal reinforcing jig 1, the deformation of the FRP cylinder 3 is prevented without using the external reinforcing jig 2, and the buckling failure mode does not occur. Also in this embodiment, the internal reinforcing jig 1 on the upper side gradually moves downward as the crush occurs and functions as a reinforcing member.

【0015】(実施例4)本実施例は、図9及び図10
に示すように、FRP円筒3の内孔4の中間部に集中し
て複数個(図示では2個)の内部補強治具1,1を設け
たものである。図10に示すように内部拘束力7,7が
変形の大きい中間部に集中的に作用することにより座屈
破壊が有効に防止される。
(Embodiment 4) This embodiment is based on FIG. 9 and FIG.
As shown in FIG. 3, a plurality of (two in the figure) internal reinforcing jigs 1 and 1 are provided centrally in the middle portion of the inner hole 4 of the FRP cylinder 3. As shown in FIG. 10, the buckling failure is effectively prevented by the internal restraining forces 7, 7 concentratedly acting on the intermediate portion where the deformation is large.

【0016】図11は、実施例1〜4のような補強を施
したFRP円筒3と補強なしの従来のFRP円筒3との
荷重−変位曲線を示すものである。この場合、従来のF
RP円筒3の2t/Dの値は後に図37のエネルギー吸
収特性の比較(1)で説明するように座屈破壊モードを
示すもので図11の曲線Cに示すようにある変位点F以
降は座屈破壊しエネルギー吸収量は極めて低い。一方、
曲線Dは本実施例のもので前記の変位点Fを過ぎても急
激な荷重変化がなく、安定的に圧潰されていることが分
る。以上により2t/Dの値が小さい薄肉のFRP円筒
3でも十分にエネルギー吸収体として機能することが分
る。
FIG. 11 shows load-displacement curves of the FRP cylinder 3 reinforced as in Examples 1 to 4 and the conventional FRP cylinder 3 without reinforcement. In this case, the conventional F
The value of 2t / D of the RP cylinder 3 indicates the buckling failure mode as will be described later in the comparison (1) of the energy absorption characteristics of FIG. 37. After the displacement point F shown in the curve C of FIG. Buckling damage and extremely low energy absorption. on the other hand,
The curve D is the curve of the present embodiment, and it can be seen that there is no abrupt load change even after passing the displacement point F, and it is stably crushed. From the above, it can be seen that even a thin FRP cylinder 3 having a small value of 2t / D can sufficiently function as an energy absorber.

【0017】図37のエネルギー吸収特性の比較(1)
は、実施例1〜4のFRP円筒3と、補強なしの従来の
FRP円筒3のエネルギー吸収特性を示したものであ
る。使用されたFRP円筒3は内径40[mm],肉厚
=0.8[mm],長さ50[mm]のもので、2t/
D=0.038であり限界寸法の2t/D=0.04に
ほぼ近いものである。また、材質は表中に示すような繊
維等を含むエポキシ樹脂からなり、シートワインディン
グ法により製作したものである。エネルギー吸収特性値
としては破壊モードと、変位30[mm]における吸収
エネルギー[kgf・m]と、最大荷重[kgf]が示
されている。従来のFRP円筒3は、この場合に補強治
具が設けられていないと座屈モードで破壊されるが、本
実施例のものは補強治具が設けられているので全ての場
合において圧潰モードの破壊が実現されている。また、
最大荷重の値は本実施例のものは従来のものに較べて増
加率が−3.3[%]乃至30.7[%]であり、余り
変化がない。それに対し吸収エネルギーの値の増加率は
638[%]乃至994[%]であり、著しく増加して
いる。以上により本実施例のFRP円筒3が極めて大き
いエネルギー吸収特性を有することが実証される。
Comparison of energy absorption characteristics of FIG. 37 (1)
6 shows the energy absorption characteristics of the FRP cylinder 3 of Examples 1 to 4 and the conventional FRP cylinder 3 without reinforcement. The FRP cylinder 3 used has an inner diameter of 40 [mm], a wall thickness of 0.8 [mm], and a length of 50 [mm], and is 2 t /
D = 0.038, which is close to the critical dimension 2t / D = 0.04. Further, the material is made of epoxy resin containing fibers as shown in the table, and is manufactured by the sheet winding method. As the energy absorption characteristic value, a destruction mode, absorbed energy [kgf · m] at a displacement of 30 [mm], and maximum load [kgf] are shown. The conventional FRP cylinder 3 is broken in the buckling mode if no reinforcing jig is provided in this case. However, since the reinforcing jig is provided in this embodiment, the FRP cylinder 3 is in the crushing mode in all cases. Destruction has been realized. Also,
The maximum load value of the present embodiment has an increase rate of -3.3 [%] to 30.7 [%] as compared with the conventional load, and does not change much. On the other hand, the rate of increase in the value of absorbed energy is 638 [%] to 994 [%], which is a remarkable increase. From the above, it is demonstrated that the FRP cylinder 3 of this embodiment has an extremely large energy absorption characteristic.

【0018】(実施例5)本実施例は本発明の請求項3
に対応する一実施例であり、図12に示すようにFRP
円筒3の圧潰開始側の端部近傍の外周5aに外部補強治
具2aを取り付けたものである。具体的には、FRP円
筒3のテーパ部10を避けた位置に取り付ける。この外
部補強治具2aの取り付けにより、外周5aには図13
に示すような拘束力8aが作用する。その拘束力8a
は、FRP円筒3の圧潰部直近を局部的に補強かつ拘束
し、図14に示すFRP円筒3を層間剥離させるような
亀裂14が圧潰の進行に伴って進展するのを妨げる力と
して作用する。これにより、FRP円筒3のエネルギー
吸収量がアップする。また、前記のようにテーパ部10
を避けた位置に外部補強治具2aを配置しているため、
衝突時における最大荷重は従来のものとほとんど変らな
い。本実施例では外部補強治具2aとして、例えば図2
0に示すような公知のチュービングバンド2bを用い
た。このチュービングバンド2bは、図13に示すよう
に外周5aに均一の拘束力8aを付加すると共に、軸線
方向に沿って移動可能である点に特徴を有する。また、
このチュービングバンド2bはねじ9の締め込み動作に
より拘束力8aを自由に変えることが出来る。
(Embodiment 5) This embodiment is claim 3 of the present invention.
This is an embodiment corresponding to the FRP, and as shown in FIG.
An external reinforcing jig 2a is attached to the outer periphery 5a near the end of the cylinder 3 on the crushing start side. Specifically, the FRP cylinder 3 is attached at a position avoiding the tapered portion 10. By attaching this external reinforcing jig 2a, the outer periphery 5a is not
The restraining force 8a as shown in FIG. Its binding force 8a
Serves to locally reinforce and restrain the crushed portion of the FRP cylinder 3 locally, and acts as a force to prevent the crack 14 that delaminates the FRP cylinder 3 shown in FIG. 14 from propagating as the crushing progresses. As a result, the energy absorption amount of the FRP cylinder 3 is increased. In addition, as described above, the tapered portion 10
Since the external reinforcing jig 2a is placed at a position avoiding
The maximum load at the time of collision is almost the same as the conventional load. In this embodiment, as the external reinforcing jig 2a, for example, as shown in FIG.
A known tubing band 2b as shown in 0 was used. The tubing band 2b is characterized in that it applies a uniform restraining force 8a to the outer periphery 5a as shown in FIG. 13 and is movable along the axial direction. Also,
The restraining force 8a of the tubing band 2b can be freely changed by tightening the screw 9.

【0019】(実施例6)本実施例は、図15及び図1
6に示すように、FRP円筒3の圧潰開始側の端部近傍
の内孔4a及び外周5aに内部補強治具1a及び外部補
強治具2aを設けたものである。具体的にはFRP円筒
3のテーパ部10を外した位置に内部補強治具1aと外
部補強治具2aを設けたものであり、これ等には例えば
図20に示すような公知のストップリング1b及びチュ
ービングバンド2bが採用される。これ等は内孔4a及
び外周5aに均一の押圧力を付加すると共に、軸線方向
に沿って移動可能である点に特徴を有する。FRP円筒
3の内径に対し適宜の外径を有するストップリング1b
を用いることにより均一、かつ十分な拘束力7a(図1
6)を付加することが出来る。また、チュービングバン
ド2bは、前記のようにねじ9の締め込み動作により拘
束力8aを自由に変えることが出来る。以上の拘束力7
a,8aにより図16に示すようにFRP円筒3は補強
され局部の変形が拘束されると共に、テーパ部10をさ
けた位置に内部補強治具1a及び外部補強治具2aを配
置しているため、衝突時における最大荷重は従来のもの
とほとんど変らない。
(Embodiment 6) This embodiment is based on FIG. 15 and FIG.
As shown in FIG. 6, an internal reinforcing jig 1a and an external reinforcing jig 2a are provided in the inner hole 4a and the outer periphery 5a near the end of the FRP cylinder 3 on the side where the crush is started. Specifically, an internal reinforcing jig 1a and an external reinforcing jig 2a are provided at positions where the taper portion 10 of the FRP cylinder 3 is removed. For example, a known stop ring 1b as shown in FIG. And the tubing band 2b is adopted. These are characterized in that a uniform pressing force is applied to the inner hole 4a and the outer circumference 5a, and that they can be moved along the axial direction. A stop ring 1b having an appropriate outer diameter with respect to the inner diameter of the FRP cylinder 3.
Is used, a uniform and sufficient restraining force 7a (see FIG.
6) can be added. In the tubing band 2b, the restraining force 8a can be freely changed by tightening the screw 9 as described above. More binding force 7
As shown in FIG. 16, the FRP cylinder 3 is reinforced by a and 8a so that the local deformation is restrained, and the internal reinforcing jig 1a and the external reinforcing jig 2a are arranged at the position avoiding the tapered portion 10. The maximum load at the time of collision is almost the same as the conventional load.

【0020】(実施例7)本実施例は、図17に示すよ
うに、実施例5における外部補強治具2aの代わりに内
部補強治具1aを内孔4a内に入れたものであり、これ
によっても局部の変形を拘束することが出来る。図18
は本実施例における拘束力7aの作用を示す。
(Embodiment 7) In this embodiment, as shown in FIG. 17, an inner reinforcing jig 1a is inserted in the inner hole 4a instead of the outer reinforcing jig 2a in the fifth embodiment. It is also possible to restrain the deformation of the local area. FIG.
Shows the action of the restraining force 7a in this embodiment.

【0021】図19は図15等におけるFRP円筒3に
作用する荷重Pと拘束力7a,8a等との関係を模式的
に示したものである。拘束力7a,8aの作用によりF
RP円筒3の内孔4及び外周5には軸線方向に沿って摩
擦力fが作用する。この摩擦力fは荷重Pに抵抗する。
従って、摩擦力fの値を荷重Pより少し下廻る値になる
ように拘束力7a,8aを設定することにより、荷重P
の作用に伴って内部補強治具1a及び外部補強治具2a
が下方に移動する。これにより、FRP円筒の圧潰前の
部分が順次補強され圧潰モードを保持することが出来
る。
FIG. 19 schematically shows the relationship between the load P acting on the FRP cylinder 3 and the restraining forces 7a and 8a in FIG. F due to the action of restraining force 7a, 8a
A frictional force f acts on the inner hole 4 and the outer periphery 5 of the RP cylinder 3 along the axial direction. This frictional force f resists the load P.
Therefore, by setting the restraining forces 7a and 8a so that the value of the frictional force f is slightly lower than the load P, the load P
Internal reinforcing jig 1a and external reinforcing jig 2a
Moves downward. As a result, the portions of the FRP cylinder before being crushed are sequentially reinforced and the crushing mode can be maintained.

【0022】図21は実施例5〜7のFRP円筒3と従
来のFRP円筒3の荷重−変位曲線を示す。それは、実
施例5〜7のFRP円筒3と、後に図38のエネルギー
吸収特性の比較(2)で説明するように2t/Dの値が
限界寸法よりも大きい範囲における従来のFRP円筒3
との、エネルギー吸収量の比較を示す。図示のように本
実施例のFRP円筒3の場合は、同一変位点における平
均荷重が高く、エネルギー吸収量が大きいことが分る。
FIG. 21 shows load-displacement curves of the FRP cylinder 3 of Examples 5 to 7 and the conventional FRP cylinder 3. It is the FRP cylinder 3 of Examples 5 to 7 and the conventional FRP cylinder 3 in the range where the value of 2t / D is larger than the critical dimension, as will be described later in comparison (2) of the energy absorption characteristics of FIG.
And shows the comparison of the energy absorption amount. As shown in the figure, in the case of the FRP cylinder 3 of this embodiment, the average load at the same displacement point is high and the energy absorption amount is large.

【0023】図38のエネルギー吸収特性の比較(2)
は、実施例5(図12)に示した外部補強治具2aを設
けたFRP円筒3と、これを設けない従来のFRP円筒
3との、エネルギー吸収特性を比較したものである。使
用されたFRP円筒3の寸法は内径40[mm]、肉厚
1.6[mm]、長さ200[mm]のもので2t/D
=0.07で限界寸法を越えている。エネルギー吸収特
性値としては変位30[mm]及び50[mm]におけ
るエネルギー吸収量(kgf・m)と、平均荷重[kg
f]と、エネルギー吸収効率[%]及び最大荷重[kg
f]が上げられる。なお、繊維としては朱子織り織布が
使用され、樹脂としてはエポキシ樹脂が採用される。ま
た、シートワインディング法により製作されたものであ
る。図38のエネルギー吸収特性の比較(2)から分る
ように、最大荷重の増加率は−0.39[%]であり、
ほとんど差がない。しかし、それ以外の特性の増加率は
約15[%]乃至21[%]と大きい。なお、実施例6
及び7に示したものについても、図38のエネルギー吸
収特性の比較(2)に示したエネルギー吸収特性とほぼ
同一の結果が求められている。
Comparison of energy absorption characteristics of FIG. 38 (2)
6 is a comparison of the energy absorption characteristics of the FRP cylinder 3 provided with the external reinforcing jig 2a shown in Example 5 (FIG. 12) and the conventional FRP cylinder 3 not provided with the same. The FRP cylinder 3 used has an inner diameter of 40 [mm], a wall thickness of 1.6 [mm], and a length of 200 [mm], and is 2 t / D.
The limit dimension is exceeded at 0.07. As the energy absorption characteristic value, the energy absorption amount (kgf · m) at displacements 30 [mm] and 50 [mm] and the average load [kg]
f], energy absorption efficiency [%] and maximum load [kg]
f] is raised. A satin woven fabric is used as the fiber, and an epoxy resin is used as the resin. It is also manufactured by the sheet winding method. As can be seen from the comparison (2) of the energy absorption characteristics of FIG. 38, the increase rate of the maximum load is −0.39 [%],
There is almost no difference. However, the rate of increase of the other characteristics is as large as about 15 [%] to 21 [%]. In addition, Example 6
38 and 7, almost the same results as the energy absorption characteristics shown in the comparison (2) of the energy absorption characteristics of FIG. 38 are required.

【0024】(実施例8)本実施例は斜め衝突にも有効
に対処し得るようにした一実施例であり、図22及び図
23に示すように、圧潰進行中の端部が傾斜状となって
おり、FRP円筒3の傾斜状圧潰部の下端近傍の外周5
bに外部補強治具2cが位置するよう作動すると共に、
FRP円筒3の下端に固定用治具15と外部補強治具2
dとを取り付けたものである。外部補強治具2cの取り
付けにより、外周5bには図24に示すような拘束力8
bが作用する。その拘束力8bにより、限界角度を越え
る斜め衝突角αの圧縮力Pが付加されてもFRP円筒3
はその断面が円形状に保持され、図35及び図36に示
したような凹み12a,膨らみ12bや縦クラック13
の発生が防止され、安定的に圧潰されてエネルギーを安
定的に吸収する。固定用治具15はFRP円筒3を車体
等に取り付ける取り付け部材であって、FRP円筒3の
下端に当接する平板状部16と、その平板状部16から
突出しFRP円筒3の下端近傍の内孔4c内に嵌入する
突起部17とからなる。外部補強治具2dは、突起部1
7と嵌合したFRP円筒3の下端近傍の外周5cを強固
に締め付ける。これにより、外周5cには図24に示す
ような拘束力8cが作用する。その拘束力8cにより、
FRP円筒3の下端近傍の内壁が突起部17に密着させ
られる。これにより、斜め圧縮力Pを受けた際にFRP
円筒3が倒れるのが防止されると共に、FRP円筒3の
下方部が補強される。なお、本実施例では、外部補強治
具2dとして外部補強治具2cと同じものを用いてい
る。
(Embodiment 8) This embodiment is an embodiment in which an oblique collision can be effectively dealt with. As shown in FIGS. 22 and 23, the end portion during the crushing is inclined. And the outer circumference 5 near the lower end of the inclined crushed portion of the FRP cylinder 3.
While operating so that the external reinforcing jig 2c is located at b,
The fixing jig 15 and the external reinforcing jig 2 are attached to the lower end of the FRP cylinder 3.
d is attached. By attaching the external reinforcing jig 2c, a binding force 8 as shown in FIG.
b acts. Due to the restraining force 8b, even if the compressive force P of the oblique collision angle α exceeding the limit angle is added, the FRP cylinder 3
Has a circular cross section, and has a recess 12a, a bulge 12b and a vertical crack 13 as shown in FIGS.
Is prevented and is stably crushed to absorb energy stably. The fixing jig 15 is a mounting member for attaching the FRP cylinder 3 to a vehicle body or the like, and includes a flat plate-like portion 16 that abuts on the lower end of the FRP cylinder 3 and an inner hole that projects from the flat-plate-like portion 16 and is near the lower end of the FRP cylinder 3. 4c. The external reinforcing jig 2d includes the protrusion 1
The outer periphery 5c near the lower end of the FRP cylinder 3 fitted with 7 is firmly tightened. As a result, a restraining force 8c as shown in FIG. 24 acts on the outer circumference 5c. By the binding force 8c,
The inner wall near the lower end of the FRP cylinder 3 is brought into close contact with the protrusion 17. As a result, when the diagonal compression force P is received, the FRP
The cylinder 3 is prevented from falling down, and the lower portion of the FRP cylinder 3 is reinforced. In this embodiment, the same external reinforcement jig 2d as the external reinforcement jig 2c is used.

【0025】図25は、本実施例の補強したFRP円筒
3と補強なしのFRP円筒3との荷重−変位曲線を示
す。この場合、補強なしのFRP円筒3は、斜め圧縮力
の傾斜角度が5度のときは急激な荷重変化がなく安定的
に圧潰されるが、10度のときはエネルギーを吸収出来
ず軸方向変位が十分に進まないうちに座屈破壊してしま
う。これにより、補強なしのFRP円筒3の限界角度は
5度と10度の間にあることが分かる。一方、本実施例
の補強したFRP円筒3は、斜め圧縮力の傾斜角度が1
5度のときは急激な荷重変化がなく安定的に圧潰される
が、20度のときは前記補強なしの10度のFRP円筒
3と類似の挙動を示した(図示省略、但し、図39参
照)。これにより、本実施例の補強したFRP円筒3の
限界角度は15度と20度の間にあることが分かる。す
なわち、補強によって限界角度が5度と10度の間か
ら、15度と20度の間に増加したこと、すなわち、限
界角度が約10度増加したことが分かる。以上により、
FRP円筒3の局部補強の構造如何により限界角度及び
破壊モードを制御することが出来、円筒の斜めエネルギ
ー吸収特性を改善し得ることが分かる。
FIG. 25 shows load-displacement curves of the reinforced FRP cylinder 3 and the non-reinforced FRP cylinder 3 of this embodiment. In this case, the FRP cylinder 3 without reinforcement does not undergo a sudden load change when the inclination angle of the oblique compression force is 5 degrees and is stably crushed, but when it is 10 degrees, it cannot absorb energy and is displaced in the axial direction. Buckles and breaks before it progresses sufficiently. From this, it can be seen that the limit angle of the FRP cylinder 3 without reinforcement is between 5 and 10 degrees. On the other hand, in the reinforced FRP cylinder 3 of this embodiment, the inclination angle of the oblique compression force is 1
At 5 degrees, there is no sudden change in load and it is crushed stably, but at 20 degrees, it showed a behavior similar to that of the FRP cylinder 3 of 10 degrees without reinforcement (not shown, but see FIG. 39). ). From this, it can be seen that the limit angle of the reinforced FRP cylinder 3 of this example is between 15 and 20 degrees. That is, it can be seen that the reinforcement increased the limit angle from between 5 and 10 degrees to between 15 and 20 degrees, that is, the limit angle was increased by about 10 degrees. From the above,
It is understood that the limit angle and the fracture mode can be controlled depending on the structure of the local reinforcement of the FRP cylinder 3, and the oblique energy absorption characteristics of the cylinder can be improved.

【0026】図39のエネルギー吸収特性の比較(3)
は、実施例8(図22)に示した外部補強治具2cを設
けたFRP円筒3と、これを設けないFRP円筒3との
エネルギー吸収特性を比較したものである。同表より、
限界角度以上の場合には局部を補強してもエネルギー及
び最大荷重は同様な傾向で減少するが、限界角度が約1
0度上がり、エネルギーを安定的に吸収することが出来
ることが分かる(図25も参照)。なお、エネルギー吸
収効率は僅かに約1〜12%低下した。
Comparison of energy absorption characteristics of FIG. 39 (3)
22 is a comparison of the energy absorption characteristics of the FRP cylinder 3 provided with the external reinforcing jig 2c shown in Example 8 (FIG. 22) and the FRP cylinder 3 not provided with it. From the table,
If the angle exceeds the limit angle, the energy and maximum load will decrease with the same tendency even if the local part is reinforced, but the limit angle is about 1
It can be seen that the energy can be stably absorbed by increasing the temperature by 0 degree (see also FIG. 25). The energy absorption efficiency was slightly reduced by about 1 to 12%.

【0027】(実施例9)本実施例(図26)は、実施
例8(図22)と同様に傾斜状圧潰部の下端近傍の外周
5bに外部補強治具2c(図示せず)を取り付けると共
に、傾斜状圧潰部の下端近傍の内孔4bに内部補強治具
1c(図示せず)を取り付けてFRP円筒3の局部を外
側と内側とから補強したものであり、図26にそれ等の
拘束力8bと7bの作用を示す。本実施例においても、
実施例8とほぼ同様の結果が得られた。 (実施例10)本実施例(図27)は、傾斜状圧潰部の
下端近傍の内孔4bに内部補強治具1c(図示せず)を
取り付けてFRP円筒3の局部を補強したものであり、
図27にその拘束力7bの作用を示す。本実施例におい
ても、実施例8とほぼ同様の結果が得られた。
(Embodiment 9) In this embodiment (FIG. 26), as in Embodiment 8 (FIG. 22), an external reinforcing jig 2c (not shown) is attached to the outer periphery 5b near the lower end of the inclined crushing portion. At the same time, an internal reinforcing jig 1c (not shown) was attached to the inner hole 4b near the lower end of the inclined crushing portion to reinforce the local portion of the FRP cylinder 3 from the outside and the inside. The action of the restraining forces 8b and 7b is shown. Also in this embodiment,
Results similar to those of Example 8 were obtained. (Embodiment 10) In this embodiment (FIG. 27), an internal reinforcing jig 1c (not shown) is attached to the inner hole 4b near the lower end of the inclined crushing portion to reinforce the local portion of the FRP cylinder 3. ,
FIG. 27 shows the action of the restraining force 7b. Also in this example, almost the same results as in Example 8 were obtained.

【0028】前記のように、実施例8〜10の限界角度
は、FRP円筒3と内部補強治具1c及び/又は外部補
強治具2cの組合せにより実験的に求められる。また、
実施例8〜10に用いられる内部補強治具1c及び外部
補強治具2cは実施例6(図15)等で用いたものと同
じものを用いる。これにより、FRP円筒3の圧潰につ
れて内部補強治具1c及び外部補強治具2cは下方に移
動し、FRP円筒の圧潰前の部分が順次補強されて圧潰
モードが保持される。
As described above, the limit angles of Examples 8 to 10 are experimentally obtained by the combination of the FRP cylinder 3 and the internal reinforcing jig 1c and / or the external reinforcing jig 2c. Also,
The internal reinforcing jig 1c and the external reinforcing jig 2c used in Examples 8 to 10 are the same as those used in Example 6 (FIG. 15) and the like. As a result, as the FRP cylinder 3 is crushed, the internal reinforcing jig 1c and the external reinforcing jig 2c move downward, and the pre-crushed portion of the FRP cylinder is sequentially reinforced to maintain the crushing mode.

【0029】以上の説明において、内部補強治具1,1
a,1b,1c及び外部補強治具2,2a,2b,2
c,2dとして図2及び図20に示したものを採用した
が、勿論これ等に限定するものではない。また、個数や
配列についても実施例のものに限定するものではない。
また、FRP円筒の製造方法についてもシートワインデ
ィング法に限らずフィラメントワインディングなどの製
造方法によるものでも勿論よい。
In the above description, the internal reinforcing jigs 1, 1
a, 1b, 1c and external reinforcing jigs 2, 2a, 2b, 2
Although the elements shown in FIGS. 2 and 20 are adopted as c and 2d, of course, they are not limited to these. Further, the number and arrangement are not limited to those in the embodiment.
Further, the manufacturing method of the FRP cylinder is not limited to the sheet winding method, and may be a manufacturing method such as filament winding.

【0030】[0030]

【発明の効果】本発明によれば、次のような顕著な効果
を奏する。 1)FRP円筒の凹み変形が生じ易い部分に補強治具を
配置し、円筒の内外から変形を拘束する構造を採用する
ことにより、円筒の座屈破壊を防止し、FRP円筒を安
定した圧潰モードにより変形させることが出来る。その
ため、衝突エネルギーを大巾に吸収し軽量でエネルギー
吸収量を向上させることが出来る。 2)内部及び/又は外部補強治具を圧潰開始側の端部近
傍の内孔及び/又は外周に取り付けることにより、衝突
時における最大荷重を変えることなく、安定した圧潰モ
ードで破壊が進行するため平均荷重が増大し、エネルギ
ー吸収効率を向上させることが出来る。 3)FRP円筒の圧潰開始側の端部近傍の内孔及び/又
は外周に、内部補強治具及び/又は外部補強治具をその
寸法,構造,及び取り付け位置等を調節して取り付ける
ことにより、限界角度を制御し、斜め衝突エネルギーを
安定的に吸収させることが出来る。 4)内部補強治具及び/又は外部補強治具を圧潰の進行
につれて圧潰方向に移動するようにすることにより、F
RP円筒の圧潰前の部分が順次補強されて圧潰モードが
保持される。 5)FRP円筒の圧潰開始側と反対側の端部内にFRP
円筒を車体等に取り付ける取り付け部材の突起部を嵌入
し、前記端部を外部補強治具により締め付けることによ
り、FRP円筒を取り付け部材に固定し、斜め方向の衝
突においてFRP円筒の軸直角方向の分力によりFRP
円筒がその取り付け面から転倒離脱するのを防止するこ
とが出来る。 6)内部補強治具や外部補強治具は例えばストップリン
グやチュービングバンド等の公知のものを利用出来るた
め、容易に、かつ安価に実施することが出来る。また、
それ等の取り付け取り外しも容易に行なえる。
According to the present invention, the following remarkable effects are obtained. 1) By arranging a reinforcing jig in the portion where the dent deformation of the FRP cylinder is likely to occur and adopting a structure that restrains the deformation from the inside and outside of the cylinder, the buckling failure of the cylinder is prevented, and the crush mode of the FRP cylinder is stable. Can be deformed by. Therefore, the collision energy is largely absorbed, and it is possible to improve the energy absorption amount while being lightweight. 2) By attaching an internal and / or external reinforcing jig to the inner hole and / or outer periphery near the end on the crushing start side, the destruction progresses in a stable crushing mode without changing the maximum load at the time of collision. The average load is increased and the energy absorption efficiency can be improved. 3) By attaching an internal reinforcing jig and / or an external reinforcing jig to the inner hole and / or the outer periphery in the vicinity of the end on the crushing start side of the FRP cylinder by adjusting its size, structure, attachment position, etc., It is possible to control the limit angle and stably absorb the oblique collision energy. 4) By moving the internal reinforcing jig and / or the external reinforcing jig in the crushing direction as the crushing progresses, F
The crushing mode is maintained by sequentially reinforcing the part of the RP cylinder before crushing. 5) FRP inside the end of the FRP cylinder opposite to the crush start side
The FRP cylinder is fixed to the mounting member by fitting the protrusion of the mounting member that attaches the cylinder to the vehicle body and the like, and tightening the end portion with an external reinforcing jig. FRP by force
It is possible to prevent the cylinder from falling off from its mounting surface. 6) As the internal reinforcing jig and the external reinforcing jig, for example, known ones such as a stop ring and a tubing band can be used, so that they can be implemented easily and inexpensively. Also,
It can be easily attached and detached.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の軸断面図(図2の線B−B
断面図)。
FIG. 1 is an axial sectional view of a first embodiment of the present invention (line BB in FIG. 2).
Sectional view).

【図2】図1の線A−A断面図。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1の実施例1の圧潰モードを示す軸断面図。FIG. 3 is an axial sectional view showing a crushing mode of the first embodiment shown in FIG.

【図4】図1の実施例1の圧潰における補強の様相の原
理図。
FIG. 4 is a principle diagram of the aspect of reinforcement in the crushing of the first embodiment shown in FIG.

【図5】本発明の実施例2の軸断面図。FIG. 5 is an axial sectional view of a second embodiment of the present invention.

【図6】図5のFRP円筒の補強の様相の原理図。FIG. 6 is a principle diagram of a mode of reinforcement of the FRP cylinder of FIG.

【図7】本発明の実施例3の軸断面図。FIG. 7 is an axial sectional view of a third embodiment of the present invention.

【図8】図7のFRP円筒の補強の様相の原理図。FIG. 8 is a principle diagram of a mode of reinforcement of the FRP cylinder of FIG.

【図9】本発明の実施例4の軸断面図。FIG. 9 is an axial sectional view of a fourth embodiment of the present invention.

【図10】図9のFRP円筒の補強の様相の原理図。FIG. 10 is a principle diagram of a mode of reinforcement of the FRP cylinder of FIG. 9.

【図11】本発明の実施例と従来のFRP円筒の荷重−
変位曲線を示す線図。
FIG. 11 is a load of an example of the present invention and a conventional FRP cylinder-
A diagram showing a displacement curve.

【図12】本発明の実施例5の軸断面図。FIG. 12 is an axial sectional view of a fifth embodiment of the present invention.

【図13】図12のFRP円筒の補強の様相の原理図。FIG. 13 is a principle view of a mode of reinforcement of the FRP cylinder of FIG.

【図14】図12の実施例5の圧潰モードを示す軸断面
図。
FIG. 14 is an axial cross-sectional view showing a crushing mode of Example 5 in FIG.

【図15】本発明の実施例6の軸断面図。FIG. 15 is an axial sectional view of a sixth embodiment of the present invention.

【図16】図15のFRP円筒の補強の様相の原理図。FIG. 16 is a principle diagram of a mode of reinforcement of the FRP cylinder of FIG. 15.

【図17】本発明の実施例7の軸断面図。FIG. 17 is an axial sectional view of a seventh embodiment of the present invention.

【図18】図17のFRP円筒の補強の様相の原理図。FIG. 18 is a principle view of a reinforcing aspect of the FRP cylinder of FIG.

【図19】本発明の実施例における拘束力と荷重との関
係を示す原理図。
FIG. 19 is a principle diagram showing a relationship between a binding force and a load in the example of the present invention.

【図20】図15における内部補強治具及び外部補強治
具の具体的構造を示す横断面図。
FIG. 20 is a cross-sectional view showing a specific structure of the internal reinforcing jig and the external reinforcing jig shown in FIG.

【図21】図12等における実施例のFRP円筒と従来
のFRP円筒の荷重−変位曲線を示す線図。
FIG. 21 is a diagram showing load-displacement curves of the FRP cylinder of the example and the conventional FRP cylinder shown in FIG. 12 and the like.

【図22】本発明の実施例8の使用状態を示す斜視図。FIG. 22 is a perspective view showing a usage state of Embodiment 8 of the present invention.

【図23】図22の側面図。FIG. 23 is a side view of FIG. 22.

【図24】図22のFRP円筒の補強の様相の原理図。FIG. 24 is a principle view of a reinforcing aspect of the FRP cylinder of FIG. 22.

【図25】同実施例の補強したFRP円筒と補強なしの
FRP円筒の斜め圧縮の荷重−変位曲線を示す線図。
FIG. 25 is a diagram showing a load-displacement curve of oblique compression of a reinforced FRP cylinder and a non-reinforced FRP cylinder of the same example.

【図26】本発明の実施例9のFRP円筒の補強の様相
の原理図。
FIG. 26 is a principle diagram of a mode of reinforcement of an FRP cylinder according to Example 9 of the present invention.

【図27】本発明の実施例10のFRP円筒の補強の様
相の原理図。
FIG. 27 is a principle view of a mode of reinforcing the FRP cylinder according to Example 10 of the present invention.

【図28】従来のFRP円筒の軸断面図。FIG. 28 is an axial sectional view of a conventional FRP cylinder.

【図29】従来のFRP円筒の圧潰モードにおける変形
状態を示す軸断面図。
FIG. 29 is an axial sectional view showing a deformed state of a conventional FRP cylinder in a crushing mode.

【図30】一般的な変位と荷重で求められるエネルギー
吸収量を図示した線図。
FIG. 30 is a diagram showing an energy absorption amount obtained by general displacement and load.

【図31】FRP円筒の2t/Dと比エネルギー吸収量
と破壊モードとの関係を示す線図。
FIG. 31 is a diagram showing the relationship between 2t / D of the FRP cylinder, the specific energy absorption amount, and the destruction mode.

【図32】従来のFRP円筒の座屈破壊における凹み変
形状態を示す斜視図。
FIG. 32 is a perspective view showing a recessed state of a conventional FRP cylinder when it is buckled.

【図33】従来のFRP円筒の座屈破壊における縦クラ
ックを示す斜視図。
FIG. 33 is a perspective view showing a vertical crack in buckling failure of a conventional FRP cylinder.

【図34】荷重−変位線図における最大荷重及び平均荷
重を示す線図。
FIG. 34 is a diagram showing the maximum load and the average load in the load-displacement diagram.

【図35】限界角度以上の斜め圧縮力によるFRP円筒
の変形状態を示す斜視図。
FIG. 35 is a perspective view showing a deformed state of the FRP cylinder due to an oblique compression force of a limit angle or more.

【図36】限界角度以上の斜め圧縮力によるFRP円筒
の破壊状態を示す斜視図。
FIG. 36 is a perspective view showing a broken state of an FRP cylinder by an oblique compression force equal to or more than a limit angle.

【図37】エネルギー吸収特性の比較(1)。FIG. 37 is a comparison of energy absorption characteristics (1).

【図38】エネルギー吸収特性の比較(2)。FIG. 38 is a comparison of energy absorption characteristics (2).

【図39】エネルギー吸収特性の比較(3)。FIG. 39 is a comparison of energy absorption characteristics (3).

【符号の説明】[Explanation of symbols]

1 内部補強治具 1a 内部補強治具 1b ストップリング 2 外部補強治具 2a 外部補強治具 2b チュービングバンド 2c 外部補強治具 2d 外部補強治具 3 エネルギー吸収体(FRP円筒) 4 内孔 4a 圧潰開始側の端部近傍の内孔 4b 傾斜状圧潰部の下端近傍の内孔 4c FRP円筒の下端近傍の内孔 5 外周 5a 圧潰開始側の端部近傍の外周 5b 傾斜状圧潰部の下端近傍の外周 5c FRP円筒の下端近傍の外周 6 破片 7 拘束力 7a 拘束力 7b 拘束力 8 拘束力 8a 拘束力 8b 拘束力 8c 拘束力 9 ねじ 10 テーパ部 11 荷重 12 凹み変形 12a 凹み 12b 膨らみ 13 縦クラック 14 亀裂 15 固定用治具 16 平板状部 17 突起部 1 Internal reinforcing jig 1a Internal reinforcing jig 1b Stop ring 2 External reinforcing jig 2a External reinforcing jig 2b Tubing band 2c External reinforcing jig 2d External reinforcing jig 3 Energy absorber (FRP cylinder) 4 Inner hole 4a Crush start Inner hole near the end on the side 4b Inner hole near the lower end of the inclined crushing part 4c Inner hole near the lower end of the FRP cylinder 5 Outer circumference 5a Outer circumference near the end on the crushing start side 5b Outer circumference near the lower end of the inclined crushing part 5c Outer periphery near the lower end of the FRP cylinder 6 Fragment 7 Restraint force 7a Restraint force 7b Restraint force 8 Restraint force 8a Restraint force 8b Restraint force 8c Restraint force 9 Screw 10 Tapered portion 11 Load 12 Recess 12a Recess 12b Swell 13 Vertical crack 14 15 Fixing jig 16 Flat plate part 17 Projection part

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 衝突時のエネルギーを吸収する中空円筒
状のエネルギー吸収体であって、その内孔及び/又は外
周に適宜の押圧力で嵌まり込む内部補強治具及び/又は
外部補強治具を設けることを特徴とする局部補強治具を
備えるエネルギー吸収体。
1. A hollow cylindrical energy absorber that absorbs energy at the time of collision, and an internal reinforcing jig and / or an external reinforcing jig that are fitted into the inner hole and / or the outer periphery thereof with an appropriate pressing force. An energy absorber provided with a local reinforcing jig.
【請求項2】 前記内部補強治具及び/又は外部補強治
具が前記エネルギー吸収体の軸線方向に沿って複数個配
設されてなる請求項1の局部補強治具を備えるエネルギ
ー吸収体。
2. An energy absorber comprising a local reinforcing jig according to claim 1, wherein a plurality of the internal reinforcing jigs and / or the external reinforcing jigs are arranged along the axial direction of the energy absorbing body.
【請求項3】 前記内部補強治具及び/又は外部補強治
具が前記エネルギー吸収体の圧潰開始側の端部近傍の内
孔及び/又は外周に配設されることを特徴とする局部補
強治具を備えるエネルギー吸収体。
3. The local reinforcing jig, wherein the internal reinforcing jig and / or the external reinforcing jig is provided in an inner hole and / or an outer periphery of the energy absorber near the end on the crush start side. An energy absorber comprising a tool.
【請求項4】 前記内部補強治具及び/又は外部補強治
具が前記エネルギー吸収体の圧潰の進行につれて圧潰進
行方向に移動する請求項1又は請求項3の局部補強治具
を備えるエネルギー吸収体。
4. The energy absorber provided with the local reinforcing jig according to claim 1 or 3, wherein the internal reinforcing jig and / or the external reinforcing jig moves in the crushing progressing direction as the crushing of the energy absorbing body progresses. .
【請求項5】 前記エネルギー吸収体の圧潰開始側と反
対側の端部内にエネルギー吸収体を車体等に取り付ける
取り付け部材の突起部を嵌入し、前記端部を前記外部補
強治具により締め付けることを特徴とする局部補強治具
を備えるエネルギー吸収体。
5. A protrusion of a mounting member for attaching the energy absorber to a vehicle body or the like is fitted into an end portion of the energy absorber opposite to the side where the crushing is started, and the end portion is tightened by the external reinforcing jig. An energy absorber comprising a characteristic local reinforcing jig.
【請求項6】 前記内部補強治具がストップリングであ
り、前記外部補強治具がチュービングバンドである請求
項1、請求項3、請求項4、又は請求項5の局部補強治
具を備えるエネルギー吸収体。
6. The energy provided with the local reinforcing jig of claim 1, claim 3, claim 4, or claim 5, wherein the inner reinforcing jig is a stop ring, and the outer reinforcing jig is a tubing band. Absorber.
JP33360894A 1994-10-20 1994-12-16 Energy absorber with local reinforcement jig Expired - Fee Related JP3528290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33360894A JP3528290B2 (en) 1994-10-20 1994-12-16 Energy absorber with local reinforcement jig

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27979294 1994-10-20
JP6-279792 1994-10-20
JP33360894A JP3528290B2 (en) 1994-10-20 1994-12-16 Energy absorber with local reinforcement jig

Publications (2)

Publication Number Publication Date
JPH08170674A true JPH08170674A (en) 1996-07-02
JP3528290B2 JP3528290B2 (en) 2004-05-17

Family

ID=26553488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33360894A Expired - Fee Related JP3528290B2 (en) 1994-10-20 1994-12-16 Energy absorber with local reinforcement jig

Country Status (1)

Country Link
JP (1) JP3528290B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026195A1 (en) * 1996-12-13 1998-06-18 Toyo Boseki Kabushiki Kaisha Impact absorber made of resin
WO1999000608A1 (en) * 1997-06-27 1999-01-07 Nippon Petrochemicals Co., Ltd. Impact energy absorbing member
JP2002264822A (en) * 2001-03-06 2002-09-18 Taiho Kogyo Co Ltd Impact absorbing means
JP2002302049A (en) * 2001-04-03 2002-10-15 Taiho Kogyo Co Ltd Impact absorbing means
JP2005282792A (en) * 2004-03-30 2005-10-13 Fukuoka Prefecture Shock absorbing member
CN111674349A (en) * 2020-05-12 2020-09-18 宁波吉利汽车研究开发有限公司 Four-connecting-rod hinge structure beneficial to protecting head of pedestrian

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026195A1 (en) * 1996-12-13 1998-06-18 Toyo Boseki Kabushiki Kaisha Impact absorber made of resin
US6085878A (en) * 1996-12-13 2000-07-11 Toyo Boseki Kabushiki Kaisha Impact absorber made of resin
WO1999000608A1 (en) * 1997-06-27 1999-01-07 Nippon Petrochemicals Co., Ltd. Impact energy absorbing member
JP2002264822A (en) * 2001-03-06 2002-09-18 Taiho Kogyo Co Ltd Impact absorbing means
JP2002302049A (en) * 2001-04-03 2002-10-15 Taiho Kogyo Co Ltd Impact absorbing means
JP2005282792A (en) * 2004-03-30 2005-10-13 Fukuoka Prefecture Shock absorbing member
CN111674349A (en) * 2020-05-12 2020-09-18 宁波吉利汽车研究开发有限公司 Four-connecting-rod hinge structure beneficial to protecting head of pedestrian
CN111674349B (en) * 2020-05-12 2022-09-02 吉利亚欧(宁波梅山保税港区)科技有限公司 Four-connecting-rod hinge structure beneficial to protecting head of pedestrian

Also Published As

Publication number Publication date
JP3528290B2 (en) 2004-05-17

Similar Documents

Publication Publication Date Title
US7842378B2 (en) Energy absorber and method for manufacturing the same
US5419416A (en) Energy absorber having a fiber-reinforced composite structure
US10077015B2 (en) Impact absorber
US6099071A (en) Hollow frame member of aluminum alloy for vehicle body frame
JP3246041B2 (en) Energy absorbing material
EP1293390A2 (en) Taper and flare energy absorption system
US9598035B2 (en) Impact absorber
EP0202098B1 (en) Fiber reinforded tubular component
JPH08177922A (en) Energy absorbing body of hybridized fiber reinforced compound material
JP2008024084A (en) Connecting structure of bumper reinforcement and shock absorbing member
JPH08170674A (en) Energy absorber provided with local reinforcing jig
JP4443954B2 (en) FRP energy absorbing member structure
JP3837818B2 (en) FRP thick energy absorber
JPH07165109A (en) Body structure for vehicle
JP3456596B2 (en) Energy absorbing member
JP4103801B2 (en) Energy absorber
US6715593B1 (en) Crush tube assembly
JP3786743B2 (en) Extrusion axial energy absorbing member
JP2006207679A (en) Shock absorbing member manufacturing method
JP7130531B2 (en) Shock absorption mechanism
JPH09277954A (en) Tapered impact absorbing member
JP2017053365A (en) Energy absorption structure
JP3324697B2 (en) Impact energy absorbing structure and impact energy absorbing material on the upper part of vehicle body
JP3141569B2 (en) Energy absorbing material
JP2005170299A (en) Energy absorbing structure and energy absorbing method of automobile

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees