JP2001357734A - Nb3Sn SUPERCONDUCTIVE WIRE MATERIAL AND SUPERCONDUCTIVE MAGNET USING IT - Google Patents

Nb3Sn SUPERCONDUCTIVE WIRE MATERIAL AND SUPERCONDUCTIVE MAGNET USING IT

Info

Publication number
JP2001357734A
JP2001357734A JP2000175846A JP2000175846A JP2001357734A JP 2001357734 A JP2001357734 A JP 2001357734A JP 2000175846 A JP2000175846 A JP 2000175846A JP 2000175846 A JP2000175846 A JP 2000175846A JP 2001357734 A JP2001357734 A JP 2001357734A
Authority
JP
Japan
Prior art keywords
wire
ratio
value
sectional area
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000175846A
Other languages
Japanese (ja)
Other versions
JP3754599B2 (en
Inventor
Takashi Hase
隆司 長谷
Yukinobu Murakami
幸伸 村上
Mitsuo Tomonaga
満男 朝永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000175846A priority Critical patent/JP3754599B2/en
Publication of JP2001357734A publication Critical patent/JP2001357734A/en
Application granted granted Critical
Publication of JP3754599B2 publication Critical patent/JP3754599B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Nb3Sn superconductive wire material which is useful as a raw material of a superconductive magnet which is used in a perpetual current mode movement for NMR analysis use or the like by realizing a high overall critical current density and an n value in a high ferromagnetic field, and provide such a superconductive magnet. SOLUTION: This is the Nb3Sn superconductive wire material which is produced by a bronze process, and the ratio of cross-sectional area of Cu-Sn base alloy to the total cross-sectional area of Nb3Sn and Nb is 1.8 to 3.0, and the average area rate of Nb to the total cross-sectional area of Nb3Sn and Nb is constituted to become 5 to 20%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Nb3Sn超電導
線材およびこうした線材を素材として構成される超電導
マグネットに関するものであり、特に高性能核磁気共鳴
(NMR)分析装置等に用いられる超電導マグネットお
よびこうした超電導マグネットを構成する為に有用なN
3Sn超電導線材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Nb 3 Sn superconducting wire and a superconducting magnet made of such a wire, and more particularly to a superconducting magnet used for a high performance nuclear magnetic resonance (NMR) analyzer and the like. N which is useful for constructing such a superconducting magnet
The present invention relates to a b 3 Sn superconducting wire.

【0002】[0002]

【従来の技術】超電導物質によって実現される永久電流
現象を利用し、電力を消費せずに大電流を流し、超電導
線材をコイル状にして磁場を発生させる超電導マグネッ
トは、核磁気共鳴(NMR)装置等の各種物性測定装置
の他、磁場浮上列車や核融合装置等への応用が進められ
ている。そして上記の様な超電導マグネットの構成素材
としては、従来からNb3Sn超電導線材が代表的なも
のとして汎用されている。
2. Description of the Related Art A superconducting magnet that uses a persistent current phenomenon realized by a superconducting material to flow a large current without consuming power and to generate a magnetic field by coiling a superconducting wire is a nuclear magnetic resonance (NMR). In addition to various physical property measuring devices such as devices, applications to magnetic field levitation trains and nuclear fusion devices are being promoted. As a constituent material of the above-described superconducting magnet, an Nb 3 Sn superconducting wire has been widely used as a typical material.

【0003】上記の様なNb3Sn超電導線材を製造す
る方法としては、内部拡散法、チューブ法、インサイチ
ュー(in−situ)法、粉末法およびブロンズ法等
が知られているが、このうち最も代表的な方法は、いわ
ゆるブロンズ法と呼ばれる複合加工法である。
As a method for producing the above-described Nb 3 Sn superconducting wire, an internal diffusion method, a tube method, an in-situ method, a powder method, a bronze method, and the like are known. The most typical method is a composite processing method called a so-called bronze method.

【0004】図1は、ブロンズ法によって製造されるN
3Sn超電導線材の断面構造を模式的に示した説明図
であり、図中1はNb線、2はCu−Sn基合金製線状
母材、3は拡散バリヤー層、4は安定化銅、5はNb3
Sn超電導線材を夫々示す。
[0004] FIG. 1 is a cross-sectional view of N produced by the bronze method.
b 3 Sn is the cross-sectional structure of the superconducting wire an explanatory view schematically showing the drawing, 1 is Nb wire, 2 is Cu-Sn based alloy linear base material, 3 diffusion barrier layer, 4 stabilization copper 5 is Nb 3
The Sn superconducting wires are respectively shown.

【0005】まず図1に示す様に、Cu−Sn基合金製
線状母材2に複数(この図では19)のNb線1を埋設
し、このCu−Sn基合金製線状母材2を断面減少加工
してから複数束ねて線材群とし、筒状の拡散バリヤー層
3内に挿入し、更にこの外側に安定化銅4を配置する。
尚、前記拡散バリヤー層3は、Nb3Sn生成のための
拡散熱処理時にSnの外方への拡散を抑制する機能を発
揮するものであり、例えばNbやTaによって構成され
る。また、安定化銅4は、Nb3Sn超電導線材の安定
化材として配置されるものであり、例えば無酸素銅から
なるものである。
First, as shown in FIG. 1, a plurality of (19 in this figure) Nb wires 1 are embedded in a linear preform 2 made of a Cu—Sn based alloy, Are cut into a cross-section and then bundled into a wire group, inserted into the cylindrical diffusion barrier layer 3, and the stabilizing copper 4 is further disposed outside this.
The diffusion barrier layer 3 has a function of suppressing the outward diffusion of Sn during a diffusion heat treatment for generating Nb 3 Sn, and is made of, for example, Nb or Ta. The stabilizing copper 4 is disposed as a stabilizing material of the Nb 3 Sn superconducting wire, and is made of, for example, oxygen-free copper.

【0006】図1に示す様に構成された素材(スタック
材)を伸線加工および熱処理を施して、前記Cu−Sn
基合金製線状母材2中のSnとNb線1を反応させるこ
とによって、Nb線1の表面近傍(この場合には、Cu
−Sn基合金製線状母材2とNb線1の界面)にNb3
Snを生成させるものである。
A material (stack material) configured as shown in FIG. 1 is subjected to wire drawing and heat treatment to obtain the Cu—Sn
By reacting Sn in the linear base material 2 made of the base alloy with the Nb wire 1, the vicinity of the surface of the Nb wire 1 (in this case, Cu
Nb 3 is applied to the interface between the Sn-based alloy linear base material 2 and the Nb wire 1).
Sn is generated.

【0007】尚、図1に示した構成では、複数のNb線
1をCu−Sn基合金製線状母材2に直接的に埋設して
素材を構成し、これを複数束ねて線材群とし、これを筒
状の拡散バリヤー層3内に挿入する場合について示した
が、素材の構成は図1に示したものに限らず、例えばC
u−Sn基合金製管に1本のNb線1を埋設し、これを
断面減少加工して単芯線を製造し、この単芯線を複数束
ねて前記Cu−Sn基合金製線状母材2に挿入し、以下
同様にして素材を構成する様にしても良い。この様に構
成された素材を伸線加工および熱処理した場合には、前
記Cu−Sn基合金製管とNb線1の界面にNb3Sn
が生成されたものとなる。
In the structure shown in FIG. 1, a plurality of Nb wires 1 are directly embedded in a Cu-Sn base alloy linear base material 2 to form a material, and a plurality of these are bundled to form a wire group. Although the case where this is inserted into the cylindrical diffusion barrier layer 3 has been described, the configuration of the material is not limited to that shown in FIG.
One Nb wire 1 is buried in a u-Sn base alloy tube, and the Nb wire 1 is reduced in section to produce a single core wire. , And the material may be configured in the same manner. When the material thus configured is subjected to wire drawing and heat treatment, Nb 3 Sn is formed at the interface between the Cu—Sn base alloy tube and the Nb wire 1.
Is generated.

【0008】上記の様にして製造されるNb3Sn超電
導線材においては、線材加工中に断線等の不都合の原因
となる金属間化合物をCu−Sn基合金製線状母材2
(若しくはCu−Sn基合金製管)中に生成させない様
にするには、用いるCu−Sn基合金中のSn含有量は
15質量%以下に抑制する必要がある。こうした規制が
あることから、上記の様にしてNb線1の表面近傍にN
3Snを形成させるには、Sn含有量が不足ぎみとな
る傾向がある。そして、Sn含有量が不足すると、Nb
3Sn超電導線材としての重要な要件であるコア臨界電
流密度(臨界電流を熱処理前のNb線の断面積で除した
値)が低下するという問題が生じることになる。
In the Nb 3 Sn superconducting wire manufactured as described above, an intermetallic compound that causes inconvenience such as disconnection during wire processing is replaced with a Cu—Sn base alloy wire base material 2.
(Or a Cu—Sn based alloy tube), the Sn content in the Cu—Sn based alloy used must be suppressed to 15% by mass or less. Due to such restrictions, as described above, Nb
In order to form b 3 Sn, the Sn content tends to be insufficient. When the Sn content is insufficient, Nb
3 Sn core critical current density is an important requirement of a superconducting wire (divided by the cross-sectional area of the Nb wire before the heat treatment the critical current) will occur is lowered.

【0009】上記の様なコア臨界電流密度の低下という
不都合を回避するという観点から、従来のブロンズ法に
おいては、Nb線1に対するSnの供給量を増加させる
方策として、熱処理後のNb3SnおよびNb(以下、
「残存Nb芯」と呼ぶことがある)の合計断面積に対す
るCu−Sn基合金の断面積(Cu−Sn基合金製母材
2の断面積、或はCu−Sn基合金製管に1本のNb線
を埋設して構成した場合にはCu−Sn基合金製線状母
材2とCu−Sn基合金製管の合計断面積)の比(以
下、「ブロンズ比」と呼ぶことがある)をできるだけ大
きくし、Nb線1を全てNb3Snに変態させるという
方法が採用されている。こうした方法として、例えば特
開昭62−93355号には、上記ブロンズ比を3.1
〜4.5に限定すると共に、Nb3Sn形成後の残存N
b芯の面積率を0%とするた技術が提案されている。
From the viewpoint of avoiding the inconvenience of lowering the core critical current density as described above, in the conventional bronze method, as a measure for increasing the supply amount of Sn to the Nb wire 1, Nb 3 Sn after heat treatment and Nb (hereinafter, referred to as
One cross-sectional area of the Cu-Sn-based alloy with respect to the total cross-sectional area of the "remaining Nb core" (the cross-sectional area of the Cu-Sn-based alloy base material 2 or one tube of the Cu-Sn-based alloy) (Hereinafter referred to as the "bronze ratio") in some cases when the Nb wire is embedded in the structure and the ratio is the total cross-sectional area of the Cu-Sn-based alloy linear base material 2 and the Cu-Sn-based alloy tube. ) Is made as large as possible and all the Nb lines 1 are transformed into Nb 3 Sn. As such a method, for example, JP-A-62-93355 discloses that the above bronze ratio is 3.1.
To 4.5 and N remaining after Nb 3 Sn formation.
A technique has been proposed in which the area ratio of the b-core is set to 0%.

【0010】しかしながら、ブロンズ比を大きくするこ
とは、臨界電流を線材の断面積で除したオーバオールの
臨界電流密度を却って小さくするという問題がある。ま
た、Nb3Sn形成後の残存Nb芯の残存率を0%とす
るためには、フルアニール熱処理を行なう必要がある
が、こうした熱処理を行なうとNb3Sn結晶粒の中に
は大きく成長するものが出現して粒径分布を広げること
になる。
However, increasing the bronze ratio has a problem in that the critical current density of the overall obtained by dividing the critical current by the cross-sectional area of the wire is rather reduced. Further, in order to reduce the residual ratio of the remaining Nb core after forming Nb 3 Sn to 0%, it is necessary to perform a full annealing heat treatment. However, if such a heat treatment is performed, large growth occurs in the Nb 3 Sn crystal grains. Things appear and broaden the particle size distribution.

【0011】そして、臨界電流密度は、Nb3Snの結
晶粒の大きさに依存するので、この様な状態ではNb3
Sn芯の長手方向でコア電流密度のばらつきが生じるこ
とになる。こうしたばらつきが生じると、核磁気共鳴
(NMR)等の様に特に永久電流モードで動作させる超
電導マグネット用線材で重要となるn値が小さい値に留
まることになる。
Since the critical current density depends on the size of the crystal grains of Nb 3 Sn, in such a state, Nb 3
A variation in the core current density occurs in the longitudinal direction of the Sn core. When such variations occur, the n value, which is important in a wire for a superconducting magnet operated in a permanent current mode, such as nuclear magnetic resonance (NMR), remains small.

【0012】上述した様に、これまでブロンズ法で製造
されたNb3Sn超電導線材では、オーバオールの臨界
電流密度とn値を大きくすることができないことから、
NMR分析用等の永久電流モード動作で用いられる超電
導マグネットに供する高性能なNb3Sn超電導線材を
得ることはできなかった。
As described above, the Nb 3 Sn superconducting wire manufactured by the bronze method cannot increase the critical current density and the n value of the overall.
A high-performance Nb 3 Sn superconducting wire used for a superconducting magnet used in a permanent current mode operation for NMR analysis or the like could not be obtained.

【0013】[0013]

【発明が解決しようとする課題】本発明は、上記の様な
従来技術における課題を解決する為になされたものであ
って、その目的は、強磁場中で高いオーバオールの臨界
電流密度とn値を実現し、NMR分析用等の永久電流モ
ード動作で用いられる超電導マグネットの素材として有
用なNb3Sn超電導線材、およびその様な超電導マグ
ネットを提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the problems in the prior art as described above, and has as its object to provide a high overall critical current density and n in a strong magnetic field. realized value, useful Nb 3 Sn superconducting wire as the superconducting magnet of the material used in the persistent current mode operation, such as for NMR analysis, and is to provide such superconducting magnet.

【0014】[0014]

【課題を解決するための手段】上記課題を解決すること
のできた本発明のNb3Sn超電導線材とは、ブロンズ
法によって製造されるNb3Sn超電導線材であって、
Nb3SnおよびNbの合計断面積に対するCu−Sn
基合金の断面積の比(即ち、ブロンズ比)が1.8〜
3.0であり、且つNb3SnおよびNbの合計断面積
に対するNb(残存Nb芯)の平均面積率が5〜20%
となる様に構成したものである点に要旨を有するもので
ある。
The Nb 3 Sn superconducting wire of the present invention that has solved the above problems SUMMARY OF THE INVENTION, a Nb 3 Sn superconducting wire produced by the bronze process,
Cu—Sn with respect to the total cross-sectional area of Nb 3 Sn and Nb
The ratio of the cross-sectional area of the base alloy (that is, the bronze ratio) is 1.8 to
It is 3.0, and the average area ratio of Nb (residual Nb cores) to the total cross-sectional area of the Nb 3 Sn and Nb is 5-20%
The point is that it is configured to be as follows.

【0015】尚、「Cu−Sn基合金の断面積」とは、
前述の如く、前記図1に示した構成では前記Cu−Sn
基合金製線状母材2の断面積を意味し、Cu−Sn基合
金製管に1本のNb線を埋設して超電導素材を構成した
場合にはCu−Sn基合金製線状母材とCu−Sn基合
金製管の合計断面積を意味する。
[0015] The "cross-sectional area of the Cu-Sn base alloy" means
As described above, in the configuration shown in FIG.
The cross-sectional area of the linear base material 2 made of a base alloy, and when a superconducting material is formed by embedding one Nb wire in a tube made of a Cu-Sn base alloy, a linear base material made of a Cu-Sn base alloy And the total cross-sectional area of the Cu-Sn base alloy pipe.

【0016】また、上記「Nb3SnおよびNbの合計
断面積に対するNbの平均面積率」を評価する当たって
は、超電導線材の外側には拡散バリヤー層3や安定化銅
4が配置されているのが一般的であるので(前記図
1)、これらの部分の面積を除いて計算する必要があ
る。そして、これら拡散バリヤー層3や安定化銅4は、
線材断面の中心点から線材表面までの距離をLとしたと
きには、0.80Lよりも外側に存在するのが一般的で
ある。また0.20Lよりも内側の部分では、場合によ
ってはTa等の補強材が配置されることがあるためであ
る。従って、この平均面積率を実際に計算するに際して
は、例えば図2に示す様に、0.20L〜0.80Lの
領域内で少なくとも線材全断面積の0.5%以上の面積
を有する区域を定めて、その部分の光学顕微鏡写真また
は電子顕微鏡写真を撮影して測定すれば良い。
In evaluating the "average area ratio of Nb to the total cross-sectional area of Nb 3 Sn and Nb", the diffusion barrier layer 3 and the stabilizing copper 4 are arranged outside the superconducting wire. (FIG. 1 described above), it is necessary to calculate by excluding the area of these parts. And these diffusion barrier layers 3 and stabilized copper 4
Assuming that the distance from the center point of the cross section of the wire to the surface of the wire is L, the wire generally exists outside 0.80 L. Further, in a portion inside of 0.20 L, a reinforcing material such as Ta may be disposed in some cases. Therefore, when actually calculating this average area ratio, for example, as shown in FIG. 2, a region having an area of at least 0.5% or more of the total cross-sectional area of the wire in a region of 0.20 L to 0.80 L is used. Then, an optical microscope photograph or an electron microscope photograph of the portion may be taken and measured.

【0017】本発明の上記Nb3Sn超電導線材におい
て、前記Cu−Sn基合金としては、CuとSn以外に
Ta,Zr,TiおよびHfよりなる群から選択される
1種以上を含有したものであることも有用である。
In the above-mentioned Nb 3 Sn superconducting wire of the present invention, the Cu-Sn based alloy contains at least one selected from the group consisting of Ta, Zr, Ti and Hf in addition to Cu and Sn. Some things are also useful.

【0018】また、上記の様なNb3Sn超電導線材を
素材として超電導マグネットを構成することによって、
高分解能のNMR分析装置等の実現に有用な超電導マグ
ネットが実現できる。
Further, by forming a superconducting magnet using the above-described Nb 3 Sn superconducting wire as a material,
A superconducting magnet useful for realizing a high-resolution NMR analyzer or the like can be realized.

【0019】[0019]

【発明の実施の形態】本発明者らは、上記目的を達成す
る為に様々な角度から検討した。その結果、上記の様に
して定義されるブロンズ比と、残存Nb芯の平均面積率
を所定の範囲内となる様に調整すれば、上記目的が見事
に達成されることを見出し、本発明を完成した。本発明
のNb3Sn超電導線材における各要件の規定理由は次
の通りである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present inventors have studied from various angles to achieve the above object. As a result, it has been found that the above object can be achieved satisfactorily if the bronze ratio defined as described above and the average area ratio of the remaining Nb core are adjusted to fall within a predetermined range. completed. The reasons for defining each requirement in the Nb 3 Sn superconducting wire of the present invention are as follows.

【0020】上記ブロンズ比は、上述の如くNb3Sn
およびNbの合計断面積に対するCu−Sn基合金の断
面積の比として定義されるものであるが、本発明のNb
3Sn超電導線材においてはこのブロンズ比を1.8〜
3.0とする必要があり、この範囲内とすることによっ
て高いオーバーオールの臨界電流密度が基本的に達成さ
れるのである。即ち、このブロンズ比が1.8未満であ
ると、供給できるSn量が不足するので、Nb3Sn結
晶は化学量論的組成からSnが欠損した状態で粗大化し
てしまい、コア臨界電流密度が低下することになる。特
に、Nb3Sn超電導線材の場合には、磁束をピン止め
するピンニングセンターは結晶粒界であるので、大きな
結晶粒が成長すると粒界が減少し、臨界電流密度の低下
を招くことになる。一方、上記ブロンズ比が3.0より
も大きくなると、Snの供給量が増加してコア電流密度
は向上することになるが、ブロンズ部の比率が増加する
ことになるので、オーバオールの臨界電流密度が低下す
ることになる。
The above bronze ratio is determined as described above by Nb 3 Sn
Is defined as the ratio of the cross-sectional area of the Cu-Sn-based alloy to the total cross-sectional area of Nb and Nb.
In a 3Sn superconducting wire, this bronze ratio is set to 1.8 to
It is necessary to be 3.0, and by setting it within this range, a high overall critical current density is basically achieved. That is, if the bronze ratio is less than 1.8, the amount of Sn that can be supplied becomes insufficient, so that the Nb 3 Sn crystal is coarsened in a state where Sn is missing from the stoichiometric composition, and the core critical current density is reduced. Will decrease. In particular, in the case of an Nb 3 Sn superconducting wire, since the pinning center for pinning the magnetic flux is a crystal grain boundary, when a large crystal grain grows, the grain boundary decreases and the critical current density decreases. On the other hand, when the bronze ratio is larger than 3.0, the supply amount of Sn increases and the core current density increases, but the ratio of the bronze portion increases, so that the overall critical current increases. The density will be reduced.

【0021】本発明のNb3Sn超電導線材において
は、Nb3SnおよびNb(残存Nb芯)の合計断面積
に対する残存Nb芯の平均面積率が5〜20%であるこ
とも重要な要件であり、こうした要件を満足させること
によって、基本的にn値を高く維持することができるの
である。即ち、この平均面積率が5%未満になると、残
存Nb芯の中にはフルアニールされるものもあり、上述
した様にNb3Sn結晶粒の中には大きく成長するもの
が出現して粒径分布を広げ、n値の低下を招くことにな
る。一方、この平均面積率が20%よりも大きくなる
と、Nb3Sn生成層の厚さが薄くなり、線材長手方向
におけるNb3Sn生成層厚みのばらつきによる残存N
b芯の面積率のばらつきが大きくなり、結果的にn値が
低下することになる。
In the Nb 3 Sn superconducting wire of the present invention, it is also an important requirement that the average area ratio of the remaining Nb core to the total cross-sectional area of Nb 3 Sn and Nb (remaining Nb core) is 5 to 20%. By satisfying these requirements, the n value can be basically kept high. That is, when the average area ratio is less than 5%, some of the remaining Nb cores are fully annealed, and as described above, some of the Nb 3 Sn crystal grains that grow large appear and become grainy. The diameter distribution is widened and the value of n decreases. On the other hand, when the average area ratio is larger than 20%, the thickness of the Nb 3 Sn generation layer becomes thin, and the remaining N due to the variation in the thickness of the Nb 3 Sn generation layer in the longitudinal direction of the wire.
The variation in the area ratio of the b-core increases, and as a result, the n value decreases.

【0022】尚、残存Nb芯の面積率を制御するに当た
っては、素材段階でのNb線径を調整したり、熱処理温
度を変化させる方法によっても実現できるが、これらを
一定にした状態で熱処理時間を調整する方法がより簡便
に実現できることから好ましい。
The area ratio of the remaining Nb core can be controlled by adjusting the Nb wire diameter at the material stage or by changing the heat treatment temperature. Is preferred since the method of adjusting the value can be more easily realized.

【0023】本発明で用いるCu−Sn基合金として
は、基本的にはCuに13〜15%程度のSnを含有さ
せた合金が用いられるが、必要によってTa,Ti,Z
rおよびHfよりなる群から選ばれる1種以上を含有さ
せることも有用であり、こうした元素を含有させること
によって強磁場中におけるコア臨界電流密度をより向上
させることができる。こうした効果は、その含有量が増
加するにつれて増加するが、含有量が多過ぎると非超電
導の金属間化合物が生成して線材化のための加工性が低
下するという観点からして、その含有量は5%以下とす
べきである。
As the Cu-Sn base alloy used in the present invention, an alloy containing about 13 to 15% of Sn in Cu is basically used. If necessary, Ta, Ti, Z may be used.
It is also useful to contain one or more selected from the group consisting of r and Hf, and by including such an element, the core critical current density in a strong magnetic field can be further improved. These effects increase as the content increases, but from the viewpoint that if the content is too large, a non-superconducting intermetallic compound is generated and the workability for forming a wire is reduced. Should be less than 5%.

【0024】以下、本発明を実施例によって更に詳細に
説明するが、下記実施例は本発明を限定する性質のもの
ではなく、前・後記の趣旨に徴して設計変更することは
いずれも本発明の技術的範囲に含まれるものである。例
えば、線材の断面は、前記図2に示した様な矩形状のも
のに限らず、正方形や円形のものであっても良いことは
勿論である。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples do not limit the present invention, and any design change based on the above and following points is not limited to the present invention. It is included in the technical range of. For example, the cross section of the wire is not limited to a rectangular shape as shown in FIG. 2 but may be a square or a circle.

【0025】[0025]

【実施例】実施例1 Cu−14.5%Snのブロンズを用い、ブロンズ比が
2.5でNb線数が約25,000、断面形状が1.5
0×2.50(mm)の平角線材(素材)に加工した。
このときのNb線の平均直径は3.8μmであった。
EXAMPLE 1 Using bronze of Cu-14.5% Sn, the bronze ratio was 2.5, the number of Nb lines was about 25,000, and the cross-sectional shape was 1.5.
It was processed into a rectangular wire (material) of 0 × 2.50 (mm).
At this time, the average diameter of the Nb line was 3.8 μm.

【0026】こうした素材を700℃で30〜200時
間保持して熱処理することによって、残存Nb芯の平均
面積率(平均Nb残芯率)が0〜28%の線材を作製し
た。熱処理後に温度4.2K、外部磁場19Tにおい
て、0.1μV/cm電界基準でのオーバーオール電流
密度と、0.1〜1.0μV/cmの範囲におけるn値
を評価した。その評価結果を、図3に示す。
A wire having an average area ratio of residual Nb cores (average Nb residual core ratio) of 0 to 28% was produced by heat-treating such a material at 700 ° C. for 30 to 200 hours. After the heat treatment, the overall current density based on the electric field of 0.1 μV / cm and the n value in the range of 0.1 to 1.0 μV / cm were evaluated at a temperature of 4.2 K and an external magnetic field of 19 T. FIG. 3 shows the evaluation results.

【0027】尚、n値とは、超電導状態から常電導状態
への転移の鋭さを示す量であり、この値はフイラメント
(Nb芯)の均一加工の度合いを反映し、大きな方が特
性的に優れていると言われているものである。即ち、超
電導線材に電流を流していくと、ある電流値(臨界電
流)以上では抵抗が発生し、電圧を生じるものである
が、このときの電流と電圧の関係は経験的に下記(1)
式の様な近似式で表わされ、この(1)式中のnの値を
「n値」と呼ぶ。 V=V0(I/Ic)n ……(1) 但し、V :発生電圧 V0:定数 Ic:臨界電流
The n value is an amount indicating the sharpness of the transition from the superconducting state to the normal conducting state. This value reflects the degree of uniform processing of the filament (Nb core), and the larger the value, the better the characteristic. It is said to be excellent. That is, when a current flows through a superconducting wire, a resistance is generated at a certain current value (critical current) or more, and a voltage is generated. The relationship between the current and the voltage at this time is empirically determined by the following (1).
The value of n in this equation (1) is called an "n value". V = V 0 (I / Ic) n (1) where V: generated voltage V 0 : constant Ic: critical current

【0028】図3から明らかな様に、平均Nb残芯率が
5〜20%のときに、n値は30以上の実用レベルを保
持しており、最高では42という高い値が得られている
ことが分かる。また、オーバオール臨界電流密度も、平
均Nb残芯率の広い範囲で60A/mm2を上回ってお
り、最高値として110A/mm2もの値が得られてい
た。
As is apparent from FIG. 3, when the average Nb residual core ratio is 5 to 20%, the n value maintains a practical level of 30 or more, and a high value of 42 is obtained at the maximum. You can see that. Also, the overall critical current density exceeded 60 A / mm 2 in a wide range of the average Nb residual core rate, and a value as high as 110 A / mm 2 was obtained.

【0029】比較例1 ブロンズ比が3.5であることを除いて他は実施例1と
同じ条件で、Nb3Sn平角線材を作製した。この線材
を、700℃に保持する時間を30〜200時間の範囲
で変化させることによって、平均Nb残芯率が0〜28
%の線材を作製した。熱処理後に実施例1と同じ条件で
n値と臨界電流を評価した。
Comparative Example 1 An Nb 3 Sn rectangular wire was produced under the same conditions as in Example 1 except that the bronze ratio was 3.5. By changing the time at which this wire is kept at 700 ° C. in the range of 30 to 200 hours, the average Nb residual core ratio is 0 to 28.
% Of a wire rod was produced. After the heat treatment, the n value and the critical current were evaluated under the same conditions as in Example 1.

【0030】その評価結果を、図4に示す。この図4か
ら明らかな様に、フルアニールされた平均Nb残芯率0
%の線材では、オーバーオール臨界電流密度が60A/
mm 2が得られているが、n値は12という非常に低い
値に留まっていた。また、平均Nb残芯率が5〜20%
のときに、n値は30以上の実用レベルに向上している
が、オーバーオール臨界電流密度はフルアニールされた
線材の値である60A/mm2を下回っていることが分
かる。
FIG. 4 shows the evaluation results. This figure 4
As is apparent from FIG.
% Wire has an overall critical current density of 60 A /
mm TwoIs obtained, but the n value is as very low as 12.
Stayed at the value. Further, the average Nb residual core ratio is 5 to 20%.
In the case of, the n value is improved to a practical level of 30 or more.
But overall critical current density was fully annealed
60A / mm which is the value of the wireTwoIs less than
Call

【0031】比較例2 ブロンズ比が1.4であることを除いて、他は実施例1
と同じ条件で、Nb3Sn平角線材を作製した。この線
材を、700℃に保持する時間を30〜200時間の範
囲で変化させることによって、平均Nb残芯率が8〜2
8%の線材を作製した。尚、この場合には、Snの供給
量が不足するので(ブロンズ比が小さいので)、平均N
b残芯率が8%未満の線材を作製することはできなかっ
た。熱処理後に実施例1と同じ条件でn値と臨界電流を
評価した。
COMPARATIVE EXAMPLE 2 Except that the bronze ratio was 1.4,
Under the same conditions as described above, an Nb 3 Sn rectangular wire was produced. By changing the time at which this wire is held at 700 ° C. in the range of 30 to 200 hours, the average Nb residual core ratio is 8 to 2 hours.
An 8% wire rod was produced. In this case, since the supply amount of Sn is insufficient (because the bronze ratio is small), the average N
(b) A wire rod having a residual core ratio of less than 8% could not be produced. After the heat treatment, the n value and the critical current were evaluated under the same conditions as in Example 1.

【0032】その評価結果を、図5に示す。この図5か
ら明らかな様に、評価した全ての線材でオーバーオール
臨界電流密度が60A/mm2を下回っていることが分
かる。
FIG. 5 shows the evaluation results. As is clear from FIG. 5, it can be seen that the overall critical current density of all the evaluated wires is lower than 60 A / mm 2 .

【0033】実施例2 ブロンズ比が1.4、2.5および3.5以外の異なる
比を有するが、他は比較例1と同じ条件のNb3Sn平
角線材を、数種類加工した。これらの線材に対して、7
00℃で保持する時間を変えて熱処理し、平均Nb残芯
率が5〜20%の線材を作製した。熱処理後に、実施例
1と同一条件で臨界電流とn値を評価した。この結果
を、前記比較例1、2および実施例1の結果と共に、図
6に示す。
Example 2 Several types of Nb 3 Sn rectangular wire rods having different bronze ratios other than 1.4, 2.5 and 3.5 but under the same conditions as Comparative Example 1 were processed. For these wires, 7
The heat treatment was performed while changing the holding time at 00 ° C. to prepare a wire having an average Nb residual core ratio of 5 to 20%. After the heat treatment, the critical current and the n value were evaluated under the same conditions as in Example 1. FIG. 6 shows the results together with the results of Comparative Examples 1 and 2 and Example 1.

【0034】図6から明らかな様に、ブロンズ比が1.
8〜3.5のときに、オーバーオール臨界電流密度が比
較例1のフルアニールされた線材の値60A/mm2
上回っており、n値も30以上の実用レベルが得られて
いることが分かる。
As apparent from FIG. 6, the bronze ratio is 1.
When the value is from 8 to 3.5, the overall critical current density exceeds the value of the fully annealed wire of Comparative Example 1 of 60 A / mm 2 , and it can be seen that a practical level of n value of 30 or more is obtained. .

【0035】実施例3 Cu−14.5%Sn−0.5%Ti合金を用い、他は
実施例1と同様の条件で、Nb3Sn平角線材を作製し
た。その後、熱処理条件も実施例1と同様にして、平均
Nb残芯率が0〜28%の線材を作製した。熱処理後に
実施例1と同一条件で臨界電流密度とn値を評価した。
Example 3 An Nb 3 Sn rectangular wire was produced under the same conditions as in Example 1 except that a Cu-14.5% Sn-0.5% Ti alloy was used. Thereafter, a wire rod having an average Nb residual core ratio of 0 to 28% was produced in the same manner as in Example 1 under the heat treatment conditions. After the heat treatment, the critical current density and the n value were evaluated under the same conditions as in Example 1.

【0036】その結果、前記実施例1との同様に(前記
図3)、平均Nb残芯率が5〜20%のときにn値は3
0以上の実用レベルを保持し、最高では45という実施
例1以上の値が得られていた。しかも、オーバオ−ル臨
界電流密度も、5〜20%を含む平均Nb残芯率の広い
範囲で前記比較例1のフルアニール線材の値60A/m
2を上回り、最高値は実施例1の最高値を上回る12
5A/mm2であった。
As a result, as in Example 1 (FIG. 3), when the average Nb residual core ratio was 5 to 20%, the n value was 3
A practical level of 0 or more was maintained, and a maximum value of 45 or more in Example 1 was obtained. In addition, the overall critical current density of the fully annealed wire of Comparative Example 1 was 60 A / m in a wide range of the average Nb core content including 5 to 20%.
m 2 , and the highest value exceeds the highest value of Example 1 by 12
It was 5 A / mm 2 .

【0037】[0037]

【発明の効果】本発明は以上の様に構成されており、強
磁場中で高いオーバオール臨界電流密度とn値を両立し
た高性能なブロンズ法Nb3Sn超電導線材が実現でき
た。こうした技術を用いることによって、NMR分析用
の超電導マグネットに代表される様な強磁場で永久電流
モード動作が要求される高性能な超電導マグネットにお
いて、従来よりも更に優れた性能を発揮するマグネット
の作製が期待でき、その他の永久電流モードを必要とす
る超電導マグネットの応用において極めて有利となる。
The present invention is configured as described above, and a high-performance bronze-processed Nb 3 Sn superconducting wire having both a high overall critical current density and an n value in a strong magnetic field can be realized. By using such a technology, a high-performance superconducting magnet that requires persistent current mode operation in a strong magnetic field, as typified by a superconducting magnet for NMR analysis, is required to produce a magnet that exhibits even better performance than before. This is extremely advantageous in applications of superconducting magnets requiring other permanent current modes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ブロンズ法によって製造されるNb3Sn超電
導線材の熱処理前の断面構造を模式的に示した説明図で
ある。
FIG. 1 is an explanatory diagram schematically showing a cross-sectional structure before heat treatment of an Nb 3 Sn superconducting wire manufactured by a bronze method.

【図2】平均Nb残芯率を評価する領域を示す断面模式
図である。
FIG. 2 is a schematic cross-sectional view showing a region for evaluating an average Nb residual core ratio.

【図3】実施例1で作製した線材のオーバオール臨界電
流密度とn値の評価結果を示すグラフである。
FIG. 3 is a graph showing the evaluation results of the overall critical current density and the n value of the wire manufactured in Example 1.

【図4】比較例1で作製した線材のオーバオール臨界電
流密度とn値の評価結果を示すグラフである。
FIG. 4 is a graph showing the evaluation results of the overall critical current density and the n value of the wire manufactured in Comparative Example 1.

【図5】比較例2で作製した線材のオーバオール臨界電
流密度とn値の評価結果を示すグラフである。
FIG. 5 is a graph showing the results of evaluation of the overall critical current density and n value of the wire manufactured in Comparative Example 2.

【図6】ブリンズ比がオーバオール臨界電流密度とn値
に与える影響を示すグラフである。
FIG. 6 is a graph showing the effect of the Brins ratio on the overall critical current density and the n value.

【符号の説明】[Explanation of symbols]

1 Nb線 2 Cu−Sn基合金製線状母材 3 拡散バリヤー層 4 安定化銅 DESCRIPTION OF SYMBOLS 1 Nb wire 2 Cu-Sn base alloy linear base material 3 Diffusion barrier layer 4 Stabilized copper

───────────────────────────────────────────────────── フロントページの続き (72)発明者 朝永 満男 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 Fターム(参考) 5G321 AA11 BA03 CA35 CA36 DC09 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Mitsuo Tomonaga 1-5-5 Takatsukadai, Nishi-ku, Kobe F-term in Kobe Steel Research Institute, Kobe Research Institute Co., Ltd. 5G321 AA11 BA03 CA35 CA36 DC09

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ブロンズ法によって製造されるNb3
n超電導線材であって、Nb3SnおよびNbの合計断
面積に対するCu−Sn基合金の断面積の比が1.8〜
3.0であり、且つNb3SnおよびNbの合計断面積
に対するNbの平均面積率が5〜20%となる様に構成
したものであることを特徴とするNb 3Sn超電導線
材。
1. Nb produced by the bronze methodThreeS
n superconducting wire, NbThreeTotal breakage of Sn and Nb
The ratio of the cross-sectional area of the Cu-Sn-based alloy to the area is 1.8 to
3.0 and NbThreeTotal cross-sectional area of Sn and Nb
Is configured so that the average area ratio of Nb with respect to
Nb characterized by the fact that ThreeSn superconducting wire
Wood.
【請求項2】 前記Cu−Sn基合金は、Ta,Zr,
TiおよびHfよりなる群から選択される1種以上を含
有するものである請求項1に記載のNb3Sn超電導線
材。
2. The Cu—Sn based alloy is composed of Ta, Zr,
Nb 3 Sn superconducting wire according to claim 1 from the group consisting of Ti and Hf are those containing at least one selected.
【請求項3】 請求項1または2に記載のNb3Sn超
電導線材を素材として構成されたものである超電導マグ
ネット。
3. A superconducting magnet comprising the Nb 3 Sn superconducting wire according to claim 1 as a material.
JP2000175846A 2000-06-12 2000-06-12 Nb <3> Sn superconducting wire and superconducting magnet using the same Expired - Fee Related JP3754599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000175846A JP3754599B2 (en) 2000-06-12 2000-06-12 Nb <3> Sn superconducting wire and superconducting magnet using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000175846A JP3754599B2 (en) 2000-06-12 2000-06-12 Nb <3> Sn superconducting wire and superconducting magnet using the same

Publications (2)

Publication Number Publication Date
JP2001357734A true JP2001357734A (en) 2001-12-26
JP3754599B2 JP3754599B2 (en) 2006-03-15

Family

ID=18677656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000175846A Expired - Fee Related JP3754599B2 (en) 2000-06-12 2000-06-12 Nb <3> Sn superconducting wire and superconducting magnet using the same

Country Status (1)

Country Link
JP (1) JP3754599B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141682A (en) * 2005-11-18 2007-06-07 Japan Superconductor Technology Inc Nb3Sn SUPERCONDUCTING WIRE AND PRECURSOR FOR THE SAME
JP2010129453A (en) * 2008-11-28 2010-06-10 Kobe Steel Ltd BRONZE METHOD NB3Sn SUPERCONDUCTIVE WIRE ROD
WO2013031830A1 (en) * 2011-08-30 2013-03-07 ジャパンスーパーコンダクタテクノロジー株式会社 Precursor for manufacturing nb3sn superconducting wire material and nb3sn superconducting wire material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141682A (en) * 2005-11-18 2007-06-07 Japan Superconductor Technology Inc Nb3Sn SUPERCONDUCTING WIRE AND PRECURSOR FOR THE SAME
JP4527653B2 (en) * 2005-11-18 2010-08-18 ジャパンスーパーコンダクタテクノロジー株式会社 Nb3Sn superconducting wire and precursor therefor
JP2010129453A (en) * 2008-11-28 2010-06-10 Kobe Steel Ltd BRONZE METHOD NB3Sn SUPERCONDUCTIVE WIRE ROD
WO2013031830A1 (en) * 2011-08-30 2013-03-07 ジャパンスーパーコンダクタテクノロジー株式会社 Precursor for manufacturing nb3sn superconducting wire material and nb3sn superconducting wire material

Also Published As

Publication number Publication date
JP3754599B2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
JP4034802B2 (en) Nb or Nb-based alloy rod for production of superconducting wire and method for producing Nb3Sn superconducting wire
CN101517660B (en) Nbti superconducting wire rod
WO2007099820A1 (en) PRECURSOR FOR MANUFACTURE OF Nb3Sn SUPERCONDUCTING WIRE ROD, AND Nb3Sn SUPERCONDUCTING WIRE ROD
JPH0419918A (en) Nb3al-type superconductor wire manufacturing method and its apparatus
JP2009506512A (en) Superconducting wire substrate, manufacturing method thereof, and superconducting wire
JP2010015821A (en) Precursor for manufacturing nb3sn superconductive wire rod and method of manufacturing the same, and nb3sn superconductive wire rod
US4094059A (en) Method for producing composite superconductors
JP2001357734A (en) Nb3Sn SUPERCONDUCTIVE WIRE MATERIAL AND SUPERCONDUCTIVE MAGNET USING IT
JP4033375B2 (en) MgB2-based superconductor and manufacturing method thereof
KR940006616B1 (en) Super conductive wire
JP3920606B2 (en) Powder method Nb (3) Method for producing Sn superconducting wire
JP4727914B2 (en) Nb3Sn superconducting wire and method for manufacturing the same
JP4791346B2 (en) Nb3Sn superconducting wire, precursor therefor, and Nb composite single core wire for precursor
JP3754522B2 (en) Nb (3) Sn superconducting wire
JPH06158212A (en) Nb3al superconductor, its production, nb3al superconducting precursor composition and high magnetic field generating superconducting magnet
JP3757141B2 (en) Manufacturing method of Nb (3) Sn superconducting wire
JP4723327B2 (en) Powder process Nb3Sn superconducting wire manufacturing method and precursor therefor
JP3127181B2 (en) Method for manufacturing composite superconducting wire and method for manufacturing composite superconducting coil
JP5069948B2 (en) Nb or Nb-based alloy sheet for producing superconducting wire and precursor for producing superconducting wire
JPH0917249A (en) Oxide superconducting wire and its manufacture
JP2003045247A (en) Superconductive cable
JP3603565B2 (en) Nb (3) Sn superconducting wire capable of obtaining high critical current density and method for producing the same
JP2749136B2 (en) Aluminum stabilized superconducting wire
JP2008192352A (en) Nb3Sn SUPERCONDUCTING WIRE ROD, AND PRECURSOR FOR THE SAME
JPH06290651A (en) Nb3x type superconductive wire rod and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees