JPH07165109A - Body structure for vehicle - Google Patents

Body structure for vehicle

Info

Publication number
JPH07165109A
JPH07165109A JP5313466A JP31346693A JPH07165109A JP H07165109 A JPH07165109 A JP H07165109A JP 5313466 A JP5313466 A JP 5313466A JP 31346693 A JP31346693 A JP 31346693A JP H07165109 A JPH07165109 A JP H07165109A
Authority
JP
Japan
Prior art keywords
vehicle body
carbon fiber
side member
body structure
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5313466A
Other languages
Japanese (ja)
Inventor
Michito Takagi
道人 高木
Masatoshi Shimoda
昌利 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP5313466A priority Critical patent/JPH07165109A/en
Publication of JPH07165109A publication Critical patent/JPH07165109A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a body structure wherein energy absorbing efficiency by a metallic cylindrical frame member protruded in a direction toward outside from a cabin is sharply increased. CONSTITUTION:Carbon fiber reinforced resin 15, having a carbon fiber 15a arrayed in a direction nearly parallel to the axis direction of a member, and a carbon fiber 15b, crossing this carbon fiber 15a to be arrayed in a direction nearly orthogonal to the axis direction of the member, is fitted to the wall surface of the metallic side member. Consequently, high withstand-load performance at collision initial period can be displayed by arranging the carbon fiber 15a and moreover, stable collapse performance can be displayed by arranging the carbon fiber 15b in the metallic side member to obtain high ride-down efficiency when collision happens.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、外部から車体に衝撃が
加わったときの衝撃エネルギ−が吸収可能な車両の車体
構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle body structure capable of absorbing impact energy when an impact is applied to the vehicle body from the outside.

【0002】[0002]

【従来の技術】自動車では、多面に渡って、衝突時の衝
撃から乗員を保護するための構造が講じられている。図
9に示されるように自動車の車体1では、客室2から前
後部に向かう方向に突き出るフレ−ム部分、例えば車幅
方向両側にある筒状のサイドメンバ3,3(筒状フレ−
ム部材)を活用して、自動車の衝突時、車体1の前方あ
るいは後方から加わる衝撃エネルギ−を吸収することが
行われている。
2. Description of the Related Art In automobiles, a structure for protecting an occupant from an impact at the time of a collision is provided over many surfaces. As shown in FIG. 9, in a vehicle body 1 of an automobile, a frame portion protruding from a passenger compartment 2 in a front-rear direction, for example, tubular side members 3 and 3 on both sides in a vehicle width direction (a tubular frame).
The impact energy applied from the front or the rear of the vehicle body 1 at the time of the collision of the automobile is absorbed by utilizing the bump member).

【0003】従来、このような車体1のサイドメンバ3
は、図10に示されるハット型断面と称される、略コ字
状の細長のインナパネル4と平板状のアウタパネル5と
を、スポット溶接により閉断面にしてなるスチ−ル、ア
ルミといった金属製の筒状のメンバが用いてある。また
このサイドメンバ3には、車体1の前方(あるいは後
方)から所定値の衝撃力が加わると、座屈変形(蛇腹状
に圧壊)を起こすように、板厚、断面形状などが設定し
てある。
Conventionally, such a side member 3 of the vehicle body 1
Is made of metal such as steel or aluminum, which is referred to as a hat-shaped cross section shown in FIG. 10, and is formed by forming a substantially U-shaped elongated inner panel 4 and a flat outer panel 5 into a closed cross section by spot welding. The tubular member of is used. Further, the side member 3 is set with a plate thickness, a cross-sectional shape, and the like so that when a predetermined value of impact force is applied from the front (or rear) of the vehicle body 1, buckling deformation (collapsed into a bellows) occurs. is there.

【0004】これにより、自動車が壁などに衝突したと
き、サイドメンバ3の座屈変形で、衝突エネルギ−を吸
収して、客室1の部分を極力、変形させないようにして
いる。
Thus, when the vehicle collides with a wall or the like, the buckling deformation of the side member 3 absorbs the collision energy to prevent the portion of the passenger compartment 1 from being deformed as much as possible.

【0005】ところで、こうした衝撃吸収により、客室
の乗員を有効に保護するためには、衝突後、できる限り
早くシ−トベルト装置など乗員拘束装置を作動させて、
乗員をシ−トに対する拘束から車体1と一体化させ、乗
員の運動エネルギ−を車体1の変形にのせて、車体1の
変形で乗員の運動エネルギ−を吸収させることが望まし
い(ライドダウン効果)。
By the way, in order to effectively protect the occupant in the passenger compartment by absorbing the impact, the occupant restraint device such as a seat belt device is operated as soon as possible after the collision,
It is desirable that the occupant is integrated with the vehicle body 1 by restraining the seat, the kinetic energy of the occupant is applied to the deformation of the vehicle body 1, and the kinetic energy of the occupant is absorbed by the deformation of the vehicle body 1 (ride down effect). .

【0006】これは、自動車が衝突を起こすと、その時
点から車体1の動きは止まるものの、乗員は移動してい
る(例えば乗員拘束装置がシ−トベルト装置であれば、
ベルトのたわみ分、移動する)ので、乗員を早く拘束さ
せて、車体1と共に移動させれば、乗員がもつ運動エネ
ルギ−が車体の変形で吸収されるというものである。
[0006] This is because when a car crashes, the movement of the vehicle body 1 stops from that point, but the occupant is moving (for example, if the occupant restraint system is a seat belt system,
Therefore, if the occupant is restrained early and moved together with the vehicle body 1, the kinetic energy of the occupant is absorbed by the deformation of the vehicle body.

【0007】つまり、乗員の保護は、この乗員の運動エ
ネルギ−を、車体1の変形で吸収する割合を高めること
により(ライドダウン効率:高)、良いとされる。この
ためには、車体1の減速度は、乗員拘束装置を早く作用
させて乗員を早く拘束させるべく、衝突直後、乗員が車
体1と一体化するまでは大きく、乗員が拘束された後
は、ある一定のレベル以下で安定、あるいは次第に低く
させることがよいとされる。
That is, the protection of the occupant is considered to be good by increasing the ratio of absorbing the kinetic energy of the occupant by the deformation of the vehicle body 1 (ride down efficiency: high). To this end, the deceleration of the vehicle body 1 is large immediately after the collision until the occupant is integrated with the vehicle body 1 in order to quickly actuate the occupant restraint device and restrain the occupant quickly. It is said that it should be stable below a certain level or gradually lowered.

【0008】つまり、上記サイドメンバ3には、大きな
減速度に耐える耐荷重性と、運動エネルギ−を効率良く
吸収する変形性能とが必要とされる。ところが、サイド
メンバ3は、図11および図12に示される圧壊試験の
結果から分かるように、金属製、すなわち単一のスチ−
ルから構成されたメンバは、初期に見られる耐荷重ピ−
ク値W1 はかなり低く、他の荷重ピ−クとそれ程、差が
ない。
That is, the side member 3 is required to have load resistance to withstand a large deceleration and deformability to efficiently absorb kinetic energy. However, as can be seen from the results of the crush test shown in FIGS. 11 and 12, the side member 3 is made of metal, that is, a single steel.
The members constructed from the
The peak value W 1 is quite low and is not so different from other load peaks.

【0009】また座屈変形(蛇腹状に圧壊)したときの
サイドメンバ3の座屈ピッチP1 はかなり大きい。すな
わち、サイドメンバ3は、蛇腹状に圧壊したときに生じ
る面外方向の変形で運動エネルギ−を吸収したり、同変
形時の接触による面圧で運動エネルギ−を吸収している
ので、座屈ピッチP1 が大きいということは、それだ
け、サイドメンバ3によるエネルギ−吸収効率は低いこ
ととなる。しかも、単一スチ−ルのサイドメンバ3は、
圧壊が不安定なので、座屈変形でなく、折れ曲がり変形
することもあり、エネルギ−吸収能の無駄が見られる。
The buckling pitch P 1 of the side member 3 when it is buckled (crushed into a bellows shape) is considerably large. That is, the side member 3 absorbs the kinetic energy by the deformation in the out-of-plane direction that occurs when it is crushed in a bellows shape, and absorbs the kinetic energy by the surface pressure due to the contact at the time of the deformation, and therefore buckles The larger the pitch P 1 is, the lower the energy absorption efficiency of the side member 3 is. Moreover, the single-steel side member 3 is
Since the crushing is unstable, it may be bent and deformed instead of buckling, and the energy absorption capacity is wasted.

【0010】[0010]

【発明が解決しようとする課題】そこで、近時、金属製
のサイドメンバではなく、特開平4−5178号公報、
特開平4−143173号公報、特開平4−15138
1号公報に示されるように、繊維強化プラスチック製の
サイドメンバを採用して、サイドメンバのエネルギ−吸
収能を高めることが試みられている。
Therefore, in recent years, instead of a metal side member, Japanese Patent Laid-Open No. 4-5178 has been proposed.
JP-A-4-143173, JP-A-4-15138
As disclosed in Japanese Patent Laid-Open No. 1-58, it has been attempted to adopt a side member made of fiber reinforced plastic to enhance the energy absorption capacity of the side member.

【0011】しかしながら、この製品は割れが発生する
おそれがあり、本来の性能が得られないことが多い。し
かも、スポット溶接などの溶接により金属製部材同志を
固定して組み立てていく車体1の中では、溶接ができな
い繊維強化プラスチック製のサイドメンバは、他の金属
部材との固定に工夫を要するので、生産性にそぐわない
難点がある。
However, this product has a risk of cracking, and the original performance is often not obtained. In addition, in the vehicle body 1 in which metal members are fixed together by welding such as spot welding, the side members made of fiber reinforced plastic, which cannot be welded, require a device for fixing to other metal members. There are difficulties that do not match productivity.

【0012】そのため、既存の金属製のサイドメンバ3
を活用して、同サイドメンバ3のエネルギ−吸収能を高
める実用技術が要望されている。本発明は、このような
事情に着目してなされたもので、その目的とするところ
は、客室から外側に向かって突き出る金属製の筒状フレ
−ム部材におけるエネルギ−吸収能を飛躍的に高めるこ
とができる車両の車体構造を提供することにある。
Therefore, the existing metal side member 3
There is a demand for a practical technique for enhancing the energy absorption capacity of the side member 3 by utilizing the above. The present invention has been made in view of such circumstances, and the purpose thereof is to dramatically improve the energy absorption capacity of a metal cylindrical frame member protruding outward from a passenger compartment. (EN) Provided is a vehicle body structure capable of being manufactured.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の車両の車体構造は、金属製の筒状
フレ−ム部材の壁面に、筒状部材の壁面に、筒状フレ−
ム部材の軸心方向と略平行な方向に配列された第1の強
化繊維と、この第1の強化繊維と交差して筒状フレ−ム
部材の軸心方向と略直角な方向に配列された第2の強化
繊維とを有してなる繊維強化樹脂層を取着したことにあ
る。
In order to achieve the above-mentioned object, a vehicle body structure according to a first aspect of the present invention has a metal tubular frame member having a wall surface, a tubular member wall surface, and a tubular member. Shape frame
The first reinforcing fibers arranged in a direction substantially parallel to the axial direction of the frame member, and the first reinforcing fibers crossing the first reinforcing fiber and arranged in a direction substantially perpendicular to the axial direction of the tubular frame member. The fiber-reinforced resin layer having the second reinforcing fiber is attached.

【0014】請求項2に記載の車両の車体構造は、最も
高いエネルギ−吸収能を得ることを可能とするために、
筒状部材の壁面に周方向に沿って連続して設けたことに
ある。
In the vehicle body structure according to the second aspect, in order to obtain the highest energy absorption capacity,
It is provided continuously on the wall surface of the tubular member along the circumferential direction.

【0015】請求項3に記載の車両の車体構造は、繊維
強化樹脂層による十分な効果を確保することを可能とす
るために、第1の強化繊維を、筒状フレ−ムの軸心方向
を基準とした±15°の範囲で配列し、第2の強化繊維
は、同じく±75°の範囲で配列したことにある。
In the vehicle body structure according to a third aspect of the present invention, in order to ensure a sufficient effect of the fiber reinforced resin layer, the first reinforcing fiber is added in the axial direction of the tubular frame. The second reinforcing fibers are arranged in the range of ± 75 ° with respect to the standard of ± 15 °.

【0016】[0016]

【作用】請求項1に記載の車体構造によると、金属製の
筒状フレ−ム部材は、軸心方向と略平行な方向に配列さ
れた強化繊維によって、筒状フレ−ム部材の先端から加
わる衝撃荷重に対する耐荷重のピ−ク値が格段に高めら
れる。
According to the vehicle body structure of the present invention, the metallic tubular frame member is provided with the reinforcing fibers arranged in a direction substantially parallel to the axial direction from the tip of the tubular frame member. The peak value of withstand load against the applied impact load is remarkably increased.

【0017】これにより、金属製の筒状フレ−ム部材
は、衝突した瞬間、同入力に対し高剛性を発揮して、高
い減速度で車体を減速させる。その後は、筒状フレ−ム
部材は衝撃荷重により圧壊し、座屈変形(蛇腹状の圧
壊)を起こす。
As a result, the metallic cylindrical frame member exhibits high rigidity with respect to the same input at the moment of collision, and decelerates the vehicle body with high deceleration. After that, the tubular frame member is crushed by the impact load, and buckling deformation (bellows crushing) occurs.

【0018】この座屈変形は、筒状フレ−ム部材と略直
角な方向に配列された強化繊維によって規制されるか
ら、圧壊の途中で一度、凹んだ部分が再び外側へ押し出
されるといった面外方向の変形を繰り返しながら、かつ
樹脂部分の剥離を伴いながら進む。
Since this buckling deformation is restricted by the reinforcing fibers arranged in a direction substantially perpendicular to the tubular frame member, the recessed portion is once pushed out to the outside again during the crushing. The process proceeds while repeating the deformation in the direction and with the peeling of the resin portion.

【0019】これにより、筒状フレ−ム部材は、小さい
座屈ピッチの安定した細かい形状で座屈変形を起こし、
乗員の運動エネルギ−を吸収していく。このことは、金
属製の筒状フレ−ム部材には、大きな減速度に耐える耐
荷重性と、運動エネルギ−を効率良く吸収する変形性能
がもたらせられ、同筒状フレ−ム部材におけるエネルギ
−吸収能は飛躍的に向上する。
As a result, the tubular frame member undergoes buckling deformation in a stable and fine shape with a small buckling pitch,
The kinetic energy of the occupant is absorbed. This provides the metal tubular frame member with load bearing capacity to withstand a large deceleration and deformability to efficiently absorb kinetic energy. The energy absorption capacity is dramatically improved.

【0020】請求項2に記載の車体構造によると、上記
した作用が筒状フレ−ム部材の周壁全体で安定して行わ
れるから、金属製の筒状フレ−ム部材に高いエネルギ−
吸収能をもたせられる。請求項3に記載の車体構造によ
ると、上記した繊維強化樹脂層による十分な効果が安定
して得られる。
According to the vehicle body structure of the second aspect, since the above-described operation is stably performed on the entire peripheral wall of the tubular frame member, the metal tubular frame member has high energy.
Can be absorbed. According to the vehicle body structure of the third aspect, the sufficient effect of the fiber-reinforced resin layer can be stably obtained.

【0021】[0021]

【実施例】以下、本発明を図1ないし図8に示す一実施
例にもとづいて説明する。図1中10は、本発明を適用
した略くの字状に曲成したサイドメンバ(筒状フレ−ム
部材)である。このサイドメンバ10は、先の「従来の
技術」の項で説明したときと同じ、客室2から車体1の
前方に向かう方向に突き出るフレ−ム部分である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on an embodiment shown in FIGS. Reference numeral 10 in FIG. 1 denotes a side member (cylindrical frame member) to which the present invention is applied and which is bent in a substantially V shape. The side member 10 is a frame portion projecting in the direction from the passenger compartment 2 toward the front of the vehicle body 1, which is the same as that described in the above-mentioned "Prior Art".

【0022】このサイドメンバ10は、ハット型断面と
称される、略コ字状の細長のインナパネル11と平板状
のアウタパネル12とを、スポット溶接により閉断面に
してなるスチ−ル、アルミといった金属製の筒状のメン
バが用いてある。詳しくは、サイドメンバ10は、突き
合わせ溶接で、前後に分かれたハット型断面の各メンバ
部分13a,13bを前後方向に沿って連結してなる。
The side member 10 is made of a steel or aluminum, which is a hat-shaped cross section, in which an elongated U-shaped inner panel 11 and a flat outer panel 12 are closed by spot welding. A metal tubular member is used. More specifically, the side member 10 is formed by butt welding and connecting the respective member portions 13a and 13b having a hat-shaped cross section, which are divided into front and rear, along the front-rear direction.

【0023】サイドメンバ10は、例えば先端側に向か
う程、断面積が小さく、後端側(客室1側)に向かう
程、断面積が大きくなる外形をなしているまたサイドメ
ンバ2は、図2に示されるように前部のメンバ部分13
aの板厚t1 よりも、後部側のメンバ部分13bの板厚
2 が厚い寸法、例えば2倍程度に設定されていている
(t1 <t2 )。これにより、サイドメンバ10の前部
には、衝突エネルギ−を吸収する部分(衝突による衝撃
を受けると蛇腹状に圧壊しやすい部分)が形成され、後
部側には、別途、補強材を使わずにすむ、反力を受けも
つ部分(同じく圧壊しにくい部分)が形成される。
The side member 10 has such an outer shape that the cross-sectional area is smaller toward the front end side and the cross-sectional area is larger toward the rear end side (cabin 1 side). Front member portion 13 as shown in FIG.
The plate thickness t 2 of the rear member portion 13b is set to be thicker than the plate thickness t 1 of a, for example, about twice (t 1 <t 2 ). As a result, a portion that absorbs collision energy (a portion that easily collapses into a bellows when receiving a shock from a collision) is formed in the front portion of the side member 10, and a reinforcement member is not separately used on the rear portion side. The part that receives the reaction force (the part that is also difficult to collapse) is formed.

【0024】前部のメンバ部分13aの内面全体には、
強化繊維樹脂層14が取着されている。この強化繊維樹
脂層14には、最も好適な強化繊維樹脂として、例えば
エポキシ樹脂を母材とした2種類の繊維配列で成形され
たCFRP15(炭素繊維強化樹脂:マトリックスがエ
ポキシ樹脂で、強化繊維が炭素繊維のもの)から構成さ
れている。
On the entire inner surface of the front member portion 13a,
The reinforcing fiber resin layer 14 is attached. In this reinforcing fiber resin layer 14, as the most preferable reinforcing fiber resin, for example, CFRP15 (carbon fiber reinforced resin: matrix is epoxy resin, reinforced fiber is Made of carbon fiber).

【0025】このCFRP15は、例えば図3に示され
るようにメンバ部分13aの内腔形状に対応した外形を
もつ角形の樹脂筒16の周壁全体に、それぞれ異なる方
向に多数本のカ−ボン繊維15a,15b(第1の強化
繊維,第1の強化繊維)が埋設されて成形されている。
なお、樹脂筒16は成形時は別体であるが、完成時には
一体になるものである。
As shown in FIG. 3, for example, this CFRP 15 has a large number of carbon fibers 15a in different directions on the entire peripheral wall of a rectangular resin cylinder 16 having an outer shape corresponding to the inner cavity shape of the member portion 13a. , 15b (first reinforcing fiber, first reinforcing fiber) are embedded and molded.
The resin cylinder 16 is a separate body at the time of molding, but is integrated when completed.

【0026】このうち、カ−ボン繊維15aは、図3に
示されるように例えば衝突エネルギ−が入力される方向
(図1中の二重矢印で示される方向)と略平行な方向、
すなわちサイドメンバ10の軸心方向と平行(θ=0
°)に配列されている。
Of these, the carbon fibers 15a are, for example, as shown in FIG. 3, a direction substantially parallel to the direction in which collision energy is input (the direction indicated by the double arrow in FIG. 1),
That is, parallel to the axial direction of the side member 10 (θ = 0
°) is arranged.

【0027】またカ−ボン繊維15bは、衝突エネルギ
−が入力される方向と略直角な方向、すなわちカ−ボン
繊維15aと交差するサイドメンバ10の軸心方向と直
角な方向(θ=90°)に配列されている。
The carbon fiber 15b is substantially perpendicular to the direction in which the collision energy is input, that is, the direction perpendicular to the axial direction of the side member 10 intersecting the carbon fiber 15a (θ = 90 °). ) Is arranged.

【0028】つまり、図4に示されるように各カ−ボン
繊維15a,15bは、交互に積層されて、格子状に組
まれる。なお、図4中の「90°」はカ−ボン繊維15
aとカ−ボン繊維15bとが交わる角度を示している。
That is, as shown in FIG. 4, the carbon fibers 15a and 15b are alternately laminated and assembled in a lattice shape. “90 °” in FIG. 4 is carbon fiber 15
The angle at which a and the carbon fiber 15b intersect is shown.

【0029】この角筒形のCFRP15は、サイドメン
バ10を組立てる工程の際、メンバ部分13aのインナ
パネル内面、アウタパネル内面とに接着されて、メンバ
部分13aの内側に組み付けられる。
During the process of assembling the side member 10, the square tubular CFRP 15 is bonded to the inner surface of the member portion 13a and the inner surface of the outer panel to be assembled inside the member portion 13a.

【0030】この構造によって、強化繊維樹脂層14
は、メンバ部分13aの周方向に連続して設けられる。
つぎに、サイドメンバ10の作用を図6に示される線図
を参照しながら説明する。
With this structure, the reinforcing fiber resin layer 14
Are continuously provided in the circumferential direction of the member portion 13a.
Next, the operation of the side member 10 will be described with reference to the diagram shown in FIG.

【0031】例えば自動車が走行中、例えば前部で衝突
が起きたとする。すると、その時点から車体1の動きは
止まる。このとき、シ−トに着座している乗員の上体に
は、シ−トベルト装置(乗員拘束装置)のベルトが掛け
られているとすれば、そのベルトのたわみ分、乗員は前
方へ移動しようとする。
For example, it is assumed that a collision occurs at the front part while the automobile is running. Then, the movement of the vehicle body 1 stops from that point. At this time, if the belt of the seat belt device (occupant restraint device) is hung on the upper body of the occupant seated on the seat, the occupant will move forward by the amount of deflection of the belt. And

【0032】ここで、衝突の衝撃エネルギ−が入力され
る各サイドメンバ10,10(フロント側)のメンバ部
分13aは、サイドメンバ10の軸心方向と平行な方向
に配列されたカ−ボン繊維15aによって、先端から加
わる衝撃荷重に対する耐荷重ピ−ク値W2 は格段に高め
られている。
Here, the member portion 13a of each side member 10, 10 (front side) to which the impact energy of collision is input is a carbon fiber arranged in a direction parallel to the axial direction of the side member 10. by 15a, the load bearing pin against the impact load applied from the tip - click value W 2 is enhanced remarkably.

【0033】このことは、サイドフレ−ム10のメンバ
部分13aは、衝突した瞬間、高い剛性を発揮し、高い
減速度で車体1を減速させる。この高い減速度により、
シ−トベルト装置の乗員拘束機能が、可能な限り、素早
く立ち上がり、上記前方へ移動する乗員を、できる限り
素早くシ−トに拘束させる。
This means that the member portion 13a of the side frame 10 exhibits high rigidity at the moment of collision and decelerates the vehicle body 1 with high deceleration. Due to this high deceleration,
The occupant restraint function of the seat belt device raises the occupant as quickly as possible and restrains the occupant moving forward in the seat as quickly as possible.

【0034】これにより、衝突直後、乗員は、できる限
り早く車体1と一体化される。続いて、サイドフレ−ム
10のメンバ部分13aは、衝撃荷重により圧壊し、座
屈変形(蛇腹状の圧壊)を起こす。
As a result, immediately after the collision, the occupant is integrated with the vehicle body 1 as soon as possible. Subsequently, the member portion 13a of the side frame 10 is crushed by the impact load, and buckling deformation (bellows-like crushing) occurs.

【0035】ここで、衝突エネルギ−を吸収する部分で
あるメンバ部分13aは、カ−ボン繊維15bによっ
て、面外方向の変形が規制されている。このために、メ
ンバ−部分13aの座屈変形は、圧壊の途中で一度、凹
んだ部分が再び外側へ押し出されるといった変形を繰り
返しながら、かつCFRP15の樹脂層の剥離を伴いな
がら進む。
Here, the member portion 13a which absorbs the collision energy is restricted from being deformed in the out-of-plane direction by the carbon fiber 15b. For this reason, the buckling deformation of the member-portion 13a proceeds while repeating the deformation that the recessed portion is pushed outward again once during the crushing, and with the peeling of the resin layer of the CFRP 15.

【0036】これにより、メンバ部分13aは、図5に
示される圧壊試験の結果に示されるように小さい座屈ピ
ッチP2 の安定した細かい形状で座屈変形を起こす。こ
のとき、メンバ部分13aに生じる面外方向の変形、同
変形時の接触による面圧により、車体1にのった乗員の
運動エネルギ−は吸収されていく。
As a result, the member portion 13a undergoes buckling deformation in a stable and fine shape with a small buckling pitch P 2 as shown in the result of the crush test shown in FIG. At this time, the kinetic energy of the occupant on the vehicle body 1 is absorbed by the deformation of the member portion 13a in the out-of-plane direction and the surface pressure caused by the contact during the deformation.

【0037】ここで、メンバ部分13aの座屈変形は、
小さな座屈ピッチP2 で安定して生じるから、高いエネ
ルギ−吸収効率で、乗員の運動エネルギ−は吸収される
こととなる。
The buckling deformation of the member portion 13a is
Since it occurs stably with a small buckling pitch P 2 , the kinetic energy of the occupant is absorbed with high energy absorption efficiency.

【0038】このことから、乗員は、高いライドダウン
効率で、衝突の衝撃から保護される。したがって、金属
製のサイドメンバ10には、所定の方向に強化繊維15
a,15bが配列されたCFRP15を設けたことによ
り、大きな減速度に耐える耐荷重性と、運動エネルギ−
を効率良く吸収する変形性能との双方がもたらせられる
ことがわかる。
As a result, the occupant is protected from the impact of a collision with a high ride-down efficiency. Therefore, the metal side member 10 has a reinforcing fiber 15 in a predetermined direction.
By providing the CFRP 15 in which a and 15b are arranged, the load bearing capacity to withstand a large deceleration and the kinetic energy
It can be seen that both the deformation performance that efficiently absorbs

【0039】圧壊試験した結果、サイドメンバ10に
は、図6に示されるような乗員の保護、運動エネルギ−
の吸収に最適な車体減速度の波形、すなわちカ−ボン繊
維15aにより高い耐荷重が実現され、カ−ボン繊維1
5bにより安定した圧壊荷重が実現されるものであっ
た。
As a result of the crush test, the side member 10 has the occupant protection and kinetic energy shown in FIG.
The waveform of the deceleration of the vehicle body which is most suitable for absorbing the carbon fiber, that is, the carbon fiber 15a realizes a high load resistance.
The stable crush load was realized by 5b.

【0040】よって、客室2から前方に張り出るサイド
メンバ10のエネルギ−吸収能を飛躍的に向上させるこ
とができる。しかも、金属製のサイドメンバ10は、サ
イドメンバ10の周方向に連続してCFRP10が設け
られることによって、最も高いエネルギ−吸収能を発揮
する(上記作用がメンバ部分13aの周壁全体で安定し
て行われるから)。
Therefore, the energy absorbing ability of the side member 10 extending forward from the passenger compartment 2 can be dramatically improved. In addition, the metal side member 10 exhibits the highest energy absorption capacity by the CFRP 10 being continuously provided in the circumferential direction of the side member 10 (the above-described action is stable in the entire peripheral wall of the member portion 13a. Because it will be done).

【0041】この結果、乗員の保護性に優れる車体1を
提供できる。特に、上記サイドメンバ10の性能は、カ
−ボン繊維15aが、衝撃が入力される方向、すなわち
サイドメンバ10の軸心方向と平行な角度を基準とした
±15°の範囲、同じくカ−ボン繊維15bが±75°
の範囲で配列されて、積層されたときに安定して発揮
し、それ以外のときにはCFRP15の効果が見られな
かった。
As a result, it is possible to provide the vehicle body 1 which is excellent in occupant protection. Particularly, the performance of the side member 10 is within a range of ± 15 ° with respect to the direction in which the carbon fiber 15a is input with an impact, that is, the angle parallel to the axial direction of the side member 10, and the carbon is also the same. Fiber 15b is ± 75 °
When it was arranged in the above range, it stably exhibited when laminated, and in other cases, the effect of CFRP15 was not observed.

【0042】具体的には、カ−ボン繊維15aをサイド
メンバ10の軸心方向と平行な角度を基準とした±15
°の範囲に配列し、カ−ボン繊維15bを同じく±75
°の範囲で配列したCFRP15を貼付したサイドメン
バ10を圧壊試験した結果、図7に示されるように先に
述べたようなカ−ボン繊維15aによる高い耐荷重ピ−
ク値P2 と、カ−ボン繊維15bによる安定した圧壊荷
重とが確認されたものの、同範囲を越える組み合わせ、
例えばカ−ボン繊維15a、カ−ボン繊維15bの双方
を±75°の範囲で配列したCFRP15を貼付したサ
イドメンバ10では、図8に示されるように高い耐荷重
ピ−ク値P2 は発生しないものであった。
Specifically, the carbon fiber 15a is ± 15 with respect to the angle parallel to the axial direction of the side member 10.
Arrange in the range of °, and also carbon fiber 15b ± 75
As a result of a crush test of the side member 10 to which the CFRPs 15 arranged in the range of ° are attached, as shown in FIG. 7, a high load bearing peak due to the carbon fiber 15a as described above is obtained.
Although it was confirmed that the curb value P 2 and the stable crush load due to the carbon fiber 15b, combinations exceeding the same range,
For example, in the side member 10 to which the CFRP 15 in which both the carbon fiber 15a and the carbon fiber 15b are arranged in a range of ± 75 ° is attached, a high load-bearing peak value P 2 is generated as shown in FIG. It wasn't.

【0043】つまり、カ−ボン繊維15aはサイドメン
バ10の軸心方向と略平行に配列され、カ−ボン繊維1
5bは同軸心方向と略直角な方向に配列されてさえいれ
ば、所期の性能が得られることがわかる。
That is, the carbon fibers 15a are arranged substantially parallel to the axial direction of the side member 10, and the carbon fibers 1
It is understood that the desired performance can be obtained as long as 5b is arranged in a direction substantially perpendicular to the coaxial center direction.

【0044】また、併せてCERP15を金属製のサイ
ドメンバ10に接着せずに、単にサイドメンバ10の内
側に配置したときについても、同様に圧壊試験したが、
このときにはCERP15に割れが生じ、本来の性能が
発生しない場合が多く見られた。つまり、取着も目的を
達成するための要件となることがわかる。
Further, also when the CERP 15 was simply placed inside the side member 10 without being bonded to the metal side member 10, the same crush test was conducted.
At this time, there were many cases where the CERP 15 was cracked and the original performance did not occur. In other words, it can be seen that attachment is also a requirement for achieving the purpose.

【0045】なお、一実施例では、金属製のサイドメン
バの内面にCFRPを取着したが、外面にCFRPを取
着しても、同様な効果を奏するものである。また一実施
例は、強化繊維としてカ−ボン繊維を用いたCFRPを
用いた例を挙げたが、これに限らず、他の強化繊維を用
いた繊維強化樹脂を用いてもよい。
Although the CFRP is attached to the inner surface of the metal side member in the embodiment, the same effect can be obtained by attaching the CFRP to the outer surface. In addition, in one example, an example in which CFRP using carbon fiber is used as the reinforcing fiber is given, but the present invention is not limited to this, and a fiber-reinforced resin using another reinforcing fiber may be used.

【0046】さらに一実施例では、車体のフロント側に
あるサイドメンバに本発明を適用した例を挙げたが、こ
れに限らず、車体のリア側にあるサイドメンバに本発明
を適用しても、さらに客室の幅方向に向かって突き出る
金属製のメンバがある車体であれば、同メンバに本発明
を適用してもよい。すなわち、客室から外側に突き出る
金属製の筒状のフレ−ム部材に本発明を適用すれば、目
的を達成できるものである。
Furthermore, in one embodiment, the present invention is applied to the side member on the front side of the vehicle body, but the present invention is not limited to this, and the present invention is applied to the side member on the rear side of the vehicle body. The present invention may be applied to a vehicle body having a metal member protruding in the width direction of the passenger compartment. That is, the object can be achieved by applying the present invention to a tubular frame member made of metal and protruding outward from the passenger compartment.

【0047】[0047]

【発明の効果】以上説明したように請求項1に記載の発
明によれば、客室から外側に向かう方向に突き出る金属
製の筒状フレ−ム部材に、高いライドダウン効率をもた
らす、衝突初期の高い耐荷重性能と、その後の安定した
圧壊性能を与えることができる。
As described above, according to the first aspect of the present invention, the metal tubular frame member protruding from the passenger compartment in the outward direction is provided with a high ridedown efficiency at the initial stage of collision. It is possible to provide high load bearing performance and stable crushing performance thereafter.

【0048】これにより、金属製の筒状フレ−ム部材に
おけるエネルギ−吸収能を飛躍的に高めることができ
る。この結果、高いライドダウン効率をもつ乗員の保護
性に優れる車体を実現できる。
As a result, the energy absorption capacity of the metallic cylindrical frame member can be dramatically increased. As a result, it is possible to realize a vehicle body having a high ridedown efficiency and excellent occupant protection.

【0049】請求項2に記載の発明によれば、上記に請
求項1の効果に加え、金属製の筒状フレ−ム部材におい
て最も高いエネルギ−吸収能を与えることができる。請
求項3に記載の発明によれば、上記に請求項1、請求項
2の効果に加え、繊維強化樹脂層による十分な効果を確
保することができる。
According to the second aspect of the invention, in addition to the effect of the first aspect, it is possible to give the highest energy absorbing ability in the metallic cylindrical frame member. According to the invention of claim 3, in addition to the effects of claims 1 and 2, a sufficient effect of the fiber reinforced resin layer can be secured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の要部となるCFRPが付い
た金属製のサイドメンバを示す斜視図。
FIG. 1 is a perspective view showing a metal side member with CFRP, which is a main part of one embodiment of the present invention.

【図2】図1中、A−A線に沿うサイドメンバの「衝突
エネルギ−を吸収する部分」の断面図。
FIG. 2 is a sectional view of a “portion that absorbs collision energy” of the side member taken along the line AA in FIG.

【図3】同部分に取着されているCFRPの構造を説明
するための斜視図。
FIG. 3 is a perspective view for explaining the structure of a CFRP attached to the same portion.

【図4】同じくCFRPのカ−ボン繊維の配列を説明す
るための斜視図。
FIG. 4 is a perspective view for explaining the arrangement of carbon fibers of CFRP.

【図5】CFRPが付いた金属製のサイドメンバの圧壊
具合を説明するための図。
FIG. 5 is a view for explaining how the metal side member with CFRP is crushed.

【図6】同サイドメンバの圧壊時における車体減速度の
波形を示す線図。
FIG. 6 is a diagram showing a waveform of a vehicle body deceleration when the side member is crushed.

【図7】サイドメンバの軸心方向を基準として、カ−ボ
ン繊維を「±15°」、「±75°」の角度範囲に配列
したときの車体減速度の波形を示す線図。
FIG. 7 is a diagram showing a waveform of a vehicle body deceleration when carbon fibers are arranged in an angle range of “± 15 °” and “± 75 °” with reference to the axial direction of the side member.

【図8】その角度範囲外の組み合わせでカ−ボン繊維を
積層したときにおける車体減速度の波形を示す線図。
FIG. 8 is a diagram showing a waveform of a vehicle body deceleration when carbon fiber is laminated in a combination outside the angle range.

【図9】(a)および(b)は、自動車の車体を、客室
から外側に向かう方向に突き出る金属製のサイドメンバ
と共に示す正面図および側面図。
9 (a) and 9 (b) are a front view and a side view showing a vehicle body of an automobile together with a metal side member protruding in a direction outward from a passenger compartment.

【図10】同フロント側の金属製のサイドメンバを詳し
く示すための斜視図。
FIG. 10 is a perspective view showing in detail a metal side member on the front side.

【図11】同金属製のサイドメンバの圧壊具合を説明す
るための図。
FIG. 11 is a view for explaining how the side member made of the same metal is crushed.

【図12】同サイドメンバの圧壊時における車体減速度
の波形を示す線図。
FIG. 12 is a diagram showing a waveform of a vehicle body deceleration when the side member is crushed.

【符号の説明】[Explanation of symbols]

10…サイドメンバ(金属製の筒状フレ−ム部材) 13a…メンバ部分(衝撃を吸収する部分) 14…強化繊維樹脂層 15…CFRP(炭素繊維強化樹脂) 15a…カ−ボン繊維(第1の強化繊維) 15b…カ−ボン繊維(第2の強化繊維) DESCRIPTION OF SYMBOLS 10 ... Side member (cylindrical frame member made of metal) 13a ... Member part (part which absorbs impact) 14 ... Reinforcing fiber resin layer 15 ... CFRP (carbon fiber reinforced resin) 15a ... Carbon fiber (first) 15b ... Carbon fiber (second reinforcing fiber)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B62D 29/04 Z // B29K 105:10 B29L 31:30 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B62D 29/04 Z // B29K 105: 10 B29L 31:30

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 客室を有し、かつこの客室から外側に向
かう方向に突き出る金属製の筒状フレ−ム部材を有して
なり、前記筒状フレ−ム部材は先端側から加わる衝撃的
な荷重に対して座屈変形可能である自動車の車体構造に
おいて、 前記筒状部材の壁面に、前記筒状フレ−ム部材の軸心方
向と略平行な方向に配列された第1の強化繊維と、この
第1の強化繊維と交差して前記筒状フレ−ム部材の軸心
方向と略直角な方向に配列された第2の強化繊維とを有
してなる繊維強化樹脂層を取着したことを特徴とする車
両の車体構造。
1. A passenger compartment, and a tubular frame member made of metal, which protrudes outward from the passenger compartment, wherein the tubular frame member has a shocking force applied from a tip end side. A vehicle body structure capable of buckling deformation with respect to a load, comprising: a first reinforcing fiber arranged on a wall surface of the tubular member in a direction substantially parallel to an axial direction of the tubular frame member. A fiber reinforced resin layer having a second reinforcing fiber which intersects with the first reinforcing fiber and is arranged in a direction substantially perpendicular to the axial direction of the tubular frame member is attached. A vehicle body structure characterized by the above.
【請求項2】 前記繊維強化樹脂層は、前記筒状フレ−
ム部材の壁面に、周方向に沿って連続して配設されてい
ることを特徴とする請求項1に記載の車両の車体構造。
2. The fiber-reinforced resin layer is the tubular frame.
The vehicle body structure of the vehicle according to claim 1, wherein the vehicle body structure is arranged continuously on the wall surface of the frame member along the circumferential direction.
【請求項3】 前記繊維強化樹脂層は、第1の強化繊維
が、前記筒状フレ−ムの軸心方向を基準とした±15°
の範囲で配列され、第2の強化繊維が、同じく±75°
の範囲で設けられていることを特徴とする請求項1また
は請求項2に記載の車両の車体構造。
3. In the fiber-reinforced resin layer, the first reinforcing fibers are ± 15 ° with respect to the axial center direction of the tubular frame.
The second reinforcing fibers are also arranged within the range of ± 75 °
The vehicle body structure for a vehicle according to claim 1 or 2, wherein the vehicle body structure is provided in the range of.
JP5313466A 1993-12-14 1993-12-14 Body structure for vehicle Withdrawn JPH07165109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5313466A JPH07165109A (en) 1993-12-14 1993-12-14 Body structure for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5313466A JPH07165109A (en) 1993-12-14 1993-12-14 Body structure for vehicle

Publications (1)

Publication Number Publication Date
JPH07165109A true JPH07165109A (en) 1995-06-27

Family

ID=18041649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5313466A Withdrawn JPH07165109A (en) 1993-12-14 1993-12-14 Body structure for vehicle

Country Status (1)

Country Link
JP (1) JPH07165109A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0994007A3 (en) * 1998-10-16 2002-01-23 Volkswagen Aktiengesellschaft Supporting structure of a motor vehicle and method of its production
KR100633641B1 (en) * 2002-05-21 2006-10-11 현대자동차주식회사 Method for manufacturing front side member for automobile
JP2009001238A (en) * 2007-06-25 2009-01-08 Nissan Motor Co Ltd Energy absorption structure and energy absorption method
CN104395179A (en) * 2012-06-27 2015-03-04 戴姆勒股份公司 Carrier element and energy absorption element of hybrid construction for motor vehicle
JP2015174248A (en) * 2014-03-13 2015-10-05 アイシン高丘株式会社 Composite structure and method for producing the same
JP2015209024A (en) * 2014-04-24 2015-11-24 本田技研工業株式会社 Vehicle body structure of automobile
JP2017007514A (en) * 2015-06-23 2017-01-12 マツダ株式会社 Vibration attenuation member made of carbon fiber-reinforced plastic for vehicle
JP2017178088A (en) * 2016-03-30 2017-10-05 株式会社栗本鐵工所 Support structure of fiber-reinforced resin hollow body
KR20180052144A (en) * 2016-11-09 2018-05-18 현대자동차주식회사 Composite vehicle body parts and manufacturing method of the same
JP2019182166A (en) * 2018-04-09 2019-10-24 日本製鉄株式会社 Vehicle structure member
JP6733850B1 (en) * 2019-10-01 2020-08-05 日本製鉄株式会社 Panel structure
JP6760549B1 (en) * 2019-10-01 2020-09-23 日本製鉄株式会社 Curved panel member
JP2022110025A (en) * 2018-06-08 2022-07-28 日本製鉄株式会社 curved panel member

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0994007A3 (en) * 1998-10-16 2002-01-23 Volkswagen Aktiengesellschaft Supporting structure of a motor vehicle and method of its production
KR100633641B1 (en) * 2002-05-21 2006-10-11 현대자동차주식회사 Method for manufacturing front side member for automobile
JP2009001238A (en) * 2007-06-25 2009-01-08 Nissan Motor Co Ltd Energy absorption structure and energy absorption method
CN104395179A (en) * 2012-06-27 2015-03-04 戴姆勒股份公司 Carrier element and energy absorption element of hybrid construction for motor vehicle
US10052842B2 (en) 2014-03-13 2018-08-21 Aisin Takaoka Co., Ltd. Composite structure and manufacturing method thereof
JP2015174248A (en) * 2014-03-13 2015-10-05 アイシン高丘株式会社 Composite structure and method for producing the same
JP2015209024A (en) * 2014-04-24 2015-11-24 本田技研工業株式会社 Vehicle body structure of automobile
JP2017007514A (en) * 2015-06-23 2017-01-12 マツダ株式会社 Vibration attenuation member made of carbon fiber-reinforced plastic for vehicle
JP2017178088A (en) * 2016-03-30 2017-10-05 株式会社栗本鐵工所 Support structure of fiber-reinforced resin hollow body
KR20180052144A (en) * 2016-11-09 2018-05-18 현대자동차주식회사 Composite vehicle body parts and manufacturing method of the same
JP2019182166A (en) * 2018-04-09 2019-10-24 日本製鉄株式会社 Vehicle structure member
JP2022110025A (en) * 2018-06-08 2022-07-28 日本製鉄株式会社 curved panel member
JP6733850B1 (en) * 2019-10-01 2020-08-05 日本製鉄株式会社 Panel structure
JP6760549B1 (en) * 2019-10-01 2020-09-23 日本製鉄株式会社 Curved panel member
WO2021064872A1 (en) * 2019-10-01 2021-04-08 日本製鉄株式会社 Panel structure
WO2021064870A1 (en) * 2019-10-01 2021-04-08 日本製鉄株式会社 Curved panel member

Similar Documents

Publication Publication Date Title
JP3120957B2 (en) Manufacturing method of bumper beam for vehicle
JP4472898B2 (en) Shock absorber for motorcycle
US6913300B2 (en) Bumper structure for a motor vehicle
WO2008108598A1 (en) Crash box for an automobile
WO2006025315A1 (en) Bonnet for automobile
CN106347466B (en) Vehicle body assembly structure
JPH07165109A (en) Body structure for vehicle
JP3074647B2 (en) Automobile with body support structure
JP3289629B2 (en) Body front structure
WO2018021422A1 (en) Shock absorption member
US7798526B2 (en) Steering column assembly
US8888167B2 (en) Body structure of vehicle
US20030042759A1 (en) Structural member for a vehicle frame assembly
JP2022534601A (en) Sylbeam, etc. reduction unit
CN211568107U (en) Front end module frame of vehicle
JP5136630B2 (en) Vehicle knee bolster
JP4174637B2 (en) Energy absorption structure of automobile
JPS58116268A (en) Vehicular body frame structure for automobile
WO2008108597A1 (en) Crash box for an automobile
JPH0820297A (en) Bumper reinforcement
JPH08207679A (en) Energy absorbing member
JP4493945B2 (en) Vehicle shock absorbing structure and method of manufacturing the same
JP3304881B2 (en) Car bumper support structure
CN217945336U (en) Connecting structure of engine room wheel cover and longitudinal beam and vehicle
EP0979192B1 (en) Impact resistant chassis

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306