JPH0817063B2 - Design method of aluminum stabilized superconducting wire - Google Patents

Design method of aluminum stabilized superconducting wire

Info

Publication number
JPH0817063B2
JPH0817063B2 JP3258653A JP25865391A JPH0817063B2 JP H0817063 B2 JPH0817063 B2 JP H0817063B2 JP 3258653 A JP3258653 A JP 3258653A JP 25865391 A JP25865391 A JP 25865391A JP H0817063 B2 JPH0817063 B2 JP H0817063B2
Authority
JP
Japan
Prior art keywords
aluminum
superconducting wire
wire
superconducting
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3258653A
Other languages
Japanese (ja)
Other versions
JPH0574234A (en
Inventor
豊 松延
潔 山口
Original Assignee
超電導発電関連機器・材料技術研究組合
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 超電導発電関連機器・材料技術研究組合 filed Critical 超電導発電関連機器・材料技術研究組合
Priority to JP3258653A priority Critical patent/JPH0817063B2/en
Publication of JPH0574234A publication Critical patent/JPH0574234A/en
Publication of JPH0817063B2 publication Critical patent/JPH0817063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電導線に係り、とくに
安定性の優れたアルミニウム安定化超電導線の設計方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting wire, and more particularly to a method of designing an aluminum-stabilized superconducting wire having excellent stability.

【0002】[0002]

【従来の技術】アルミニウム安定化超電導線は、大きく
分けて2種類に分類できる。超電導体の内部に安定化ア
ルミニウムを持つアルミニウム内蔵型超電導線と超電導
線の外部に安定化アルミニウムを付けたアルミニウム外
付型超電導線である。本発明の従来例としては、文献ア
イイーイーイー トランスアクションズ オン マグネ
チックス(IEEE TRANSACTIONS ON
MAGNETICS),VOL.MAG−19,N
o.3,(MAY1983)P672−675における
P674のFig.2が揚げられる。Fig.2はNb
Sn超電導線であるがNbTi線においても同様の構
成である。これを図2に示す。この場合において安定化
材の量を調節する方法としてはアルミニウムの厚さを変
えて行っていた。
2. Description of the Related Art Aluminum-stabilized superconducting wires can be roughly classified into two types. It is a superconducting wire with built-in aluminum having stabilized aluminum inside the superconductor, and an aluminum external superconducting wire having stabilized aluminum attached outside the superconducting wire. As a conventional example of the present invention, there is a document “IE TRANSACTIONS ON MAGNETICS”.
MAGNETICS), VOL. MAG-19, N
o. 3, (MAY1983) P672-675, FIG. 2 is fried. Fig. 2 is Nb
Although it is a 3 Sn superconducting wire, the NbTi wire has the same structure. This is shown in FIG. In this case, the thickness of aluminum was changed as a method for adjusting the amount of the stabilizer.

【0003】また、本発明に近い公知例としては、特開
昭57−196405号公報がある。該公知例では、線
形の等しい超電導線とアルミニウム線を、中心に超電導
線を周囲にアルミニウム線と超電導線を交互に配置した
計7本での構成である。この場合、アルミニウムを用い
ることにより安定性が向上し、アルミニウムを分割して
配置しているため交流損失が低減される。しかし、線径
が等しいので超電導部とアルミニウム部の断面積比は常
に一定である。よって、各超電導機器の要求仕様、臨界
電流密度や安定性や交流損失値等に適合させることは困
難である。
As a known example close to the present invention, there is JP-A-57-196405. In the known example, the superconducting wire and the aluminum wire having the same linear shape are arranged, and the superconducting wire is arranged at the center, and the aluminum wire and the superconducting wire are alternately arranged around the periphery, so that a total of seven wires are arranged. In this case, the stability is improved by using aluminum, and the AC loss is reduced because the aluminum is divided and arranged. However, since the wire diameters are the same, the cross-sectional area ratio between the superconducting part and the aluminum part is always constant. Therefore, it is difficult to meet the required specifications, critical current density, stability, AC loss value, etc. of each superconducting device.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術は、超電
導線の周りにアルミニウムを付ける場合、アルミニウム
の厚さに限界があるためある値以上薄くすることが技術
上困難である。また、上記公知例の場合もアルミニウム
と超電導材との比率は常に一定である。したがって、安
定化材の量を余り必要としない場合では、アルミニウム
が多すぎる結果となり、電流密度の低下と交流損失の増
大をもたらすという問題があった。本発明の目的は、安
定化材量の調整を容易にし、電流密度の向上と交流損失
の低減、安定性の向上や高強度化を達成することのでき
るアルミニウム安定化超電導線の設計方法を提供するこ
とにある。
In the above-mentioned prior art, when aluminum is attached around the superconducting wire, it is technically difficult to make it thinner than a certain value because of the limit of the thickness of aluminum. Also in the case of the above-mentioned known example, the ratio of aluminum to the superconducting material is always constant. Therefore, when the amount of the stabilizer is not so large, there is a problem that the amount of aluminum is too large and the current density is lowered and the AC loss is increased. An object of the present invention is to provide a method for designing an aluminum-stabilized superconducting wire, which facilitates adjustment of the amount of stabilizing material, and can achieve improvement of current density, reduction of AC loss, improvement of stability and high strength. To do.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、超電導線と該超電導線を電磁気的に安
定化させるアルミニウム安定化材からなり、かつアルミ
ニウム安定化材がアルミニウム線として超電導線の周囲
に配置されている超電導線材において、高抵抗かつ高強
度な材料でコーティングされた中心超電導線と、該中心
超電導線の周囲に、中心超電導線とは異なる径の線形状
をなし高抵抗かつ高強度な材料でコーティングされた、
同形状のアルミニウム線と超電導線と撚り合わされて
おり、かつ撚り合わされるアルミニウム線の割合を、該
撚り合わされるアルミニウム線と超電導線の合計に対し
6.25%〜93.75%の範囲で自由に選択するアル
ミニウム安定化超電導線の設計方法としたものである。
また、上記アルミニウム安定化超電導線において、アル
ミニウム線の割合は、必要な臨界電流密度から求める
か、必要な安定化材の量から求めるか、又は許容交流損
失値から求めることができる。
In order to achieve the above object, the present invention comprises a superconducting wire and an aluminum stabilizing material for electromagnetically stabilizing the superconducting wire, and the aluminum stabilizing material is an aluminum wire. In a superconducting wire arranged around the superconducting wire , a central superconducting wire coated with a material having high resistance and high strength ,
Around the superconducting wire, coated with a high resistance and high strength without the line shape of the different-diameter material than the central superconducting wire,
Is Awa twisted and the aluminum wire and the superconducting wire of the same shape
Cage, and the ratio of aluminum lines which Ru is Awa twist, the
For the total of aluminum wire and superconducting wire that are twisted together
This is a method for designing an aluminum-stabilized superconducting wire that can be freely selected in the range of 6.25% to 93.75% .
In addition, in the above aluminum-stabilized superconducting wire, the proportion of aluminum wire is determined from the required critical current density.
Or the required amount of stabilizer, or the allowable AC loss
It can be calculated from the lost value .

【0006】すなわち、本発明は、中心超電導線の周り
に配置されるアルミニウム安定化材を中心超電導線とは
線径の異なる線形状とし、かつアルミ線をCuNi等の
高抵抗・強度の材料でコーティングし、更にアルミ線
と線径の等しい超電導線をある割合で混在させ、中心超
電導線の周りに撚線する超電導線の設計方法を与える。
本発明のアルミニウム安定化超電導線の具体例を図1に
示す。図1は超電導線の断面構造図であり、この例では
中心超電導線の周りに、アルミニウム線8が4本と超電
導線9が8本が撚り合わされているが、中心超電導線7
の周りに配置されたアルミニウム線8と超電導線9の割
合を変化させることにより、最適な安定化材の量を容易
に選択することができ、臨界電流密度の増大と高抵抗・
高強度の材料でコーティングしたアルミニウムを用いる
ことで交流損失の低減と安定性の向上、高強度化を達成
することができる。
That is, according to the present invention, the aluminum stabilizing material arranged around the central superconducting wire has a wire shape different from that of the central superconducting wire, and the aluminum wire is made of a material having high resistance and high strength such as CuNi. Then, a method of designing a superconducting wire in which a superconducting wire having the same diameter as the aluminum wire is mixed in a certain ratio and twisted around the central superconducting wire.
A specific example of the aluminum-stabilized superconducting wire of the present invention is shown in FIG. FIG. 1 is a cross-sectional structure diagram of the superconducting wire. In this example, four aluminum wires 8 and eight superconducting wires 9 are twisted around the central superconducting wire.
By changing the ratio of the aluminum wire 8 and the superconducting wire 9 arranged around the, it is possible to easily select the optimum amount of the stabilizing material, and increase the critical current density and high resistance.
By using aluminum coated with a high-strength material, AC loss can be reduced, stability can be improved, and high strength can be achieved.

【0007】[0007]

【作用】アルミニウム安定化材は4.2Kの極低温にお
いて銅安定化材の1/10の低抵抗であり、かつ熱伝導
率も約10倍優れているため、優れた安定性を示す。し
かし、低抵抗であるが故に次式で示す交流損失(渦電流
損失)が発生する。
The aluminum stabilizer has a resistance as low as 1/10 of that of the copper stabilizer at an extremely low temperature of 4.2K, and has a thermal conductivity of about 10 times, and therefore exhibits excellent stability. However, because of its low resistance, an AC loss (eddy current loss) represented by the following equation occurs.

【数1】 [Equation 1]

【0008】上式より渦電流損失を低減するためには安
定化材の直径を小さくしなければならない。本発明の構
成によるとアルミニウム安定化材は図2に示したアルミ
ニウム外付の場合と比較して直径が小さいので交流損失
の大幅な低減が可能であり、更にCuNi等の高抵抗・
高強度の材料でコーティングされているため、低強度の
アルミニウムの補強が達成できる。次に、従来のアルミ
ニウム外付線はアルミニウムの厚さを変化させて安定化
材の量を調整していたが、アルミニウムは強度不足のた
めある値以上薄くすることは困難であり、安定化材を余
り必要としない場合では安定化材の量が仕様値に対して
オーバーであった。本発明の構成では、アルミニウム安
定化材の量を中心超電導線の周りに撚られたアルミニウ
ム線8と超電導線9の割合を変化させる事により任意の
安定化材の量を調節することが可能である。これは、中
心超電導線7と、周囲のアルミニウム線8と超電導線9
の線径が異なっていることにより達成される。また、中
心超電導線7とアルミニウム線8、超電導線9をCuN
iなどの高抵抗・高強度の材料でコーティングするので
渦電流の大きなループが寸断されて、渦電流損失が主体
の交流損失が大幅に低減される。
From the above equation, in order to reduce the eddy current loss, it is necessary to reduce the diameter of the stabilizing material. According to the structure of the present invention, the aluminum stabilizer has a smaller diameter than that of the case of the aluminum external attachment shown in FIG. 2, so that the AC loss can be significantly reduced.
Since it is coated with a high strength material, reinforcement of low strength aluminum can be achieved. Next, in the conventional aluminum external wire, the amount of the stabilizer is adjusted by changing the thickness of aluminum, but it is difficult to make aluminum thinner than a certain value because of insufficient strength. In the case of not requiring so much, the amount of the stabilizer was over the specification value. In the configuration of the present invention, the amount of the aluminum stabilizer can be adjusted by changing the ratio of the aluminum wire 8 and the superconductor wire 9 twisted around the central superconducting wire. is there. This is the central superconducting wire 7, the surrounding aluminum wire 8 and the superconducting wire 9.
This is achieved by having different wire diameters. In addition, the central superconducting wire 7, the aluminum wire 8 and the superconducting wire 9 are made of CuN.
Since coating is performed with a material having high resistance and high strength such as i, a large loop of eddy current is cut off, and AC loss mainly due to eddy current loss is significantly reduced.

【0009】[0009]

【実施例】以下、本発明を実施例で図面を用いて具体的
に説明する。 実施例1 図3は参考のために中心超電導線7の周りの12本の線
をすべてアルミニウム線8にしたものであり、図4〜図
7は本発明の実施例であり、図4はアルミニウム線8を
9本、超電導線9を3本にしたものである。以下、図5
は6本、6本、図6は3本、9本、図7は1本、11本
にしたものである。中心超電導線7の直径は1.2m
m、NbTi:Cu:CuNi=1:1:1であり、臨
界電流は4Tで1000A、7Tで600Aである。ア
ルミニウム線8の直径は0.4mm、Al:CuNi=
4:1である。周囲に用いた超電導線9の直径は0.4
mm、NbTi:Cu:CuNi=1:1:1であり、
臨界電流は4Tで130A、7Tで80Aである。アル
ミニウム線8の本数を1から12まで変化させた場合の
NbTi:Cu:CuNi:Al,4Tと7Tにおける
臨界電流(A)、周波数3.75Hz、振幅0.33
T、バイアス磁場4Tにおける交流損失(kW/m
を表1に示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the accompanying drawings. Example 1 FIG. 3 is intended that all the 12 lines around the center superconducting wire 7 for reference was an aluminum wire 8, FIGS. 4
7 is an embodiment of the present invention, and FIG. 4 shows nine aluminum wires 8 and three superconducting wires 9. Below, FIG.
Is 6, 6, FIG. 6 is 3, 9 and FIG. 7 is 1, 11. The diameter of the central superconducting wire 7 is 1.2m
m, NbTi: Cu: CuNi = 1: 1: 1, and the critical current is 1000 A at 4T and 600A at 7T. The diameter of the aluminum wire 8 is 0.4 mm, Al: CuNi =
It is 4: 1. The diameter of the superconducting wire 9 used around is 0.4
mm, NbTi: Cu: CuNi = 1: 1: 1,
The critical current is 130A at 4T and 80A at 7T. NbTi: Cu: CuNi: Al when changing the number of aluminum wires 8 from 1 to 12, critical current (A) in 4T and 7T, frequency 3.75 Hz, amplitude 0.33
AC loss in T, bias magnetic field 4T (kW / m 3 )
Is shown in Table 1.

【0010】[0010]

【表1】 [Table 1]

【0011】図8にアルミニウム線本数に対する安定化
材の等価量を示す。但し、アルミニウム本数0の場合を
1とし、アルミニウムの抵抗が銅の1/10であるので
次式により安定化材の等価量(S)を求めた。また、比
較のため安定化材をアルミニウムではなく従来より用い
られている銅を用いた場合も示す。
FIG. 8 shows the equivalent amount of the stabilizer with respect to the number of aluminum wires. However, when the number of aluminum is 0, the resistance of aluminum is 1/10 of that of copper. Therefore, the equivalent amount (S) of the stabilizing material was calculated by the following equation. For comparison, the case where copper, which has been conventionally used, is used as the stabilizing material instead of aluminum is also shown.

【数2】 図9にアルミニウムの本数を1から12まで変化させた
場合の磁場4Tにおける臨界電流密度を示す。図10に
アルミニウムの本数を1から12まで変化させた場合
の、周波数3.75Hz、振幅0.33T、バイアス磁
場4Tにおける交流損失を示す。
[Equation 2] FIG. 9 shows the critical current density in the magnetic field 4T when the number of aluminum is changed from 1 to 12. FIG. 10 shows AC loss at a frequency of 3.75 Hz, an amplitude of 0.33 T, and a bias magnetic field of 4 T when the number of aluminum is changed from 1 to 12.

【0012】一般に、安定化材の量は多いほど安定性は
良く、導体断面積当たりの臨界電流密度も高いほどコイ
ルはコンパクトになって良い。逆に、交流損失は少ない
ほど良い。図8〜図10よりアルミニウムの量が多いと
安定性が優れているが、臨界電流密度が低下し、交流損
失が増大する。逆にアルミニウムの量が少ないと安定性
が低下するが電流密度は高くなり、交流損失は低下す
る。よって、仕様用途によって構成を決定することが普
通に行われる。安定化材の量、臨界電流密度、交流損失
量が規定されていれば、容易に構成を決定することがで
きる。
Generally, the larger the amount of the stabilizer, the better the stability, and the higher the critical current density per conductor cross-sectional area, the more compact the coil may be. Conversely, the smaller the AC loss, the better. 8 to 10, the stability is excellent when the amount of aluminum is large, but the critical current density decreases and the AC loss increases. On the other hand, when the amount of aluminum is small, the stability decreases, but the current density increases and the AC loss decreases. Therefore, it is common to determine the configuration according to the specifications and uses. If the amount of the stabilizing material, the critical current density, and the AC loss amount are specified, the configuration can be easily determined.

【0013】一方、従来のアルミニウム外付線ではアル
ミニウムの厚さを変化させることにより安定化材量の調
整を行っている。アルミニウムの厚さを薄くする事には
限界があるため、安定化材を余り必要としない場合では
アルミニウムが多すぎる構成となるため電流密度が低下
し、交流損失が増大する結果となる。本発明によると、
中心超電導線と周囲の線の線径を任意に変えることによ
り、柔軟に適応でき、高電流密度化と低交流損失化が達
成できる。なお、アルミニウム安定化材が少量の領域で
は本発明は従来の一割程度電流密度が向上する。さら
に、交流損失に関しては同じ電流容量の超電導線で比較
した場合、従来のアルミニウム外付型や高抵抗CuNi
でコーティングしない超電導線や安定化材線を撚り合わ
せた超電導線に比べ、それらが特性として持つ交流損失
の値の一桁から二桁低い交流損失特性となる。以上、中
心超電導線の周囲に撚り合わせるアルミニウム安定化線
と超電導線の総数が12本の場合について示したが、総
数はこれに限らす8〜16程度にとることができる。
On the other hand, in the conventional aluminum external wire, the amount of stabilizing material is adjusted by changing the thickness of aluminum. Since there is a limit to thinning the thickness of aluminum, if the stabilizer is not required so much, the structure will have too much aluminum, resulting in a decrease in current density and an increase in AC loss. According to the invention,
By arbitrarily changing the diameters of the central superconducting wire and the surrounding wires, it is possible to flexibly adapt and achieve high current density and low AC loss. In the region where the amount of the aluminum stabilizing material is small, the present invention improves the current density by about 10% as compared with the conventional case. Regarding AC loss, when comparing superconducting wires with the same current capacity, conventional aluminum external type and high resistance CuNi
Compared with superconducting wires that are not coated with and superconducting wires in which stabilizing material wires are twisted, the AC loss values that they have are one to two orders of magnitude lower. The case where the total number of the aluminum stabilizing wires and the superconducting wires twisted around the central superconducting wire is 12 has been described above, but the total number can be about 8 to 16 which is not limited to this.

【0014】[0014]

【発明の効果】本発明によれば、アルミニウム外付超電
導線では実現困難な安定化材を余り必要としない領域で
の構成が可能となるので、高電流密度化の効果がある。
また、アルミニウムをCuNi等の高抵抗・高強度の材
料でコーティングしているので、従来の安定化線と超電
導線を撚り合わせただけの超電導線に比べ一桁から二桁
小さい交流損失にでき、さらに強度を増強する効果もあ
る。
According to the present invention, since it is possible to construct a structure in which a stabilizing material, which is difficult to realize with an aluminum external superconducting wire, is rarely required, there is an effect of increasing the current density.
In addition, since aluminum is coated with a material with high resistance and high strength such as CuNi, the AC loss can be reduced by one to two orders of magnitude compared to the conventional superconducting wire in which the stabilizing wire and superconducting wire are simply twisted together. It also has the effect of increasing strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のアルミニウム安定化超電導線の断面構
造図である。
FIG. 1 is a sectional structural view of an aluminum-stabilized superconducting wire of the present invention.

【図2】従来のアルミニウム外付超電導線の断面構造図
である。
FIG. 2 is a sectional structural view of a conventional aluminum external superconducting wire.

【図3】参考例のアルミニウム安定化超電導線の断面構
造図である。
FIG. 3 is a sectional structural view of an aluminum-stabilized superconducting wire of a reference example.

【図4】本発明の一実施例のアルミニウム安定化超電導
線の断面構造図である。
FIG. 4 is a cross-sectional structural diagram of an aluminum-stabilized superconducting wire according to an embodiment of the present invention.

【図5】本発明の一実施例のアルミニウム安定化超電導
線の断面構造図である。
FIG. 5 is a cross-sectional structural diagram of an aluminum-stabilized superconducting wire according to an embodiment of the present invention.

【図6】本発明の一実施例のアルミニウム安定化超電導
線の断面構造図である。
FIG. 6 is a cross-sectional structure diagram of an aluminum-stabilized superconducting wire according to an embodiment of the present invention.

【図7】本発明の一実施例のアルミニウム安定化超電導
線の断面構造図である。
FIG. 7 is a cross-sectional structural diagram of an aluminum-stabilized superconducting wire according to an embodiment of the present invention.

【図8】アルミニウム線本数に対する安定化材の等価量
を示すグラフである。
FIG. 8 is a graph showing an equivalent amount of a stabilizing material with respect to the number of aluminum wires.

【図9】アルミニウム線本数による臨界電流密度の変化
を示すグラフである。
FIG. 9 is a graph showing changes in the critical current density depending on the number of aluminum wires.

【図10】アルミニウム線本数による交流損失の変化を
示すグラフである。
FIG. 10 is a graph showing changes in AC loss depending on the number of aluminum wires.

【符号の説明】[Explanation of symbols]

1…アルミニウム外付超電導線、2…安定化アルミニウ
ム、3…高抵抗材料、4…超電導部、5…安定化銅、6
…半田、7…中心超電導線、8…アルミニウム線、9…
超電導線
1 ... Aluminum external superconducting wire, 2 ... Stabilized aluminum, 3 ... High resistance material, 4 ... Superconducting part, 5 ... Stabilized copper, 6
... Solder, 7 ... Central superconducting wire, 8 ... Aluminum wire, 9 ...
Superconducting wire

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 超電導線と該超電導線を電磁気的に安定
化させるアルミニウム安定化材からなり、かつアルミニ
ウム安定化材がアルミニウム線として超電導線の周囲に
配置されている超電導線材において、高抵抗かつ高強度
な材料3でコーティングされた中心超電導線7と、該中
心超電導線7の周囲に、中心超電導線7とは異なる径の
線形状をなし高抵抗かつ高強度な材料3でコーティング
された、同形状のアルミニウム線8と超電導線9と
り合わされており、かつ撚り合わされるアルミニウム線
8の割合を、該撚り合わされるアルミニウム線8と超電
導線9の合計に対し6.25%〜93.75%の範囲で
自由に選択することを特徴とするアルミニウム安定化超
電導線の設計方法。
1. A superconducting wire comprising a superconducting wire and an aluminum stabilizing material for electromagnetically stabilizing the superconducting wire, wherein the aluminum stabilizing material is arranged as an aluminum wire around the superconducting wire, and has a high resistance. a central superconducting wire 7 coated with high-strength material 3, intermediate
Around the heart superconducting wire 7, different without the diameter of the line shape is coated with a high resistance and high strength material 3, and the aluminum wire 8 having the same shape as the superconducting wire 9 is twisted is centered superconducting wire 7 <br / > Ri fit has been provided, and an aluminum wire which Ru is Awa twist
8 of the aluminum wire 8 and the superconductor
A method for designing an aluminum-stabilized superconducting wire, which is freely selected within a range of 6.25% to 93.75% with respect to the total number of the wires 9 .
【請求項2】 前記アルミニウム線の割合は、必要な
臨界電流密度から求めるか、必要な安定化材の量から求
めるか、又は許容交流損失値から求めることを特徴とす
る請求項1記載のアルミニウム安定化超電導線の設計方
法。
2. The proportion of the aluminum wire 8 is required.
Obtain from the critical current density or the amount of required stabilizer.
The method for designing an aluminum-stabilized superconducting wire according to claim 1, which is obtained from the allowable AC loss value .
JP3258653A 1991-09-11 1991-09-11 Design method of aluminum stabilized superconducting wire Expired - Fee Related JPH0817063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3258653A JPH0817063B2 (en) 1991-09-11 1991-09-11 Design method of aluminum stabilized superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3258653A JPH0817063B2 (en) 1991-09-11 1991-09-11 Design method of aluminum stabilized superconducting wire

Publications (2)

Publication Number Publication Date
JPH0574234A JPH0574234A (en) 1993-03-26
JPH0817063B2 true JPH0817063B2 (en) 1996-02-21

Family

ID=17323247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3258653A Expired - Fee Related JPH0817063B2 (en) 1991-09-11 1991-09-11 Design method of aluminum stabilized superconducting wire

Country Status (1)

Country Link
JP (1) JPH0817063B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3643001A (en) 1969-07-08 1972-02-15 Oerlikon Maschf Composite superconductor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196405A (en) * 1981-05-28 1982-12-02 Kogyo Gijutsuin Al stabilized superconductive wire
JPS5852570U (en) * 1981-10-05 1983-04-09 クリナップ株式会社 layout tools

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3643001A (en) 1969-07-08 1972-02-15 Oerlikon Maschf Composite superconductor

Also Published As

Publication number Publication date
JPH0574234A (en) 1993-03-26

Similar Documents

Publication Publication Date Title
US5929385A (en) AC oxide superconductor wire and cable
JPH0817063B2 (en) Design method of aluminum stabilized superconducting wire
SE328041B (en)
JP3718480B2 (en) Method for reducing AC losses in superconducting coils
JP3754522B2 (en) Nb (3) Sn superconducting wire
JP3489293B2 (en) NbTi superconducting stranded wire
JP3099460B2 (en) Nb-Ti alloy superconducting wire
JP3018663B2 (en) Nb-Ti alloy superconducting wire
JP2768844B2 (en) Superconductor and superconducting coil
JPS5960817A (en) Superconductive conductor
JPH0146963B2 (en)
JPS62110208A (en) Complex multi-core superconductor
JP2001357734A (en) Nb3Sn SUPERCONDUCTIVE WIRE MATERIAL AND SUPERCONDUCTIVE MAGNET USING IT
JPS5979505A (en) Superconductive coil
JP3153539B2 (en) Superconducting wire
JPH0589726A (en) Nbyi superconductive wire
JPH05182534A (en) Nbti alloy group superconductive wire for ac service
JP3330267B2 (en) Superconducting connection structure
JPH07272554A (en) Niobium-titanium-based (nb-ti) superconductive wire
JP3042094B2 (en) Stabilizing material for superconducting conductor and superconducting conductor using the same
JPH08124433A (en) Superconducting element wire and superconducting stranded cable
JPH10154422A (en) Nb-ti superconducting wire rod
JPH06295626A (en) Nbti superconducting material for pulse
JPH03182014A (en) Highly stable alloy-based superconductive wire
JPS5922361B2 (en) superconducting winding

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees