JP3246041B2 - Energy absorbing material - Google Patents

Energy absorbing material

Info

Publication number
JP3246041B2
JP3246041B2 JP05428393A JP5428393A JP3246041B2 JP 3246041 B2 JP3246041 B2 JP 3246041B2 JP 05428393 A JP05428393 A JP 05428393A JP 5428393 A JP5428393 A JP 5428393A JP 3246041 B2 JP3246041 B2 JP 3246041B2
Authority
JP
Japan
Prior art keywords
energy absorbing
absorbing member
load
cylindrical portion
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05428393A
Other languages
Japanese (ja)
Other versions
JPH06264949A (en
Inventor
明司 穴原
康己 宮下
義治 安居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP05428393A priority Critical patent/JP3246041B2/en
Publication of JPH06264949A publication Critical patent/JPH06264949A/en
Application granted granted Critical
Publication of JP3246041B2 publication Critical patent/JP3246041B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superstructure Of Vehicle (AREA)
  • Vibration Dampers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は自動車に装備されるバン
パの支持部材やヘリコプターの床下部などに使用される
エネルギー吸収部材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energy absorbing member used for a support member of a bumper mounted on an automobile or a lower floor of a helicopter.

【0002】[0002]

【従来の技術】自動車には衝突時における車体及び搭乗
者の保護のため、一般に車体の前後に衝突時の衝撃エネ
ルギーを吸収するバンパが取り付けられている。バンパ
は自動車が障害物と衝突した際に加わる大きな負荷に対
して非可逆的にエネルギーを吸収する必要がある。そし
て、吸収エネルギーを大きくするため、従来からバンパ
本体を支持する支持部材の材質や構造の改良が種々なさ
れている。
2. Description of the Related Art In order to protect a vehicle body and a passenger at the time of a collision, an automobile is generally provided with a bumper for absorbing impact energy at the time of a collision in front and rear of the vehicle body. Bumpers need to irreversibly absorb energy in the event of a large load applied when the vehicle collides with an obstacle. In order to increase the absorbed energy, various improvements in the material and structure of the support member for supporting the bumper body have been conventionally made.

【0003】又、ヘリコプターの座席床下部にも衝撃吸
収部材が使用されている。この衝撃吸収部材として、不
慮の故障で機体が着地する際の衝撃を少しでも和らげ、
特に搭乗者への影響を軽減するために、軽量でエネルギ
ー吸収機能の高い部材が求められている。
[0003] Impact absorbing members are also used below the seat floor of helicopters. As this shock absorbing member, the shock when the aircraft lands due to an accidental failure is moderated even a little,
Particularly, in order to reduce the influence on passengers, there is a demand for a member that is lightweight and has a high energy absorption function.

【0004】例えば、1988年2月18日公開のドイ
ツ特許(3626150)には、繊維強化プラスチック
(FRP)から成る弾性変形可能な減衰成形体を介して
バンパを車体のステイに取り付けたものが開示されてい
る。減衰成形体は実質的にリング状に形成され、減衰成
形体を形成する繊維強化プラスチックの強化繊維は周方
向に配列されている。そして、減衰成形体はその側面か
ら衝撃力が加わる状態、すなわち衝撃力が加わる方向に
対して減衰成形体の軸が直交する状態で使用される。
[0004] For example, German Patent (3262150) published February 18, 1988 discloses a bumper attached to a stay of a vehicle body via an elastically deformable damping molded body made of fiber reinforced plastic (FRP). Have been. The damping molding is formed substantially in a ring shape, and the reinforcing fibers of the fiber-reinforced plastic forming the damping molding are arranged in the circumferential direction. The damping molded body is used in a state where an impact force is applied from its side surface, that is, in a state where the axis of the damping molded body is orthogonal to the direction in which the impact force is applied.

【0005】又、特開昭57−124142号公報には
バンパに使用する衝撃保護用構造材として、図11に示
すように繊維複合材料(例えばエポキシ樹脂含浸ガラス
繊維)製の条帯21からなる網状組織で円筒状に形成さ
れた構造体22が提案されている。条帯21は構造体2
2の長手方向軸線に対して30〜60度の傾斜角をもっ
て傾斜するように配設され、各結節点23は約10層の
繊維複合材料製の条帯21で形成されている。構造体2
2は筒の軸方向に圧縮負荷が加わる状態で使用され、構
造体22に軸方向の荷重が作用すると網状組織の対向す
る結節点23において層間剥離を起こし、剪断降伏が繊
維とマトリックスとの界面で生ずることによりエネルギ
ーを段階的に吸収するようになっている。
Japanese Unexamined Patent Publication No. 57-124142 discloses an impact protection structural material used for a bumper, as shown in FIG. 11, comprising a strip 21 made of a fiber composite material (for example, an epoxy resin impregnated glass fiber). A structure 22 formed in a cylindrical shape with a network structure has been proposed. The strip 21 is the structure 2
Each of the nodes 23 is formed by about ten layers of fiber composite material strips 21 arranged at an angle of inclination of 30 to 60 degrees with respect to the two longitudinal axes. Structure 2
No. 2 is used in a state where a compressive load is applied in the axial direction of the cylinder, and when an axial load acts on the structure 22, delamination occurs at the opposing nodes 23 of the network, and the shear yield occurs at the interface between the fiber and the matrix. As a result, energy is absorbed stepwise.

【0006】又、USP3143321号等には図12
に示すように、円筒体24と、円筒体24の内面に食い
込む凸部25aを備えた固定部材25とからなるエネル
ギー吸収部材が提案されている。このエネルギー吸収部
材も筒の軸方向に圧縮負荷が加わる状態で使用される。
そして、円筒体24が軸圧縮を受けると、凸部25aが
円筒体24を外方に拡張するように作用して、円筒体2
4は継続的に破壊される。
[0006] In addition, US Pat. No. 3,143,321 discloses FIG.
As shown in (2), an energy absorbing member including a cylindrical body 24 and a fixing member 25 having a convex portion 25a that cuts into the inner surface of the cylindrical body 24 has been proposed. This energy absorbing member is also used in a state where a compressive load is applied in the axial direction of the cylinder.
When the cylindrical body 24 is subjected to axial compression, the projection 25a acts to expand the cylindrical body 24 outward, and the cylindrical body 2
4 is destroyed continuously.

【0007】[0007]

【発明が解決しようとする課題】ところが、前記ドイツ
特許に開示されたような実質的にリング状の繊維強化プ
ラスチックに、その側面から外力を加えて破壊すると、
変形部位は荷重と同方向に延びる部位のみで破壊され、
外力に対して直角方向の部位は実質的に元のままの形状
を残し破壊されない。従って、部材に荷重を加えた際の
圧縮変形過程のエネルギー吸収量(具体的には圧縮荷重
−変位量曲線と変位量を表す軸との間の面積で表され
る)が極めて小さく、部材重量当たりの効率が悪いとい
う問題がある。
However, when an external force is applied to the substantially ring-shaped fiber-reinforced plastic as disclosed in the above-mentioned German patent from the side thereof, the material is broken.
The deformed part is destroyed only at the part extending in the same direction as the load,
The portion perpendicular to the external force remains substantially intact and is not destroyed. Therefore, the amount of energy absorbed during the compression deformation process when a load is applied to the member (specifically, represented by the area between the compression load-displacement curve and the axis representing the displacement) is extremely small, and the weight of the member is small. There is a problem that the hit efficiency is poor.

【0008】一方、特開昭57−124142号公報に
開示された筒状の衝撃保護用構造材は、筒の軸方向から
圧縮荷重が加わるようにバンパを支持した状態で使用さ
れる。従って、圧縮荷重を加えて破壊を行った場合は全
ての部位が破壊されるため、側方から圧縮荷重を加えた
場合に比較して部材重量当たりのエネルギー吸収効率を
高めることができる。しかし、条帯21の交差角が30
〜60度の網目組織で構成されているため、軸方向の圧
縮荷重が作用すると網目組織の変形により筒状体が小荷
重で容易に圧縮変形するという問題がある。又、バンパ
支持部材のように人体への衝撃を小さくするという条件
がある場合には、荷重の最大値を人体への影響の低いレ
ベルに抑える必要があり、荷重変動の激しい場合には全
体としてのエネルギー吸収量が小さくなる。従って、人
体への衝撃を小さく、しかも変形時のエネルギー吸収量
を大きくするという要求を満たすためには、突発的な荷
重の発生を防止し、圧縮荷重−変位量曲線をできるだけ
荷重変動の少ない平坦なレベルに保つことが重要とな
る。しかし、この衝撃保護用構造材は変位量の増加に伴
って荷重が逐次低下していくため、エネルギー吸収量が
大きくなり難いという問題がある。
On the other hand, a cylindrical impact protection structural material disclosed in Japanese Patent Application Laid-Open No. 57-124142 is used with a bumper supported so that a compressive load is applied from the axial direction of the cylinder. Therefore, when a compressive load is applied to break, all parts are broken, so that the energy absorption efficiency per member weight can be increased as compared with a case where a compressive load is applied from the side. However, the intersection angle of the strip 21 is 30
Since it is composed of a mesh structure of up to 60 degrees, there is a problem that when a compressive load is applied in the axial direction, the tubular body is easily compressed and deformed with a small load due to deformation of the mesh structure. Also, when there is a condition such as a bumper support member that reduces the impact on the human body, it is necessary to suppress the maximum value of the load to a low level that does not affect the human body. Energy absorption is reduced. Therefore, in order to satisfy the requirement of reducing the impact on the human body and increasing the amount of energy absorption during deformation, it is necessary to prevent the occurrence of sudden loads and to set the compressive load-displacement curve as flat as possible with as little load fluctuation as possible. It is important to keep it at an appropriate level. However, this impact protection structural material has a problem that the amount of energy absorption is unlikely to increase because the load gradually decreases as the displacement increases.

【0009】又、USP3143321号等に開示され
たエネルギー吸収部材では、筒状体の他に筒状体を破壊
するための凸部を有する固定部材を必要とし、凸部と筒
状体との嵌合状態が破壊挙動に大きく影響を与える。そ
して、筒状体と固定部材とが別々に製作されるため、両
者の製作誤差により破壊挙動が不安定になる虞がある。
Further, the energy absorbing member disclosed in US Pat. No. 3,143,321 requires a fixing member having a convex portion for breaking the cylindrical member in addition to the cylindrical member, and the fitting between the convex portion and the cylindrical member is required. The combined state greatly affects the fracture behavior. And since a cylindrical body and a fixing member are manufactured separately, there exists a possibility that destructive behavior may become unstable by the manufacturing error of both.

【0010】本発明は前記の問題点に鑑みてなされたも
のであって、その目的は自動車の衝突時やヘリコプター
のローター故障による着地時の衝撃を和らげ、搭乗者へ
の影響を軽減するため、衝突変形時に突発的な荷重を発
生せず、しかも部材重量当たりのエネルギー吸収効率が
良いエネルギー吸収部材を提供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to reduce the impact on a passenger by reducing the impact at the time of a collision of a car or landing due to a rotor failure of a helicopter. An object of the present invention is to provide an energy absorbing member which does not generate a sudden load during collision deformation and has good energy absorbing efficiency per member weight.

【0011】[0011]

【課題を解決するための手段】前記の目的を達成するた
め本発明のエネルギー吸収部材は、短繊維が混入された
繊維強化樹脂で筒状に成形され、筒状部の壁が第1端部
よりも第2端部側で肉厚となるように形成され、かつ第
1端部の壁面はその先端が筒状部の外周面より外方に突
出するように外側に湾曲形成されている。
In order to achieve the above object, an energy absorbing member according to the present invention is formed into a tubular shape with a fiber reinforced resin mixed with short fibers, and a wall of the tubular portion is formed at a first end portion. The second end portion is formed so as to be thicker on the second end side, and the wall surface of the first end portion is formed so as to be curved outward so that its tip protrudes outward from the outer peripheral surface of the cylindrical portion.

【0012】又、筒状部の第2端部には底壁が形成さ
れ、筒状部内面と底壁内面とが円弧面により接続されて
いるのが好ましい。
It is preferable that a bottom wall is formed at the second end of the cylindrical portion, and the inner surface of the cylindrical portion and the inner surface of the bottom wall are connected by an arc surface.

【0013】[0013]

【作用】本発明のエネルギー吸収部材は筒状部の軸方向
から圧縮荷重を受けるように取り付けられた状態で使用
される。エネルギー吸収部材の軸方向に荷重がかかる
と、筒状部の肉厚の薄い側すなわち断面積の小さな第1
端部側から徐々に破壊が始まり、逐次第2端部側へ破壊
部位が伝播する。そして、継続的な安定した破壊が持続
して大きなエネルギーが吸収される。破壊は筒状部の全
周にわたって全ての部位で発生してエネルギーを吸収す
るため、エネルギー吸収部材は部材重量当たりのエネル
ギー吸収効率が良くなる。
The energy absorbing member of the present invention is used in a state where it is mounted so as to receive a compressive load from the axial direction of the cylindrical portion. When a load is applied in the axial direction of the energy absorbing member, the first portion having a small cross-sectional area, that is, the first portion having a small thickness, is formed.
The destruction starts gradually from the end, and the destruction site gradually propagates to the two ends. Then, continuous stable destruction is sustained, and large energy is absorbed. Since the destruction occurs at all portions over the entire circumference of the cylindrical portion and absorbs energy, the energy absorbing member has improved energy absorption efficiency per member weight.

【0014】筒状体の第1端部すなわち薄肉側先端が外
方へラッパ状に湾曲しているため、衝突初期の荷重立ち
上がり時に突発的な大荷重が発生しない。筒状部の第2
端部に底壁が形成された構成の場合は、底壁に小径の孔
を形成してボルト締めなどの手段により自動車のフレー
ム等に直接取り付けることができる。又、筒状部内面と
底壁内面とが円弧面により接続されているため、接続部
に応力集中による破断が発生せず、継続的な安定した破
壊が最終段階まで持続して大きなエネルギーが吸収され
る。
Since the first end of the cylindrical body, that is, the thin-walled end is curved outwardly in a trumpet shape, a sudden large load does not occur when the load rises at the beginning of the collision. The second of the cylindrical part
In the case of a configuration in which a bottom wall is formed at the end, a small-diameter hole is formed in the bottom wall, and the bottom wall can be directly attached to an automobile frame or the like by means such as bolting. In addition, since the inner surface of the cylindrical part and the inner surface of the bottom wall are connected by an arc surface, no breakage due to stress concentration occurs at the connection part, and continuous stable breakage continues to the final stage and large energy is absorbed Is done.

【0015】[0015]

【実施例】【Example】

(実施例1)以下、本発明を具体化した第1実施例を図
1〜図4に従って説明する。
(Embodiment 1) Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.

【0016】図1及び図2に示すように、エネルギー吸
収部材1は円筒状に形成されている。筒状部2の壁は第
1端部から第2端部に向かって次第に肉厚となるように
形成されている。筒状部2は外径が一定で、内径が第1
端部から第2端部に向かって連続的に縮小するように形
成されている。
As shown in FIGS. 1 and 2, the energy absorbing member 1 is formed in a cylindrical shape. The wall of the tubular portion 2 is formed so as to become gradually thicker from the first end to the second end. The outer diameter of the cylindrical portion 2 is constant, and the inner diameter is the first.
It is formed so as to continuously reduce from the end to the second end.

【0017】筒状部2の第1端部の壁面の形状は、その
先端が筒状部の外周面より外方に突出するように外側に
湾曲するラッパ形状となっている。図2(b)に示すよ
うに、湾曲部3は内外両面共に湾曲面となるように形成
され、外面3aの曲率半径が内面3bの曲率半径より小
さく設定されている。すなわち、エネルギー吸収部材1
はその断面積が第1端部側から第2端部側に向かって次
第に大きくなっている。
The shape of the wall surface of the first end of the cylindrical portion 2 is a trumpet shape that curves outward so that the tip protrudes outward from the outer peripheral surface of the cylindrical portion. As shown in FIG. 2B, the curved portion 3 is formed so that both the inner and outer surfaces are curved, and the radius of curvature of the outer surface 3a is set smaller than the radius of curvature of the inner surface 3b. That is, the energy absorbing member 1
Has a gradually increasing cross-sectional area from the first end to the second end.

【0018】エネルギー吸収部材1の素材には短繊維が
混入された樹脂すなわち繊維強化樹脂(FRP)が使用
されている。樹脂としては熱可塑性樹脂、熱硬化性樹脂
のいずれであってもよいが、熱硬化性樹脂は熱可塑性樹
脂に比較して成形硬化に時間を要し、コスト高となるた
め一般的に熱可塑性樹脂の方が好適である。成形は主に
射出成形で行われる。混入される短繊維の長さ、含有率
などは自由に選択できるが、繊維長の長い方が、又、繊
維含有率の多い方が、いずれも大きな破壊荷重を発生
し、大きなエネルギー吸収効果を有するので好ましい。
但し、過大な繊維含有率は樹脂に対する分散が悪くなる
ため限界があり、通常ほぼ40%以上にすることは困難
である。繊維長3mmのガラス繊維を使用し、繊維含有
率30%程度の繊維強化樹脂を使用した場合、良好な結
果が得られた。
As a material of the energy absorbing member 1, a resin mixed with short fibers, that is, a fiber reinforced resin (FRP) is used. The resin may be either a thermoplastic resin or a thermosetting resin, but the thermosetting resin generally requires a longer time for molding and curing than the thermoplastic resin, and is expensive because of the high cost. Resins are preferred. The molding is mainly performed by injection molding. The length and content of the short fibers to be mixed can be freely selected, but the longer the fiber length or the higher the fiber content, the larger the breaking load and the greater the energy absorption effect. Is preferred.
However, an excessive fiber content has a limit due to poor dispersion in the resin, and it is usually difficult to increase the fiber content to about 40% or more. When glass fiber having a fiber length of 3 mm was used and a fiber reinforced resin having a fiber content of about 30% was used, good results were obtained.

【0019】次に前記のように構成されたエネルギー吸
収部材1の作用を説明する。このエネルギー吸収部材1
は軸方向から圧縮荷重を受ける状態で、バンパの支持部
材としてあるいは、直接荷重が作用する衝撃保護部材と
して使用される。
Next, the operation of the energy absorbing member 1 configured as described above will be described. This energy absorbing member 1
Is used as a support member for a bumper or as an impact protection member to which a load acts directly under a compressive load from the axial direction.

【0020】破壊荷重は通常肉厚に比例するため、エネ
ルギー吸収部材1が軸方向の圧縮荷重を受けると、筒状
部2はその肉厚が最も薄い第1端部で破壊が開始され
る。先端(第1端部)の薄肉部は小さな荷重で容易に破
壊が開始されるため、突発的な大荷重が発生せず搭乗者
に衝撃を与えない。
Since the breaking load is usually proportional to the wall thickness, when the energy absorbing member 1 receives a compressive load in the axial direction, the cylindrical portion 2 starts to break at the first end having the thinnest wall. Since the thin portion at the tip (first end) is easily broken with a small load, no sudden large load occurs and no impact is given to the occupant.

【0021】筒状部2の先端で発生した破壊は、もし荷
重が大きなレベルであれば、隣接する厚肉でより大きな
破壊荷重を必要とする部分に波及し、次々と連続的に破
壊が進展して大きなエネルギーを吸収する。筒状部2は
筒状部の全周にわたって全ての部位で破壊を起こしてエ
ネルギーを吸収する。従って、筒状部2を構成する材料
の重量が小さいにも拘らず、大きなエネルギーを吸収
し、極めて効率のよい優れたエネルギー吸収部材とな
る。
If the load at the tip of the cylindrical portion 2 is large, if the load is at a large level, it spreads to the adjacent thick portion requiring a larger breaking load, and the breaking progresses one after another. And absorb a lot of energy. The cylindrical portion 2 absorbs energy by breaking at all portions over the entire circumference of the cylindrical portion. Therefore, despite the small weight of the material constituting the cylindrical portion 2, it absorbs a large amount of energy and becomes an extremely efficient and excellent energy absorbing member.

【0022】もし筒状部2全体が対等の強度を持った部
位で構成されていると、すなわち肉厚が一定であると、
圧縮荷重により筒状部全体が破壊の対象となり、その中
の最も弱い部分(通常は中央部分)で破壊(座屈)が発
生して筒状の形態を保持できなくなる。その結果、残さ
れた部位には荷重が伝播されず、継続的な破壊が行われ
ないため、最終的な全体の吸収エネルギーは極めて小さ
なレベルになる。
If the entire cylindrical portion 2 is composed of portions having equal strength, that is, if the wall thickness is constant,
The entire cylindrical portion is subject to destruction due to the compressive load, and destruction (buckling) occurs in the weakest portion (usually the central portion) of the portion, so that the cylindrical shape cannot be maintained. As a result, the load is not propagated to the remaining portion and no continuous destruction occurs, so that the final overall absorbed energy is at a very small level.

【0023】又、筒状部2の先端湾曲部3が外方に向か
ってラッパ状に拡がっていることが筒状部2を破砕しな
がら、厚肉側に向けて破壊を連続させるのに極めて重要
な機能を担っている。湾曲部3の存在により、初期段階
の破壊が筒状部2の壁を外方に向けて、数個の亀裂によ
って引き裂き、丁度花の蕾が外側に向かって数枚の花弁
一枚一枚に分かれて、しかも一斉に拡がるように破壊が
進行する。このとき、壁は破壊に先行して裂けるのでは
なく、壁の破壊と同時あるいは若干遅れて裂ける。すな
わち、壁は軸方向からの荷重により、引き裂かれながら
花弁状に開き、隣接部にその破壊のパターンを伝達し、
再現性のある安定した破壊挙動に繋がる。
Also, the fact that the curved end portion 3 of the cylindrical portion 2 expands outwardly in a trumpet shape is extremely necessary for crushing the cylindrical portion 2 and continuing the destruction toward the thick side. Plays an important function. Due to the presence of the curved portion 3, the initial stage of destruction causes the wall of the tubular portion 2 to be directed outward and torn by several cracks, and just the flower buds outward to several petals one by one. Destruction progresses as it divides and spreads all at once. At this time, the wall does not tear prior to the destruction, but simultaneously or slightly after the destruction of the wall. That is, the wall opens in a petal shape while being torn by the load from the axial direction, transmitting the pattern of its destruction to the adjacent part,
It leads to reproducible and stable fracture behavior.

【0024】ただ単に壁の肉厚が筒状部2の軸方向に沿
って変化しているのみでは、安定した連続的な破壊挙動
が得られず、様々な破壊態様のため、変形荷重曲線は多
様に変化し、破壊荷重に対する吸収エネルギーは大きく
ばらつくことになる。
If the wall thickness merely changes along the axial direction of the cylindrical portion 2, stable and continuous breaking behavior cannot be obtained. It changes variously, and the absorbed energy with respect to the breaking load greatly varies.

【0025】又、この実施例では筒状部2の内面が一方
向に向かうテーパ状、すなわち第2端部側ほど縮径とな
るように形成されているため、射出成形で製作する際
に、型抜き等の作業がし易いというメリットもある。
In this embodiment, since the inner surface of the cylindrical portion 2 is formed in a tapered shape in one direction, that is, the diameter is reduced toward the second end portion, it is difficult to manufacture by injection molding. There is also a merit that work such as die cutting is easy.

【0026】強化用の短繊維としてガラス繊維(繊維
長:3mm)を混入したポリプロピレン樹脂(繊維の重
量含有率30%)を使用して射出成形により、図1,2
に相当する形状のエネルギー吸収部材1を製造した。そ
して、そのエネルギー吸収部材1に対して、軸方向から
の圧縮荷重を加えた場合の圧縮荷重と変位量との関係を
測定した結果を図3に示す。なお、圧縮はエネルギー吸
収部材1の両端間の距離がほぼ70mm程度となるまで
行った。又、各部の寸法は次の通りである。
As shown in FIGS. 1 and 2, injection molding is carried out using a polypropylene resin (fiber content 30%) mixed with glass fibers (fiber length: 3 mm) as short fibers for reinforcement.
Was manufactured. FIG. 3 shows the result of measuring the relationship between the compressive load and the amount of displacement when a compressive load is applied to the energy absorbing member 1 in the axial direction. The compression was performed until the distance between both ends of the energy absorbing member 1 became approximately 70 mm. The dimensions of each part are as follows.

【0027】 湾曲部3の湾曲開始部位の肉厚t1 :5mm 筒状部2の外径φ:60mm 筒状部2の第2端部の肉厚t2 :10mm エネルギー吸収部材1の長さL:100mm 湾曲部外面3aの曲率半径R1 :2.5mm 湾曲部内面3bの曲率半径R2 :7mm 湾曲部先端の突出長さp:1mm 又、比較のため、筒状部2の第1端部に湾曲部3が存在
しない点だけが異なり、その他の構造、寸法が前記のも
のと同じエネルギー吸収部材に対しても同じ測定を行っ
た。その結果を図4に示す。
The thickness t 1 of the bending start portion of the bending portion 3: 5 mm The outer diameter φ of the cylindrical portion 2: 60 mm The thickness t 2 of the second end of the cylindrical portion 2: 10 mm The length L of the energy absorbing member 1: 100 mm Curvature radius R1 of the curved portion outer surface 3a: 2.5 mm Curvature radius R2 of the curved portion inner surface 3b: 7 mm Projection length p of the curved portion tip: 1 mm Also, for comparison, the first portion of the cylindrical portion 2 is curved. The same measurement was performed on an energy absorbing member having the same structure and dimensions as those described above except that the portion 3 was not present. FIG. 4 shows the results.

【0028】図3から明らかなように、先端に湾曲部3
が存在するエネルギー吸収部材1の場合は、変位量の増
加に伴って荷重は若干増大傾向にあるが、ほぼ一定荷重
を発生して安定して推移している。その結果、荷重曲線
と変位量を表す軸との間の面積で表される吸収エネルギ
ーも大きい。
As is apparent from FIG.
In the case of the energy absorbing member 1 in which the load is present, the load tends to increase slightly with an increase in the amount of displacement, but the load is kept stable by generating a substantially constant load. As a result, the absorbed energy represented by the area between the load curve and the axis representing the displacement is also large.

【0029】一方、湾曲部3のないエネルギー吸収部材
の場合は、筒状部2の薄肉部位の一部で座屈的な破断が
生じたため、図4に示すように圧縮初期に突発的な大荷
重が発生した後、比較的小さな荷重が断続的に持続し
た。その結果、吸収エネルギーも小さいレベルであっ
た。又、エネルギー吸収部材の破壊状況を観察したとこ
ろ、花弁状の破壊は見られなかった。
On the other hand, in the case of the energy absorbing member having no curved portion 3, since a buckling break occurs in a part of the thin portion of the cylindrical portion 2, a sudden large deformation occurs at the beginning of compression as shown in FIG. After the load occurred, a relatively small load continued intermittently. As a result, the absorbed energy was also at a small level. When the state of destruction of the energy absorbing member was observed, no petal-shaped destruction was observed.

【0030】(実施例2)次に第2実施例を図5〜図7
に従って説明する。この実施例では筒状部2の第2端部
に底壁4が一体に形成されている点と、筒状部2の肉厚
が巨視的にみて軸方向に2段階に変化するように形成さ
れている点とが第1実施例のものと大きく異なってい
る。
(Embodiment 2) Next, a second embodiment will be described with reference to FIGS.
It will be described according to. In this embodiment, the bottom wall 4 is formed integrally with the second end of the tubular portion 2 and the thickness of the tubular portion 2 is formed so as to change in two stages in the axial direction macroscopically. This is greatly different from the first embodiment.

【0031】筒状部2は外径が一定で肉厚が巨視的にみ
て2段階に変化するように形成されている。すなわち、
筒状部2は比較的薄肉の第1段目2aと、厚肉の第2段
目2bとからなり、第1段目2aの先端に湾曲部3が形
成されている。第1段目2a及び第2段目2bはいずれ
も底壁4に近い側ほど肉厚となるように、その内面が僅
かなテーパ状に形成されている。第1段目2aと第2段
目2bとの連続部は小さな円弧面で接続されたテーパ状
に形成されている。
The cylindrical portion 2 is formed so that its outer diameter is constant and its thickness changes macroscopically in two stages. That is,
The cylindrical portion 2 includes a relatively thin first stage 2a and a thick second stage 2b, and a curved portion 3 is formed at the tip of the first stage 2a. The inner surface of each of the first stage 2a and the second stage 2b is formed in a slightly tapered shape so as to be thicker on the side closer to the bottom wall 4. The continuous portion of the first stage 2a and the second stage 2b is formed in a tapered shape connected by a small arc surface.

【0032】第2段目2bと底壁4との連続部の内面、
すなわち筒状部2の内面と底部3の内面とは円弧面4a
により接続されている。底壁4の中央には小径の孔5が
形成されている。孔5はエネルギー吸収部材1を自動車
のフレーム等に取り付ける際のボルト挿通孔の役割を果
たす。底壁4は破壊されずエネルギー吸収に寄与しない
ので、あまり厚くして大きな重量を持たせることは、軽
量化に反し好ましくない。従って、底壁4は筒状部2が
破壊される荷重に耐えられる厚さがあればよい。
Inner surface of a continuous portion between the second stage 2b and the bottom wall 4,
That is, the inner surface of the cylindrical portion 2 and the inner surface of the bottom portion 3 are arc-shaped surfaces 4a.
Connected by A small diameter hole 5 is formed in the center of the bottom wall 4. The hole 5 serves as a bolt insertion hole when the energy absorbing member 1 is attached to a frame of an automobile or the like. Since the bottom wall 4 is not destroyed and does not contribute to energy absorption, it is not preferable to make the bottom wall 4 too thick and have a large weight in spite of weight reduction. Therefore, the bottom wall 4 only needs to be thick enough to withstand the load at which the tubular portion 2 is broken.

【0033】このエネルギー吸収部材1も軸方向から圧
縮荷重を受ける状態で使用される。エネルギー吸収部材
1を自動車フレーム等に取り付ける方法には大きく分け
て2種類ある。第1の方法は底壁4の孔5にボルトを挿
通して、底壁4を直接ボルト締めなどの手段により固定
する方法である。第2の方法は図7に示すように、エネ
ルギー吸収部材1の第1端部に蓋体6を取り付け、底壁
4の孔5と蓋体6の孔6aとを貫通するボルト7と、ボ
ルト7に螺合されるナット8とにより固定する方法であ
る。この方法では、エネルギー吸収部材1は底壁4がフ
レーム9に接触し、蓋体6がバンパーレインフォースメ
ント10に接触する状態で自動車に固定される。
The energy absorbing member 1 is also used in a state where it receives a compressive load from the axial direction. There are roughly two types of methods for attaching the energy absorbing member 1 to an automobile frame or the like. The first method is to insert a bolt through the hole 5 in the bottom wall 4 and directly fix the bottom wall 4 by means such as bolting. In a second method, as shown in FIG. 7, a lid 6 is attached to the first end of the energy absorbing member 1, and a bolt 7 penetrating through the hole 5 of the bottom wall 4 and the hole 6a of the lid 6, This is a method of fixing with a nut 8 which is screwed to the nut 7. In this method, the energy absorbing member 1 is fixed to the automobile with the bottom wall 4 in contact with the frame 9 and the lid 6 in contact with the bumper reinforcement 10.

【0034】蓋体6はその内側に形成された一対の突部
6bが、湾曲部3より奥において筒状部2の内面と係合
して位置決めされた状態で、エネルギー吸収部材1に取
り付けられる。蓋体6は筒状部2に特に接着する必要は
ないが、取扱上などの都合で予め軽く接着しておいても
よい。
The lid 6 is attached to the energy absorbing member 1 in a state where a pair of projections 6b formed inside the lid 6 are positioned so as to engage with the inner surface of the tubular portion 2 at a position deeper than the curved portion 3. . The lid 6 does not need to be particularly adhered to the cylindrical portion 2, but may be lightly adhered in advance for convenience of handling or the like.

【0035】エネルギー吸収部材1が軸方向の圧縮荷重
を受けると、第1実施例の場合と同様に、筒状部2の先
端側から逐次破壊が進展する。筒状部2と底壁4との接
続部が円弧面ではなく角状であると、破壊の過程で当該
接続部に応力集中が起こり、破壊が接続部に到達する前
に亀裂を生じて破断し易くなる。破壊途中でこの破断が
発生すると、エネルギー吸収機能が著しく阻害される。
しかし、筒状部2と底壁4との接続部が円弧面で接続さ
れているため接続部に応力集中が発生せず、筒状部2は
確実に先端部から底壁4に向かって逐次破壊され、大き
なエネルギーを吸収する。
When the energy absorbing member 1 receives a compressive load in the axial direction, as in the case of the first embodiment, the breakage progressively progresses from the distal end side of the tubular portion 2. If the connection between the cylindrical portion 2 and the bottom wall 4 is not a circular arc but a square, stress concentration occurs in the connection during the process of fracture, and a crack occurs before the fracture reaches the connection, resulting in fracture. Easier to do. If this break occurs during the break, the energy absorption function is significantly impaired.
However, since the connecting portion between the tubular portion 2 and the bottom wall 4 is connected by an arc surface, stress concentration does not occur at the connecting portion, and the tubular portion 2 is surely successively moved from the front end portion toward the bottom wall 4. It is destroyed and absorbs large amounts of energy.

【0036】この実施例のエネルギー吸収部材1は筒状
部2の肉厚が2段階に変化しているため、薄肉部である
第1段目2aの破壊が終了するまでは、第1のレベルに
荷重が保持され、その後、厚肉部である第2段目2bの
破壊が起こり第2のレベルに荷重が上昇する。すなわ
ち、エネルギー吸収部材1は肉厚に応じた2段階の荷重
変化挙動を示し、1個の部材で2種のレベルの異なる衝
突速度に対応可能である。この挙動は自動車の搭乗者保
護のために使用されるいわゆるエアバッグの作動に対す
るセンサのチューナー機能として極めて重要となる。第
1段目2a及び第2段目2bの肉厚はどの程度の衝突速
度までを対象とするかによって設定される。
In the energy absorbing member 1 of this embodiment, since the thickness of the cylindrical portion 2 changes in two steps, the first level 2a, which is the thin portion, is not removed until the first stage 2a is destroyed. Then, the second stage 2b, which is a thick portion, is broken, and the load rises to the second level. That is, the energy absorbing member 1 exhibits two stages of load change behavior according to the wall thickness, and one member can cope with two different levels of collision speed. This behavior is extremely important as a tuner function of the sensor for the operation of a so-called airbag used for protection of a vehicle occupant. The wall thicknesses of the first stage 2a and the second stage 2b are set depending on up to what collision speed is targeted.

【0037】例えば、第2段目2bの破壊が起こる第2
のレベルを、搭乗者に障害となる虞のある一定速度以上
の速度での衝突時にエネルギー吸収部材1に作用する荷
重レベルに設定し、第2段目2bの破壊荷重レベルを検
知してエアバッグが開くようにシステムを構成すること
ができる。この場合は、遅い衝突速度に対しては第1段
目2aが破壊されてエネルギー吸収が行われるがエアバ
ッグは開かず、搭乗者に障害となる虞のある一定速度以
上の速度での衝突時に更に大きなエネルギーを吸収しつ
つエアバッグが開く。従って、このエネルギー吸収部材
1を前記チューナー部材として使用すると、軽量で確実
でしかも安価な機能部材となる。
For example, the second stage 2b in which the destruction of the second stage 2b occurs
Is set to a load level acting on the energy absorbing member 1 at the time of a collision at a speed equal to or higher than a certain speed at which there is a risk that the occupant may be obstructed, and the destructive load level of the second stage 2b is detected. Can be configured to open. In this case, for a low collision speed, the first stage 2a is destroyed and energy is absorbed, but the airbag does not open and the collision occurs at a speed higher than a certain speed that may hinder the occupant. The airbag opens while absorbing more energy. Therefore, when this energy absorbing member 1 is used as the tuner member, it becomes a lightweight, reliable and inexpensive functional member.

【0038】第1実施例と同様に強化用の短繊維として
ガラス繊維(繊維長:3mm)を混入したポリプロピレ
ン樹脂(繊維の重量含有率30%)を使用して射出成形
により、図5に相当する形状のエネルギー吸収部材1を
製造した。そして、そのエネルギー吸収部材1に対し
て、軸方向からの圧縮荷重を加えた場合の圧縮荷重と変
位量との関係を測定した結果を図6に示す。各部の寸法
は次の通りである。
As in the case of the first embodiment, a polypropylene resin (fiber content: 30%) mixed with glass fiber (fiber length: 3 mm) was used as a short fiber for reinforcement by injection molding. The energy absorbing member 1 having the following shape was manufactured. FIG. 6 shows the result of measuring the relationship between the compressive load and the amount of displacement when a compressive load is applied to the energy absorbing member 1 in the axial direction. The dimensions of each part are as follows.

【0039】 湾曲部3の湾曲開始部位の肉厚t1 :5mm 筒状部2の外径φ:60mm 第1段目2aの基端の肉厚t3 :6mm 第2段目2bの先端の肉厚t4 :8mm 第2段目2bの基端の肉厚t5 :9mm エネルギー吸収部材1の長さL:100mm 第1段目2aの長さL1 :40mm、 底壁4の肉厚t6 :9mm 孔5の径d:11mm 第2段目2bと底壁4との接続部の曲率半径R3 :5m
m、 湾曲部外面3aの曲率半径R1 :2.5mm 湾曲部内面3bの曲率半径R2 :7mm 湾曲部先端の突出長さp:1mm 図6から明らかなように、エネルギー吸収部材1の肉厚
の2段階の変化に対応して、エネルギー吸収レベルが2
段階に変化している。荷重が肉厚にほぼ比例することが
裏付けられる。
The thickness t 1 of the bending start portion of the bending portion 3: 5 mm The outer diameter φ of the cylindrical portion 2: 60 mm The thickness t 3 of the base end of the first stage 2 a: 6 mm The thickness of the tip of the second stage 2 b t4: 8 mm Thickness of base end of second stage 2b t5: 9mm Length L of energy absorbing member 1: 100mm Length L1 of first stage 2a: 40mm, Thickness of bottom wall 4 t6: 9mm Hole 5 Radius d: 11 mm Curvature radius R3 of the connecting portion between the second step 2b and the bottom wall 4: 5m
m, radius of curvature R1 of the outer surface 3a of the curved portion: 2.5 mm Radius of curvature R2 of the inner surface 3b of the curved portion: 7 mm Projection length p of the tip of the curved portion: 1 mm As is clear from FIG. The energy absorption level is 2 in response to the two-step change.
It is changing in stages. This confirms that the load is almost proportional to the wall thickness.

【0040】なお、本発明は前記両実施例に限定される
ものではなく、例えば、筒状部2の肉厚を必ずしも第2
端部側に向かって連続的に厚くする必要はない。図8
(a)に示すように肉厚が間欠的に変化、すなわち連続
的に変化する部分と一定部分とを有するようにしたり、
図8(b)に示すように肉厚が2段階に変化する場合に
第1段目2a及び第2段目2bの長さにもよるが、いず
れか一方又は両方の肉厚をそれぞれ一定にしてもよい。
又、図9に示すように肉厚の変化が多段階で間欠的に変
化するようにしてもよい。すなわち、肉厚が第1端部側
から第2端部側に向かって次第に増大すれば、その変化
は連続的、間欠的、段階的のいずれであってもよい。し
かし、一定の肉厚が長く連続するよりも僅かずつでも肉
厚が変化する方が好ましい。
It should be noted that the present invention is not limited to the two embodiments described above. For example, the thickness of the cylindrical portion 2 is not necessarily limited to the second thickness.
It is not necessary to continuously increase the thickness toward the end. FIG.
As shown in (a), the thickness changes intermittently, that is, it has a continuously changing portion and a constant portion,
When the thickness changes in two stages as shown in FIG. 8 (b), depending on the length of the first stage 2a and the second stage 2b, one or both of the thicknesses are kept constant. You may.
Further, as shown in FIG. 9, the change in the thickness may be changed intermittently in multiple stages. That is, if the thickness gradually increases from the first end to the second end, the change may be continuous, intermittent, or stepwise. However, it is preferable that the wall thickness is changed little by little, rather than being constant and long.

【0041】又、筒状部2の形状は円筒状が好ましい
が、角筒状でもよい。しかし、筒状部の壁を均等に破壊
していくためには、なるべく滑らかな曲面で形成されて
いる円筒、楕円筒が好ましく、角筒状とする場合は角数
の多いものの方が望ましい。角筒状とする場合には、各
面の接合部が角状となって異常な応力集中が生じるのを
防止するため、接合部を曲面とするのが好ましい。例え
ば、六角筒状とした場合、図10(a),(b)に示す
ように筒状部2の内外両面とも角部がなく各面が曲面で
滑らかに接続される。又、自動車等への結合では、それ
らの部材が四角状断面が多いため、四角筒を選定し、周
辺部材との審美的調和を図る必要が生じるケースも多
い。そのような場合も、角部は円弧状に滑らかに接続
し、鋭い屈曲部を設けない方が、破壊を継続的に起こさ
せるために好ましい。円筒形状が特に好ましい形状であ
ることは、湾曲部3が周方向に均整に分布され、偏りの
ない均整な花弁状の破壊に繋がり易いことからも容易に
推測される。
The shape of the cylindrical portion 2 is preferably cylindrical, but may be rectangular. However, in order to break the wall of the cylindrical portion evenly, a cylinder or an elliptical cylinder formed with a smooth curved surface is preferable. In the case of a rectangular tube shape, it is preferable to make the joint portion a curved surface in order to prevent the joint portion on each surface from becoming square and causing abnormal stress concentration. For example, in the case of a hexagonal cylindrical shape, both the inner and outer surfaces of the cylindrical portion 2 have no corners as shown in FIGS. 10 (a) and 10 (b), and each surface is smoothly connected by a curved surface. Further, in connection to an automobile or the like, since those members have many square cross sections, it is often necessary to select a square tube and achieve aesthetic harmony with peripheral members. Even in such a case, it is preferable that the corners be smoothly connected in an arc shape and that no sharp bends be provided in order to cause the breakage continuously. It is easily guessed that the cylindrical shape is a particularly preferable shape, because the curved portions 3 are uniformly distributed in the circumferential direction, and it is easy to lead to a uniform petal-like destruction without bias.

【0042】又、素材のFRPを構成する強化繊維とし
てガラス繊維に代えてカーボン繊維、アラミド繊維等の
高強度の物性をもった各種の機能繊維を使用してもよ
い。又、エネルギー吸収部材1を直接衝撃荷重を受ける
衝撃吸収部材あるいはヘリコプターの座席床下部等に適
用してもよい。エネルギー吸収部材1を自動車等の移動
体において、バンパ等を介さずにエネルギー吸収部材1
が直接荷重を受ける状態で使用する場合、最も荷重が加
わり易い方向にエネルギー吸収部材1の先端が向かうよ
うに設置するのが好ましい。すなわち、移動体の前部又
は後部の中央寄りに設置する場合はエネルギー吸収部材
1を前進又は後進方向と平行に設置し、側部に設置する
場合は先端が斜め前方あるいは斜め後方に向かうように
設置するのが好ましい。
Further, various functional fibers having high-strength physical properties such as carbon fibers and aramid fibers may be used as the reinforcing fibers constituting the FRP of the material, instead of the glass fibers. Further, the energy absorbing member 1 may be applied to an impact absorbing member that receives an impact load directly, a lower part of a seat floor of a helicopter, or the like. The energy absorbing member 1 is mounted on a moving body such as an automobile without using a bumper or the like.
When the device is used in a state where it is directly subjected to a load, it is preferable that the energy absorbing member 1 is installed such that the tip of the energy absorbing member 1 is directed in a direction in which the load is most easily applied. That is, when the energy absorbing member 1 is installed near the center of the front or rear portion of the moving body, the energy absorbing member 1 is installed parallel to the forward or backward direction, and when installed on the side, the tip is directed obliquely forward or obliquely rearward. Preferably, it is installed.

【0043】[0043]

【発明の効果】以上詳述したように本発明のエネルギー
吸収部材は、破壊される際に筒状部の断面積の小さな側
の端部から徐々に破壊が始まり、破壊は筒状部の全周に
わたって全ての部位で発生してエネルギーを吸収すると
ともに安定した破壊が継続して大きなエネルギーが吸収
され、部材重量当たりのエネルギー吸収効率が良くな
る。
As described in detail above, when the energy absorbing member of the present invention is destroyed, it gradually starts to break from the end of the cylindrical portion having the smaller cross-sectional area, and the entirety of the cylindrical portion is destroyed. The energy generated at all the parts over the circumference is absorbed, and the stable destruction continues, and large energy is absorbed, and the energy absorption efficiency per member weight is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を具体化した第1実施例のエネルギー吸
収部材の断面図である。
FIG. 1 is a sectional view of an energy absorbing member according to a first embodiment of the present invention.

【図2】(a)はエネルギー吸収部材の平面図、(b)
はエネルギー吸収部材の先端の部分拡大断面図である。
FIG. 2A is a plan view of an energy absorbing member, and FIG.
FIG. 4 is a partially enlarged cross-sectional view of the tip of the energy absorbing member.

【図3】エネルギー吸収部材に軸方向荷重を加えた場合
の圧縮荷重−変位量の関係を示すグラフである。
FIG. 3 is a graph showing a relationship between a compressive load and a displacement amount when an axial load is applied to the energy absorbing member.

【図4】比較例のエネルギー吸収部材に軸方向荷重を加
えた場合の圧縮荷重−変位量の関係を示すグラフであ
る。
FIG. 4 is a graph showing a relationship between a compressive load and a displacement when an axial load is applied to the energy absorbing member of the comparative example.

【図5】第2実施例のエネルギー吸収部材の断面図であ
る。
FIG. 5 is a sectional view of an energy absorbing member according to a second embodiment.

【図6】第2実施例のエネルギー吸収部材に軸方向荷重
を加えた場合の圧縮荷重−変位量の関係を示すグラフで
ある。
FIG. 6 is a graph showing a relationship between a compressive load and a displacement amount when an axial load is applied to the energy absorbing member of the second embodiment.

【図7】自動車のフレームに取り付けられた状態のエネ
ルギー吸収部材を示す部分断面図である。
FIG. 7 is a partial cross-sectional view showing the energy absorbing member attached to the frame of the vehicle.

【図8】変更例のエネルギー吸収部材の断面図である。FIG. 8 is a cross-sectional view of an energy absorbing member of a modified example.

【図9】別の変更例のエネルギー吸収部材の断面図であ
る。
FIG. 9 is a sectional view of an energy absorbing member of another modification.

【図10】(a)は別の変更例のエネルギー吸収部材の
断面図、(b)はその平面図である。
10A is a cross-sectional view of an energy absorbing member according to another modification, and FIG. 10B is a plan view thereof.

【図11】従来の衝撃保護用構造材を示す概略斜視図で
ある。
FIG. 11 is a schematic perspective view showing a conventional impact protection structural material.

【図12】従来のエネルギー吸収部材を示す断面図であ
る。
FIG. 12 is a sectional view showing a conventional energy absorbing member.

【符号の説明】[Explanation of symbols]

1…エネルギー吸収部材、2…筒状部、2a…第1段
目、2b…第2段目、3…湾曲部、3a…外面、3b…
内面、4…底壁、4a…円弧面、5…孔。
DESCRIPTION OF SYMBOLS 1 ... Energy absorption member, 2 ... Cylindrical part, 2a ... 1st stage, 2b ... 2nd stage, 3 ... Bending part, 3a ... Outer surface, 3b ...
Inner surface, 4 ... bottom wall, 4a ... arc surface, 5 ... hole.

フロントページの続き (56)参考文献 特開 昭56−131849(JP,A) 実開 昭59−1946(JP,U) 実開 昭64−1167(JP,U) (58)調査した分野(Int.Cl.7,DB名) F16F 7/12 Continuation of the front page (56) References JP-A-56-131849 (JP, A) Japanese Utility Model Application Showa 59-1946 (JP, U) Japanese Utility Model Application Showa 64-1167 (JP, U) (58) Fields investigated (Int) .Cl. 7 , DB name) F16F 7/12

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 短繊維が混入された繊維強化樹脂で筒状
に成形され、筒状部の壁が第1端部よりも第2端部側で
肉厚となるように形成され、かつ第1端部の壁面はその
先端が筒状部の外周面より外方に突出するように外側に
湾曲形成されているエネルギー吸収部材。
1. A cylindrical member formed of a fiber reinforced resin mixed with short fibers, wherein a wall of the cylindrical portion is formed so as to be thicker on a second end side than on a first end portion. An energy absorbing member in which a wall at one end is curved outward so that a tip of the wall protrudes outward from an outer peripheral surface of the cylindrical portion.
【請求項2】 短繊維が混入された繊維強化樹脂で有底
筒状に成形され、筒状部内面と底部内面とが円弧面によ
り接続され、筒状部の壁が第1端部から第2端部に向か
って肉厚となるように形成され、かつ第1端部の壁面は
その先端が筒状部の外周面より外方に突出するように外
側に湾曲形成されているエネルギー吸収部材。
2. A bottomed cylindrical shape made of a fiber reinforced resin mixed with short fibers, the inner surface of the cylindrical portion and the inner surface of the bottom portion are connected by an arc surface, and the wall of the cylindrical portion is formed from the first end to the first end. The energy absorbing member is formed so as to be thicker toward the second end, and the outer wall of the first end is curved outward so that the tip protrudes outward from the outer peripheral surface of the cylindrical portion. .
JP05428393A 1993-03-15 1993-03-15 Energy absorbing material Expired - Lifetime JP3246041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05428393A JP3246041B2 (en) 1993-03-15 1993-03-15 Energy absorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05428393A JP3246041B2 (en) 1993-03-15 1993-03-15 Energy absorbing material

Publications (2)

Publication Number Publication Date
JPH06264949A JPH06264949A (en) 1994-09-20
JP3246041B2 true JP3246041B2 (en) 2002-01-15

Family

ID=12966241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05428393A Expired - Lifetime JP3246041B2 (en) 1993-03-15 1993-03-15 Energy absorbing material

Country Status (1)

Country Link
JP (1) JP3246041B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999000608A1 (en) 1997-06-27 1999-01-07 Nippon Petrochemicals Co., Ltd. Impact energy absorbing member
JP2002039245A (en) * 2000-07-31 2002-02-06 Hitachi Metals Ltd Impact absorbing member made of aluminum alloy casting
JP2002155981A (en) * 2000-11-21 2002-05-31 Aisin Seiki Co Ltd Impact absorbing member and bumper
DE10159067A1 (en) 2001-12-01 2003-06-26 Daimler Chrysler Ag Fiber composite crash structure
CN100504105C (en) * 2003-07-28 2009-06-24 住友金属工业株式会社 Impact absorption member
US7842378B2 (en) 2004-01-06 2010-11-30 Kabushiki Kaisha Toyota Jidoshokki Energy absorber and method for manufacturing the same
DE202005005488U1 (en) * 2005-04-07 2006-09-07 Dura Automotive Gmbh Device for retaining on the bumper of the vehicle has a connecting part fixable at the vehicle frame whereby the deformation pipe in the deformation zone exhibits a continuously reducing wall thickness
JP5028797B2 (en) * 2005-12-19 2012-09-19 トヨタ自動車株式会社 Fiber reinforced plastic structure
JP5130878B2 (en) * 2007-11-19 2013-01-30 トヨタ自動車株式会社 Shock absorbing structure
JP2011530054A (en) * 2008-08-07 2011-12-15 ビーエーエスエフ ソシエタス・ヨーロピア Energy absorption structure
JP5244648B2 (en) * 2009-02-23 2013-07-24 トヨタ自動車株式会社 Vehicle shock absorption structure
JP2011196534A (en) * 2010-03-24 2011-10-06 Sanko Gosei Ltd Collision energy absorbing device
FR2958226B1 (en) * 2010-04-06 2012-10-19 Akka Ingenierie Produit CHASSIS FOR ELECTRIC VEHICLE
DE102013209971A1 (en) * 2013-05-28 2014-12-04 Bayerische Motoren Werke Aktiengesellschaft Body structure support for a motor vehicle
JP6106058B2 (en) * 2013-09-26 2017-03-29 富士重工業株式会社 Shock absorbing structure and automobile
JP6290641B2 (en) * 2014-02-06 2018-03-07 帝人株式会社 Resin shock absorber
US10428894B2 (en) 2014-02-06 2019-10-01 Teijin Limited Resin-made impact absorption member and vehicular component
JP6321412B2 (en) * 2014-03-14 2018-05-09 帝人株式会社 Resin shock absorbing member and vehicle parts
JP2015175430A (en) * 2014-03-14 2015-10-05 帝人株式会社 Resin shock absorption member
JP7428651B2 (en) 2017-10-30 2024-02-06 テイジン カーボン ユーロップ ゲー・エム・ベー・ハー Components for absorbing impact forces
KR102468038B1 (en) * 2020-11-09 2022-11-17 주식회사 포스코 Side sill for vehicle

Also Published As

Publication number Publication date
JPH06264949A (en) 1994-09-20

Similar Documents

Publication Publication Date Title
JP3246041B2 (en) Energy absorbing material
JP3144054B2 (en) Energy absorbing material
US5997077A (en) Deformable structure for protection of vehicle occupants
JPH09175202A (en) Propeller shaft for vehicle
US20080272583A1 (en) Steering column assembly
JPH06101732A (en) Shock absorbing member for composite structure
JP3141570B2 (en) Energy absorbing material
US6682436B2 (en) Shock absorbing tube
US4577736A (en) Tubular member, especially for a safety steering column for motor vehicles
EP0683328A1 (en) Propeller shaft
JPH06286536A (en) Bumper reinforcement structure body
JPH07165109A (en) Body structure for vehicle
JP3141569B2 (en) Energy absorbing material
JP3473145B2 (en) Energy absorbing material
ITRM930126A1 (en) IMPROVEMENT IN VEHICLE SEATS.
US20030072900A1 (en) Impact energy absorbing structure
JP2005247096A (en) Vehicular impact absorbing body and vehicular impact absorbing device
JP3528290B2 (en) Energy absorber with local reinforcement jig
JPH07224874A (en) Energy absorbing member
JP4092478B2 (en) Shock-absorbing component integrated with connecting member and method of manufacturing the same
JP3544994B2 (en) Fiber reinforced composite material and energy absorbing member
US20030057043A1 (en) Transversely loadable composite of structural part and deformation element
JP3198927B2 (en) Energy absorbing material
JPH0960676A (en) Shock relaxing material and manufacture thereof
JP2892854B2 (en) Energy absorbing material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 12