JP2010015821A - Precursor for manufacturing nb3sn superconductive wire rod and method of manufacturing the same, and nb3sn superconductive wire rod - Google Patents

Precursor for manufacturing nb3sn superconductive wire rod and method of manufacturing the same, and nb3sn superconductive wire rod Download PDF

Info

Publication number
JP2010015821A
JP2010015821A JP2008174685A JP2008174685A JP2010015821A JP 2010015821 A JP2010015821 A JP 2010015821A JP 2008174685 A JP2008174685 A JP 2008174685A JP 2008174685 A JP2008174685 A JP 2008174685A JP 2010015821 A JP2010015821 A JP 2010015821A
Authority
JP
Japan
Prior art keywords
wire
precursor
composite
superconducting
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008174685A
Other languages
Japanese (ja)
Other versions
JP5258424B2 (en
Inventor
Hiroyuki Kato
弘之 加藤
Takashi Hase
隆司 長谷
Takashi Zaitsu
享司 財津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008174685A priority Critical patent/JP5258424B2/en
Publication of JP2010015821A publication Critical patent/JP2010015821A/en
Application granted granted Critical
Publication of JP5258424B2 publication Critical patent/JP5258424B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inner Sn method Nb3Sn superconductive wire rod and a precursor and the like for it increasing a volume ratio of Nb core rods, preventing the occurrence of bridging between the Nb core rods, exhibiting high critical current density Jc characteristics, allowing superconductive connection between the superconducting wire rods if necessary, and applicable to an NMR magnet. <P>SOLUTION: The precursor is obtained by forming a composite tube, which is constructed by having a cylindrical diffusion barrier layer equipped with a stabilization copper layer on the outer circumference and inserting a composite wire rod group inside the cylindrical diffusion barrier layer, into a wire. The composite wire rod group includes a plurality of Nb element wire rods each of which is prepared by embedding Nb or Nb-base alloy cores in a Cu or Cu-base alloy matrix and has a hexagonal cross section, and a plurality of Sn core rods each of which is formed of Sn or Sn-base alloy and has a polygonal or circular cross section, and the Nb element wire rods are arranged to be brought into contact mutually while surrounding the Sn core rod. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、Nb3Sn超電導線材を内部Sn法によって製造するための前駆体(超電導線材製造用前駆体)および該前駆体の製造方法、並びにこうした前駆体によって製造されるNb3Sn超電導線材に関するものであり、殊に超電導マグネットの素材として有用なNb3Sn超電導線材およびその前駆体等に関するものである。 The present invention relates to a precursor (precursor for producing a superconducting wire) for producing an Nb 3 Sn superconducting wire by an internal Sn method, a method for producing the precursor, and an Nb 3 Sn superconducting wire produced by such a precursor. In particular, the present invention relates to a Nb 3 Sn superconducting wire useful as a material for a superconducting magnet, a precursor thereof, and the like.

超電導線材が実用化されている分野のうち、高分解能核磁気共鳴(NMR)分析装置や核融合装置、加速器等に用いられる超電導マグネットがある。超電導マグネットに使用される超電導線材としては、Nb3Sn線材が実用化されており、このNb3Sn超電導線材の製造には主にブロンズ法が採用されている。このブロンズ法は、Cu−Sn基合金(ブロンズ)マトリクス中に、複数のNbまたはNb基合金からなる芯材を埋設して複合線材が構成される。この複合線材を、押出し若しくは伸線等の縮径加工を施すことによって、上記芯材を細径化してNb基フィラメントとし、このNb基フィラメントとブロンズからなる複合線材を複数束ねて線材群となし、その外周に安定化の為の銅(安定化銅)を配置した後、更に縮径加工する。引き続き、縮径加工後の上記線材群を600℃以上、800℃以下程度で熱処理(拡散熱処理)することにより、Nb基フィラメントとブロンズマトリクスの界面にNb3Sn化合物相(Nb3Sn超電導相)を生成する方法である。 Among the fields where superconducting wires are put into practical use, there are superconducting magnets used in high-resolution nuclear magnetic resonance (NMR) analyzers, fusion devices, accelerators, and the like. As a superconducting wire used for the superconducting magnet, an Nb 3 Sn wire has been put into practical use, and the bronze method is mainly employed for manufacturing this Nb 3 Sn superconducting wire. In this bronze method, a composite wire is formed by embedding a core material made of a plurality of Nb or Nb base alloys in a Cu—Sn base alloy (bronze) matrix. The composite wire is subjected to diameter reduction processing such as extrusion or wire drawing, whereby the core material is reduced in diameter to form an Nb-based filament, and a plurality of composite wires made of the Nb-based filament and bronze are bundled to form a wire group. After the copper for stabilization (stabilized copper) is disposed on the outer periphery, the diameter is further reduced. Subsequently, the wire group after the diameter reduction is heat-treated (diffusion heat treatment) at about 600 ° C. or more and 800 ° C. or less, so that an Nb 3 Sn compound phase (Nb 3 Sn superconducting phase) is formed at the interface between the Nb-based filament and the bronze matrix. Is a method of generating

しかしながら、この方法ではブロンズ中に固溶できるSn濃度には限界があり(15.8質量%以下)、生成されるNbSn化合物相の厚さが薄く、また結晶性が劣化してしまい、高い臨界電流密度Jcが得られないという欠点がある。超電導マグネット(以下、「NMRマグネット」で代表することがある)は、線材の臨界電流密度Jcが高いほど、NMRマグネットをコンパクトにすることができ、マグネットのコストダウンや納期短縮が可能である。また、導体中の超電導部分の面積を小さくできることから、線材自体のコストダウンも可能となる。 However, in this method, there is a limit to the Sn concentration that can be dissolved in bronze (15.8% by mass or less), the thickness of the produced Nb 3 Sn compound phase is thin, and the crystallinity is deteriorated. There is a drawback that a high critical current density Jc cannot be obtained. Superconducting magnets (hereinafter sometimes referred to as “NMR magnets”) can make the NMR magnets more compact as the critical current density Jc of the wire is higher, and can reduce the cost of the magnets and shorten the delivery time. Moreover, since the area of the superconducting portion in the conductor can be reduced, the cost of the wire itself can be reduced.

Nb3Sn超電導線材を製造する方法としては、上記ブロンズ法の他に、内部Sn法も知られている。この内部Sn法では、ブロンズ法のような固溶限によるSn濃度に限界がないのでSn濃度をできるだけ高く設定でき、良質なNb3Sn化合物相が生成可能であるため、高い臨界電流密度Jcが得られるといわれている。また上記ブロンズ法による超電導線材では、Cu−Sn合金が冷間加工中に加工硬化を起こすため多数回の焼鈍が必要となるが、内部Sn法ではほとんど焼鈍の必要はなく、納期短縮も可能であるため、内部Sn法によって製造される超電導線材(以下、「内部Sn法Nb3Sn超電導線材線」と呼ぶことがある)のNMRマグネット用途への適用が期待されている。 In addition to the bronze method, an internal Sn method is also known as a method for producing the Nb 3 Sn superconducting wire. In this internal Sn method, since there is no limit on the Sn concentration due to the solid solubility limit as in the bronze method, the Sn concentration can be set as high as possible, and a high-quality Nb 3 Sn compound phase can be generated. It is said that it can be obtained. Moreover, in the superconducting wire by the above bronze method, the Cu-Sn alloy undergoes work hardening during cold working, and thus requires many annealings. However, the internal Sn method requires almost no annealing, and the delivery time can be shortened. Therefore, it is expected that a superconducting wire manufactured by the internal Sn method (hereinafter, also referred to as “internal Sn method Nb 3 Sn superconducting wire”) is used for NMR magnets.

内部Sn法では、図1(内部Sn法Nb3Sn超電導線材製造用前駆体の基本構成の模式図)に示すように、Cu若しくはCu基合金(以下、「Cuマトリクス」と呼ぶことがある)4の中央部に、Sn若しくはSn基合金からなる芯材(以下、「Sn芯材」と呼ぶことがある)3を埋設すると共に、Sn芯材3の周囲のCuマトリクス4中に、複数のNbまたはNb基合金からなる芯材(以下、「Nb芯材」と呼ぶことがある)2を相互に接触しないように配置して前駆体(超電導線材製造用前駆体)1とし、これを伸線加工した後、熱処理(拡散熱処理)によってSn芯材3中のSnを拡散させ、Nb芯材2と反応させることによって線材中にNb3Sn化合物相を生成させる方法である。 In the internal Sn method, as shown in FIG. 1 (schematic diagram of the basic structure of the precursor for producing the internal Sn method Nb 3 Sn superconducting wire), Cu or a Cu-based alloy (hereinafter sometimes referred to as “Cu matrix”) 4, a core 3 made of Sn or an Sn-based alloy (hereinafter sometimes referred to as “Sn core”) 3 is embedded, and a plurality of Cu matrices 4 around the Sn core 3 are embedded. A core material (hereinafter sometimes referred to as “Nb core material”) 2 made of Nb or an Nb-based alloy is disposed so as not to contact each other to form a precursor (precursor for manufacturing a superconducting wire) 1, which is expanded. In this method, after the wire processing, Sn in the Sn core material 3 is diffused by heat treatment (diffusion heat treatment) and reacted with the Nb core material 2 to generate an Nb 3 Sn compound phase in the wire material.

また上記のような前駆体においては、図2に示すように、前記Nb芯材2とSn芯材3が配置された部分と、その外部の安定化銅層4aの間に拡散バリア層6を配置した構成(前駆体5)を採用することがある。この拡散バリア層6は、全体形状が筒状(筒状バリア層)であり、例えばNb層またはTa層(各合金層も含む)、或いはNb層とTa層の2層からなり、拡散熱処理の際にSn芯材3中のSnが外部に拡散してしまうことを防止し、超電導線材内でのSnの純度を高める作用を発揮するものである。   Further, in the precursor as described above, as shown in FIG. 2, a diffusion barrier layer 6 is provided between the portion where the Nb core material 2 and the Sn core material 3 are disposed and the stabilizing copper layer 4a outside thereof. The arranged configuration (precursor 5) may be employed. The diffusion barrier layer 6 has a cylindrical shape (cylindrical barrier layer) and is composed of, for example, an Nb layer or a Ta layer (including each alloy layer), or two layers of an Nb layer and a Ta layer. In this case, Sn in the Sn core material 3 is prevented from diffusing to the outside, and the effect of increasing the purity of Sn in the superconducting wire is exhibited.

尚、前記図1、2では、一つのSn芯材3を配置した構成を示したが、前駆体(超電導線材製造用前駆体)の構成はこうしたものに限らず、複数本のSn芯材3を配置した構成も採用される(後記図3〜5参照)。   1 and 2 show the configuration in which one Sn core material 3 is arranged, the configuration of the precursor (precursor for manufacturing a superconducting wire) is not limited to this, and a plurality of Sn core materials 3 are provided. Is also adopted (see FIGS. 3 to 5 below).

内部Sn法によってNb3Sn超電導線材を製造する上で、良好な超電導特性(特に、高い臨界電流密度Jc)を発揮する前駆体の構成について様々提案されている。こうした技術としては、例えば特許文献1には、Cuマトリクス中に複数のNb若しくはNb基合金からなる芯材(Nb芯材)を埋設したNbエレメント線材と、Sn若しくはSn基合金からなる芯材(Sn芯材)を組み合わせて配置することによって、Snを分散させる構成が提案されている。 Various proposals have been made for the construction of precursors that exhibit good superconducting properties (particularly, high critical current density Jc) in producing Nb 3 Sn superconducting wires by the internal Sn method. As such a technique, for example, Patent Document 1 discloses an Nb element wire in which a core material (Nb core material) made of a plurality of Nb or Nb base alloys is embedded in a Cu matrix, and a core material made of Sn or Sn base alloy ( The structure which disperses Sn by arrange | positioning combining (Sn core material) is proposed.

図3は、上記技術で提案された前駆体の構成を模式的に示した断面図であり、前記図1、2と対応する部分には同一の参照符号が付してある。この構成においては、Cuマトリクス4中に複数(この図では19本)のNb芯材2を埋設したNbエレメント線材7は、その断面(軸直角断面)の形状が円形に形成されると共に、Sn芯材3もその断面(軸直角断面)の形状が円形に形成され、これらを組み合わせることによって、Nb芯材2とSn芯材3を適切に分散させた前駆体とされる(前駆体11)。   FIG. 3 is a cross-sectional view schematically showing the configuration of the precursor proposed in the above technique, and the same reference numerals are assigned to the portions corresponding to FIGS. In this configuration, the Nb element wire 7 in which a plurality (19 in this figure) of the Nb core material 2 is embedded in the Cu matrix 4 has a circular cross section (cross section perpendicular to the axis) and a Sn shape. The core material 3 is also formed into a circular shape in cross section (cross section perpendicular to the axis), and by combining these, a precursor in which the Nb core material 2 and the Sn core material 3 are appropriately dispersed is obtained (precursor 11). .

図3に示した前駆体11の構成では、Nbエレメント線材7の断面形状が円形であることによって、Nbエレメント線材7相互間に隙間が形成されることになる。超電導線材前駆体は、図1〜3に示したような構成の複合材料が形成された後に押出しや伸線等の縮径加工が施されることによって線材化されるのであるが、こうした縮径加工の際には、前駆体の内部温度が加工発熱によって、Snの融点温度である210℃以上に上がる場合がある。こうした場合に、図3に示したようにNbエレメント線材7相互間に隙間が形成されたものであると、溶融したSn芯材3がこの隙間に入り込み、不均一変形の原因となり、加工性が悪くなるという問題がある。   In the configuration of the precursor 11 shown in FIG. 3, a gap is formed between the Nb element wires 7 due to the circular cross-sectional shape of the Nb element wires 7. The superconducting wire precursor is formed into a wire by being subjected to diameter reduction processing such as extrusion and wire drawing after the composite material having the configuration shown in FIGS. 1 to 3 is formed. During processing, the internal temperature of the precursor may rise to 210 ° C. or higher, which is the melting point temperature of Sn, due to processing heat generation. In such a case, if a gap is formed between the Nb element wires 7 as shown in FIG. 3, the melted Sn core material 3 enters the gap, causing non-uniform deformation and workability. There is a problem of getting worse.

こうした問題を解決した技術として、例えば特許文献2、3等の技術も提案されている。図4は、特許文献2で提案された前駆体の構成例を示したものである。この構成では、Cuマトリクス4中に、Nb若しくはNb基合金からなる複数の芯材(Nb芯材)2を埋設したNbエレメント線材7を、その断面形状を六角形とすると共に、Cuマトリクス中にSn若しくはSn基合金からなる芯材(Sn芯材)3を埋設したSnエレメント線材8を、夫々の断面形状を六角形とし、これらを組み合わせて線材群を構成するものである。そして、図4に示した構成では、複数のSnエレメント線材8を中央部に集合させると共に、その周囲にNbエレメント線材7を束ねて配置したものである(前駆体13)。   As techniques for solving these problems, for example, techniques such as Patent Documents 2 and 3 have been proposed. FIG. 4 shows a configuration example of the precursor proposed in Patent Document 2. In this configuration, an Nb element wire 7 in which a plurality of cores (Nb cores) 2 made of Nb or an Nb-based alloy are embedded in a Cu matrix 4 has a cross-sectional shape of a hexagon, and the Cu matrix The Sn element wire 8 in which a core material (Sn core material) 3 made of Sn or an Sn-based alloy is embedded has a hexagonal cross section, and these are combined to constitute a wire group. In the configuration shown in FIG. 4, a plurality of Sn element wires 8 are gathered at the center, and Nb element wires 7 are bundled and arranged around the periphery (precursor 13).

一方、特許文献3で提案された前駆体の構成例では、図5に示すように、上記のように断面形状を六角形としたSnエレメント線材8の周囲を、断面形状を六角形としたNbエレメント線材7が取り囲むように分散して配置したものである(前駆体14)。   On the other hand, in the configuration example of the precursor proposed in Patent Document 3, as shown in FIG. 5, the periphery of the Sn element wire 8 having a hexagonal cross section as described above is formed around Nb having a hexagonal cross section. The element wire 7 is dispersed and arranged so as to surround it (precursor 14).

図4、5に示したような前駆体では、Sn芯材3をCuマトリクス4中に埋設した構成とすることによって、Nbエレメント線材7の界面へのSnの溶け込みが防止されると共に、良好な加工性が発揮されることになる。尚、前記図1、2に示した前駆体の構成は、各芯材(Nb芯材および、Sn芯材)とCuマトリクス4が縮径加工後に一体化された状態を示したものである。   In the precursor as shown in FIGS. 4 and 5, the Sn core material 3 is embedded in the Cu matrix 4, so that Sn can be prevented from being melted into the interface of the Nb element wire 7 and good. Workability will be demonstrated. The structure of the precursor shown in FIGS. 1 and 2 shows a state in which each core material (Nb core material and Sn core material) and the Cu matrix 4 are integrated after the diameter reduction processing.

しかしながら、図4、5に示した構成では、Snエレメント線材8を構成するCuマトリクス4の比率を低減することが困難となり、断面積当りのCu部分(いわゆる「Cu駄肉部」)が多くなることが避けられず、Sn芯材3の面積割合が不足することになる。その結果、Snエレメント線材8の配置本数を増加させることが余儀なくされ、そのためNb芯材2の体積比率が相対的に減少してしまい、図3に示したような前駆体と比べて、期待するほどの臨界電流密度Jc向上効果は発揮できないという問題がある。   However, in the configuration shown in FIGS. 4 and 5, it is difficult to reduce the ratio of the Cu matrix 4 constituting the Sn element wire 8, and the Cu portion (so-called “Cu fillet portion”) per cross-sectional area increases. Inevitably, the area ratio of the Sn core material 3 is insufficient. As a result, the arrangement number of the Sn element wires 8 is inevitably increased, so that the volume ratio of the Nb core material 2 is relatively reduced, which is expected as compared with the precursor as shown in FIG. There is a problem that the critical current density Jc improvement effect cannot be exhibited.

Nb3Sn化合物層の断面積割合を増大し、臨界電流密度Jcを向上させるために、Nbエレメント線材7のNb断面積比率を増大させようとすると、Nb芯材2同士の間隔が狭いものとなり、拡散熱処理の際にNb芯材2同士がブリッジングを起こしてしまい、有効フィラメント径が大きくなり、NMRマグネットの安定性が悪くなる傾向がある。尚、有効フィラメント径とは、フィラメントが一体として振るまうときの実効的な直径を意味し、磁気的安定性の指標となるものであり、この値が小さいほど超電導特性が良好であると判断されることになる。また、前記特許文献3に示した技術では、有効フィラメントを小さくするために、Nbエレメント線材の断面に、Cuをフィン状に入れる構成も提案されているが、こうした構成ではNb芯材2の断面比率が減少し、臨界電流密度Jcに対しては却って不利となる。 In order to increase the cross-sectional area ratio of the Nb 3 Sn compound layer and improve the critical current density Jc, if the Nb cross-sectional area ratio of the Nb element wire 7 is increased, the interval between the Nb core materials 2 becomes narrow. In the diffusion heat treatment, the Nb core materials 2 cause bridging, the effective filament diameter is increased, and the stability of the NMR magnet tends to be deteriorated. The effective filament diameter means an effective diameter when the filament swings as one body, and is an index of magnetic stability. It is judged that the smaller this value, the better the superconducting characteristics. Will be. Further, in the technique shown in Patent Document 3, a configuration in which Cu is finned in the cross section of the Nb element wire is proposed in order to reduce the effective filament, but in such a configuration, the cross section of the Nb core material 2 is proposed. The ratio decreases, which is disadvantageous for the critical current density Jc.

ところで、NMR分析装置等に用いられる超電導マグネットでは、磁場の時間変化割合(減衰率)が0.01ppm/hr以下という非常に安定したものが要求されるため、超電導電流がループ状に永久的に流れ続ける「永久電流モード」で操業される必要がある。実際のマグネットでは、複数の超電導コイルを接続して使用されるが、永久電流モードを実現するためには、各コイル間で超電導線材同士を接続する部分においても超電導状態を維持(これを「超電導接続」呼ぶ)する必要がある。こうしたことから、接続部が配置される位置での外部磁場(0.5T程度)で常電導となるようなNb基金属やTa基金属からなる拡散バリア層を除去して、拡散熱処理後にNb3Sn化合物層を露出させて接続する必要がある。 By the way, superconducting magnets used in NMR analyzers and the like are required to have a very stable magnetic field change rate (attenuation rate) of 0.01 ppm / hr or less, so that the superconducting current is permanently looped. It needs to be operated in a “permanent current mode” that continues to flow. In an actual magnet, a plurality of superconducting coils are connected and used, but in order to realize the permanent current mode, the superconducting state is maintained even in the portion where the superconducting wires are connected between the coils (this is referred to as “superconducting”). Connection). For this reason, the diffusion barrier layer made of Nb-based metal or Ta-based metal that becomes normal conducting is removed by an external magnetic field (about 0.5 T) at the position where the connection portion is disposed, and Nb 3 is added after the diffusion heat treatment. It is necessary to expose and connect the Sn compound layer.

こうした観点から、図3〜5に示したような内部構成では、NMRマグネットへの適用(即ち、上記「超電導接続」)は考慮されていないものとなる。NMRマグネットへの適用に際しては、超電導接続を達成するために、拡散バリア層を除去して熱処理後にNb3Sn化合物相を露出させる必要があるが、図3〜5に示したような内部構成では、拡散バリア層を除去したときに、Nb芯材2が露出してしまい、これが熱処理中に酸化しやすくなって、超電導接続の妨げとなる。
特公平4−23363号公報 特公平7−17992号公報 特開2006−4684号公報
From such a viewpoint, the internal configuration as shown in FIGS. 3 to 5 does not consider application to the NMR magnet (that is, the “superconducting connection”). In application to the NMR magnet, it is necessary to remove the diffusion barrier layer and expose the Nb 3 Sn compound phase after the heat treatment in order to achieve superconducting connection. However, in the internal configuration as shown in FIGS. When the diffusion barrier layer is removed, the Nb core material 2 is exposed, which is easily oxidized during the heat treatment, and hinders superconducting connection.
Japanese Patent Publication No. 4-23363 Japanese Patent Publication No.7-17992 JP 2006-4684 A

本発明はこうした状況の下でなされたものであって、その目的は、Nb芯材の体積比率を増大できると共に、Nb芯材同士のブリッジングの発生を防止し、高い臨界電流密度Jc特性が発揮でき、必要によって超電導線材同士における超電導接続を可能としてNMRマグネットへの適用が可能な、内部Sn法Nb3Sn超電導線材およびそのための前駆体、並びにこうした前駆体を製造するための有用な方法を提供することにある。 The present invention has been made under such circumstances, and the object thereof is to increase the volume ratio of the Nb core material, to prevent bridging of the Nb core materials, and to have a high critical current density Jc characteristic. An internal Sn method Nb 3 Sn superconducting wire and a precursor therefor, and a useful method for producing such a precursor, which can be applied to an NMR magnet by enabling superconducting connection between superconducting wires if necessary It is to provide.

上記目的を達成することのできた本発明の超電導線材製造用前駆体とは、
内部Sn法によってNb3Sn超電導線材を製造する際に用いる前駆体において、外周に安定化銅層を設けた筒状拡散バリア層を有し、該筒状拡散バリア層内に複合線材群が挿入された複合管を線材化して得られる前駆体であって、
前記複合線材群は、
Nb若しくはNb基合金芯がCu若しくはCu基合金マトリクスに埋設され、且つ断面形状が六角形である複数のNbエレメント線材と、
Sn若しくはSn基合金からなり、断面形状が多角形または円形である複数のSn芯材を備え、
前記Nbエレメント線材が前記Sn芯材を取り囲むように相互に接して配置されたものであるある点に要旨を有するものである。
The precursor for producing a superconducting wire of the present invention that has achieved the above-mentioned object is,
Precursor used when manufacturing Nb 3 Sn superconducting wire by the internal Sn method has a cylindrical diffusion barrier layer provided with a stabilized copper layer on the outer periphery, and a composite wire group is inserted into the cylindrical diffusion barrier layer A precursor obtained by converting the composite pipe made into a wire,
The composite wire rod group is
A plurality of Nb element wires in which a Nb or Nb-based alloy core is embedded in a Cu or Cu-based alloy matrix and the cross-sectional shape is a hexagon;
A plurality of Sn cores made of Sn or Sn-based alloy and having a polygonal or circular cross-sectional shape,
The Nb element wire has a gist in that it is arranged in contact with each other so as to surround the Sn core material.

本発明の超電導線材製造用前駆体における好ましい実施形態としては、(a)前記Sn芯材の断面の大きさが、Nbエレメント線材の断面の大きさと同じ、またはそれよりも小さいものであることや、(b)前記筒状拡散バリア層は、Nb若しくはNb基合金からなる層および/またはTa若しくはTa基合金からなる層であり、該筒状拡散バリア層と複合線材群との間に、更にCu若しくはCu基合金からなる層を配置したもの、等の構成が挙げられる。   Preferred embodiments of the precursor for producing a superconducting wire of the present invention include: (a) the size of the cross section of the Sn core material is the same as or smaller than the size of the cross section of the Nb element wire; (B) The cylindrical diffusion barrier layer is a layer made of Nb or Nb-based alloy and / or a layer made of Ta or Ta-based alloy, and further between the cylindrical diffusion barrier layer and the composite wire rod group. Examples include a configuration in which a layer made of Cu or a Cu-based alloy is arranged.

上記のような超電導線材製造用前駆体を用いて、拡散熱処理することによって希望する超電導特性(臨界電流密度Jc、磁場減衰率)を発揮するNbSn超電導線材を製造することができる。 A Nb 3 Sn superconducting wire exhibiting desired superconducting properties (critical current density Jc, magnetic field attenuation factor) can be produced by diffusion heat treatment using the precursor for producing a superconducting wire as described above.

一方、上記目的を達成し得た本発明の製造方法とは、
Nb若しくはNb基合金芯がCu若しくはCu基合金マトリクスに埋設され、且つ断面形状が六角形である複数のNbエレメント線材と、Sn若しくはSn基合金からなり、断面形状が多角形または円形である複数のSn芯材とを準備し、
前記Nbエレメント線材が前記Sn芯材を取り囲むように相互に接して配置して複合線材群とすると共に、
外周に安定化銅層を設けた筒状拡散バリア層内に、前記複合線材群を挿入して複合管とし、この複合管を縮径加工して線材化する点に要旨を有するものである。
On the other hand, the production method of the present invention that has achieved the above object
A Nb or Nb-based alloy core is embedded in a Cu or Cu-based alloy matrix, and a plurality of Nb element wires each having a hexagonal cross-sectional shape and a Sn or Sn-based alloy, and a plurality of cross-sectional shapes that are polygonal or circular Of Sn core material,
The Nb element wires are arranged in contact with each other so as to surround the Sn core material to form a composite wire group,
The present invention is summarized in that the composite wire group is inserted into a cylindrical diffusion barrier layer provided with a stabilizing copper layer on the outer periphery to form a composite tube, and the composite tube is reduced in diameter to form a wire.

上記(b)に示した実施形態のNb3Sn超電導線材製造用前駆体を製造するに当たっては、Cu製外筒およびCu製内筒からなるCu中空ビレットを準備し、該Cu製内筒の外周面に前記筒状拡散バリア層を形成してから前記Cu製外筒内に挿入し、これを熱間中空押出しした後、前記Cu製内筒内に前記複合線材群を挿入して複合管とする工程と、この複合管を縮径加工して線材化する工程を含むようにすれば良い。 In producing the Nb 3 Sn superconducting wire production precursor of the embodiment shown in (b) above, a Cu hollow billet comprising a Cu outer cylinder and a Cu inner cylinder is prepared, and the outer periphery of the Cu inner cylinder After forming the cylindrical diffusion barrier layer on the surface and inserting it into the Cu outer cylinder, hot-extrusion it, and then inserting the composite wire group into the Cu inner cylinder And a step of reducing the diameter of the composite tube to form a wire rod.

本発明の超電導線材製造用前駆体では、前駆体の構成要素としての複合線材群を、Nb若しくはNb基合金芯がCu若しくはCu基合金マトリクスに埋設され、且つ断面形状が六角形である複数のNbエレメント線材と、Sn若しくはSn基合金からなり、断面形状が多角形または円形である複数のSn芯材によって、適切に配置して構成するようにしたので、Nb金属芯の体積比率を増大できると共に、Nb芯材同士のブリッジングの発生を防止でき、高い臨界電流密度Jc特性が発揮できるような内部Sn法Nb3Sn超電導線材が実現できた。 In the precursor for manufacturing a superconducting wire according to the present invention, a composite wire group as a constituent element of the precursor is composed of a plurality of Nb or Nb-based alloy cores embedded in a Cu or Cu-based alloy matrix and a cross-sectional shape of a hexagon. The volume ratio of the Nb metal core can be increased because the Nb element wire is made of Sn or Sn-based alloy and the plurality of Sn cores having a polygonal or circular cross section are arranged and configured appropriately. At the same time, an internal Sn method Nb 3 Sn superconducting wire that can prevent bridging between Nb cores and exhibit high critical current density Jc characteristics has been realized.

本発明の超電導線材製造用前駆体(以下、単に「前駆体」と呼ぶことがある)の構成について、図面に基づいて説明する。図6は、本発明の前駆体の基本的な構成例を模式的に示した断面図である。本発明の前駆体の構成では、単数または複数(図では7本)のNb芯材2(Nb若しくはNb基合金芯)が、Cuマトリクス4内に埋設されたNbエレメント線材7が、その断面形状が六角形状に形成されると共に、複数のSn芯材3が、その断面形状が多角形または円形に形成されることになる(前駆体15)。そして、前記Nbエレメント線材7が、前記Sn芯材3を取り囲むようにして相互に接して配置されることによって前駆体内の線材群(複合線材群)が構成されることになる。   The structure of the precursor for manufacturing a superconducting wire according to the present invention (hereinafter sometimes simply referred to as “precursor”) will be described with reference to the drawings. FIG. 6 is a cross-sectional view schematically showing a basic configuration example of the precursor of the present invention. In the structure of the precursor of the present invention, the Nb element wire 7 in which one or more (seven in the figure) Nb core material 2 (Nb or Nb-based alloy core) is embedded in the Cu matrix 4 has a cross-sectional shape. Is formed in a hexagonal shape, and the plurality of Sn core materials 3 are formed in a polygonal shape or a circular shape in cross section (precursor 15). The Nb element wire 7 is arranged so as to be in contact with each other so as to surround the Sn core material 3, thereby forming a wire group (composite wire group) in the precursor.

上記のような線材群を構成するためには、Sn芯材3の断面の大きさは、Nbエレメント線材7の断面の大きさよりも小さい方が好ましいが(即ち、Nbエレメント線材7で囲まれた空隙に入り込める)、Sn芯材3とNbエレメント線材7の断面形状を同じ形状(即ち、六角断面形状)とすることもできる。また、Sn芯材3の断面形状は、六角形の他、八角形等の多角形状が採用できるが、素材の加工性を考慮すれば、円形であることが好ましい。いずれにしても、本発明で用いるSn芯材3は、表面にCuマトリクス4が形成されていないものである。   In order to configure the wire group as described above, the size of the cross section of the Sn core 3 is preferably smaller than the size of the cross section of the Nb element wire 7 (that is, surrounded by the Nb element wire 7). The Sn core material 3 and the Nb element wire 7 can have the same cross-sectional shape (that is, a hexagonal cross-sectional shape). Further, the cross-sectional shape of the Sn core material 3 can be a hexagonal shape or a polygonal shape such as an octagonal shape, but is preferably a circular shape in consideration of the workability of the material. In any case, the Sn core material 3 used in the present invention has no Cu matrix 4 formed on the surface.

前記図3に示したような前駆体の構成では、Nbエレメント線材7とSn芯材3の両方がその断面形状が円形に形成されるのであるが、こうした複合線材群の構成では、その周囲に拡散バリア層6および安定化銅4aを配置して押出しや伸線等の縮径加工する際に、Nbエレメント線材7同士が変形してその界面が密着する前に、Sn芯材3が変形してしまい、場合によっては加工発熱により溶融した状態でNbエレメント線材7間の界面に入り込むことになる。   In the configuration of the precursor as shown in FIG. 3, both the Nb element wire 7 and the Sn core material 3 are formed to have a circular cross-sectional shape. When the diffusion barrier layer 6 and the stabilized copper 4a are disposed and subjected to diameter reduction processing such as extrusion or wire drawing, the Sn core material 3 is deformed before the Nb element wire 7 is deformed and the interface is brought into close contact. In some cases, it enters the interface between the Nb element wires 7 in a melted state due to processing heat generation.

これに対して本発明の前駆体の構成では、少なくともNbエレメント線材7の断面形状を六角形とすることによって、縮径加工の際に、Nbエレメント線材の密着性が確保された状態でSn芯材が加工されることになるので、Nbエレメント線材間の界面に溶融したSnが入り込むことがなく、加工性を格段に向上させることができる。   On the other hand, in the configuration of the precursor of the present invention, at least the Nb element wire 7 has a hexagonal cross-sectional shape, so that the Sn core is in a state where the adhesion of the Nb element wire is ensured during the diameter reduction processing. Since the material is processed, melted Sn does not enter the interface between the Nb element wires, and the workability can be significantly improved.

また本発明の前駆体15では、Sn芯材3は、表面にCuマトリクス4が形成されていないものであるので、前記図4、5に示した前駆体13、14の構成と比較して、Cu駄肉部を減少できる分、少ないSn芯材3でも十分であり、結果として相対的にNb芯材2の体積比率を増大させ得ることができ、高い臨界電流密度Jcを確保できることになる。   In the precursor 15 of the present invention, since the Sn core material 3 is not formed with the Cu matrix 4 on the surface, compared with the configuration of the precursors 13 and 14 shown in FIGS. Since the Cu core portion can be reduced, a small Sn core material 3 is sufficient, and as a result, the volume ratio of the Nb core material 2 can be relatively increased, and a high critical current density Jc can be secured.

上記のような、超電導線材製造用前駆体の製造は、下記の手順で行われる。まず、Nb芯材2をCuマトリスク管に挿入し、押出しや伸線等の縮径加工を施して断面形状が六角形に形成された複合体(Nbエレメント線材7)とし、これを適当な長さに裁断する。一方、Sn若しくはSn基合金からなり、断面形状が多角形または円形である複数のSn芯材3を縮径加工によって形成する。そして、Nbエレメント線材7がSn芯材3を取り囲むように相互に接して配置して複合線材群とすると共に、外周に安定化銅層4aを設けた拡散バリア層(筒状拡散バリア層)6内に、前記複合線材群を挿入して複合管とし、この複合管を縮径加工して線材化する。   Production of the precursor for producing a superconducting wire as described above is performed in the following procedure. First, the Nb core material 2 is inserted into a Cu matrisk tube, and subjected to diameter reduction processing such as extrusion or wire drawing to form a composite (Nb element wire 7) having a cross-sectional shape formed in a hexagonal shape. Cut to the right. On the other hand, a plurality of Sn cores 3 made of Sn or Sn-based alloy and having a polygonal or circular cross-sectional shape are formed by diameter reduction processing. The Nb element wire 7 is arranged in contact with each other so as to surround the Sn core material 3 to form a composite wire group, and a diffusion barrier layer (tubular diffusion barrier layer) 6 provided with a stabilizing copper layer 4a on the outer periphery. The composite wire group is inserted into a composite pipe, and the composite pipe is reduced in diameter to form a wire.

前記拡散バリア層6は、従来技術と同様に、Nb若しくはNb基合金からなる層および/またはTa若しくはTa基合金からなる層(Nb若しくはNb基合金からなる層またはTa若しくはTa基合金からなる層の単層、或いはこれらの複層)で構成されるが、こうした拡散バリア層6と複合線材群との間に、更にCu若しくはCu基合金からなる層4b(図6)を配置する構成を採用することは、超電導線材における超電導接続を実現する上で好ましい形態である。   The diffusion barrier layer 6 is a layer made of Nb or an Nb-based alloy and / or a layer made of Ta or a Ta-based alloy (a layer made of Nb or an Nb-based alloy or a layer made of Ta or a Ta-based alloy, as in the prior art. The layer 4b (FIG. 6) made of Cu or a Cu-based alloy is further arranged between the diffusion barrier layer 6 and the composite wire rod group. This is a preferable form for realizing the superconducting connection in the superconducting wire.

超電導線材における超電導接続を実現する際には、熱処理する前に拡散バリア層6や安定化銅4aを除去される必要があるが、前記図3〜5に示した従来の前駆体11,13,14の構成では、熱処理前に内部のNb芯材2が露出してしまい、これが熱処理時に酸化されることになって、超電導接続が実現できないことになる。これに対し、上記のようなCu若しくはCu基合金からなる層4bを配置する構成を採用することによって、上記のような不都合を招くことなく、超電導接続が可能となる。   When realizing the superconducting connection in the superconducting wire, it is necessary to remove the diffusion barrier layer 6 and the stabilized copper 4a before the heat treatment, but the conventional precursors 11, 13, and 3 shown in FIGS. In the configuration of 14, the internal Nb core material 2 is exposed before the heat treatment, and this is oxidized during the heat treatment, so that the superconducting connection cannot be realized. On the other hand, by adopting the configuration in which the layer 4b made of Cu or a Cu-based alloy is arranged as described above, superconducting connection is possible without incurring the above disadvantages.

上記のように超電導接続が可能な前駆体を製造するに当たっては、Cu製外筒およびCu製内筒からなるCu中空ビレットを準備し、該Cu製内筒の外周面に前記筒状拡散バリア層を形成してから前記Cu製外筒内に挿入し、これを熱間中空押出しした後、前記Cu製内筒内に前記複合線材群を挿入して複合管とする工程と、この複合管を縮径加工して線材化する工程を含むことによって実現できる(後記実施例1参照)。   In producing a precursor capable of superconducting connection as described above, a Cu hollow billet comprising a Cu outer cylinder and a Cu inner cylinder is prepared, and the cylindrical diffusion barrier layer is formed on the outer peripheral surface of the Cu inner cylinder. Is inserted into the Cu outer cylinder, and after hot hollow extrusion, the composite wire group is inserted into the Cu inner cylinder to form a composite pipe. This can be realized by including a step of reducing the diameter to form a wire (see Example 1 described later).

本発明の前駆体では、拡散バリア層6よりも内側(即ち、複合線材群内)の部分におけるCu含有量(拡散バリア層6の内側にCu若しくはCu基合金からなる層4bを配置する場合には、その量も含む)とSn含有量の合計量に対するSn含有量の比率[Su含有量/(Cu+Snの含有量)]は、20〜38%程度にすることが好ましい。この比率が20%未満であると、Sn含有量が不足してNb3Sn化合物相の結晶性が悪くなり、ブロンズ法超電導線材に比べてその優位性がなくなってしまうことになる。一方、上記比率が38%を超えると、SnがCuに拡散する過程で、液相状態のSnが発生しやすくなり、Sn中へのCuの拡散速度が速くなるため、Nb芯材2付近のCuマトリクス部分にボイドが発生しやすくなる。こうしたボイドの発生は、Nb芯材2同士のブリッジングを誘発し、有効フィラメント径が大きくなり超電導特性が不安定になる原因となる。 In the precursor of the present invention, the Cu content in the portion inside the diffusion barrier layer 6 (that is, in the composite wire group) (when the layer 4b made of Cu or a Cu-based alloy is disposed inside the diffusion barrier layer 6) Is included) and the ratio of Sn content to the total amount of Sn content [Su content / (Cu + Sn content)] is preferably about 20 to 38%. When this ratio is less than 20%, the Sn content is insufficient, the crystallinity of the Nb 3 Sn compound phase is deteriorated, and the superiority to the bronze superconducting wire is lost. On the other hand, when the ratio exceeds 38%, Sn in the liquid phase is easily generated in the process of Sn diffusing into Cu, and the diffusion rate of Cu into Sn is increased. Voids are likely to occur in the Cu matrix portion. The generation of such voids induces bridging of the Nb core materials 2 and causes the effective filament diameter to increase and the superconducting characteristics to become unstable.

また本発明の前駆体15では、Nbエレメント線材7中のNb体積比率は、50〜70%となるように制御することが好ましい。この比率が50%未満になると、Nb3Sn化合物相の体積比率が減少してしまい、臨界電流密度Jcが低下することになる。しかしながら、この比率が70%を超えて過剰になると、Nb芯材2間の間隔が狭くなり、Nb芯材2同士のブリッジングを誘発しやすくなる。 Moreover, in the precursor 15 of this invention, it is preferable to control so that the Nb volume ratio in the Nb element wire 7 may be set to 50 to 70%. When this ratio is less than 50%, the volume ratio of the Nb 3 Sn compound phase decreases, and the critical current density Jc decreases. However, when this ratio exceeds 70% and becomes excessive, the interval between the Nb core materials 2 is narrowed, and bridging between the Nb core materials 2 is likely to be induced.

本発明の前駆体においては、Sn芯材3の直径は、最終伸線加工後拡散熱処理前の段階で20〜50μmとなるように設定することが好ましい。Sn芯材3は小さく分割されればされるほど、Nb芯材2が均等に配置されることになって好ましいのであるが、Sn芯材3には、高磁場での超電導特性を向上させるという観点から、1〜2質量%程度のTi元素合金が添加されることが多く、こうした元素を添加したときに形成されるTi−Sn化合物の大きさは最大で20μm程度となるので、Sn芯材3の大きさはこの化合物の大きさよりも大きなものとすることが好ましい。しかしながら、Sn芯材3の直径が50μmよりも大きくなると、SnがCuに拡散する際に、Sn芯材3付近に大きなボイドが発生しやすく、超電導線材の強度低下を招くことになる。   In the precursor of the present invention, the diameter of the Sn core material 3 is preferably set to 20 to 50 μm at the stage after the final wire drawing and before the diffusion heat treatment. The smaller the Sn core material 3 is, the more preferable it is that the Nb core material 2 is evenly arranged. However, the Sn core material 3 is said to improve the superconducting characteristics in a high magnetic field. From the viewpoint, a Ti element alloy of about 1 to 2% by mass is often added, and the size of the Ti—Sn compound formed when such an element is added is about 20 μm at maximum. The size of 3 is preferably larger than the size of this compound. However, if the diameter of the Sn core material 3 is larger than 50 μm, when Sn diffuses into Cu, large voids are likely to occur in the vicinity of the Sn core material 3, leading to a decrease in strength of the superconducting wire.

上記に示した構成の前駆体15では、拡散熱処理して得られるNb3Sn超電導線材は、ブロンズ法線材に比べ高い臨界電流密度Jc特性を示すため、NMRマグネットのコンパクト化・コストダウン、線材のコストダウン、納期短縮等に寄与することになる。 In the precursor 15 having the above-described configuration, the Nb 3 Sn superconducting wire obtained by diffusion heat treatment exhibits a higher critical current density Jc characteristic than the bronze normal wire. This will contribute to cost reduction and delivery time reduction.

本発明の前駆体は、基本的には、Nb若しくはNb基合金からなる芯材(Nb芯材2)がCu若しくはCu基合金マトリクスに埋設されたNbエレメント線材7と、Sn若しくはSn基合金からなる芯材(Sn芯材3)を構成素材とするものであるが、Cuマトリクスの素材として用いるCu基合金としては、CuにNb,Ni等の元素を含有(5質量%程度まで)させたものを用いることができる。またNbエレメント線材7として用いるNb基合金としては、Ta,Zr,Hf等の添加元素を10質量%程度まで含有させたものを用いることができる。更に、Sn芯材3として用いるSn基合金としては、Ti,Ta,Zr,Hf等の添加元素を、加工性を阻害しない程度(5質量%以下)でSnに含有させたものを使用することができる。   The precursor of the present invention basically includes an Nb element wire 7 in which a core material (Nb core material 2) made of Nb or an Nb base alloy is embedded in a Cu or Cu base alloy matrix, and an Sn or Sn base alloy. The core material (Sn core material 3) is a constituent material. However, as a Cu-based alloy used as a material of a Cu matrix, an element such as Nb or Ni is contained in Cu (up to about 5% by mass). Things can be used. As the Nb-based alloy used as the Nb element wire 7, an alloy containing an additive element such as Ta, Zr, Hf or the like up to about 10% by mass can be used. Further, as the Sn-based alloy used as the Sn core material 3, use is made of Sn containing an additive element such as Ti, Ta, Zr, Hf or the like to such an extent that the workability is not hindered (5% by mass or less). Can do.

本発明においては、上記のような前駆体15を用い、ブロンズ化熱処理を含めた拡散熱処理(通常200℃以上、800℃未満程度)することによって、良好な超電導特性(臨界電流密度Jc)を発揮するNb3Sn超電導線材を得ることができる。具体的には、180〜600℃の温度範囲でブロンズ化熱処理(SnをCuに拡散させる)を行なった後に、650〜750℃の温度範囲で100〜300時間程度のNb3Snを生成させる熱処理を行なう。尚、ブロンズ化熱処理としては、(a)180〜200℃で50時間程度、340℃前後で50時間程度、550℃前後で50〜100時間、或は(b)300〜350℃で50時間程度、500〜550℃で30〜100時間、等の多段階の熱処理の組合せにすることもできる。 In the present invention, excellent superconducting properties (critical current density Jc) are exhibited by using the precursor 15 as described above and performing diffusion heat treatment (typically about 200 ° C. or more and less than about 800 ° C.) including bronzing heat treatment. Nb 3 Sn superconducting wire can be obtained. Specifically, after performing a bronzing heat treatment (diffusion of Sn into Cu) in a temperature range of 180 to 600 ° C., heat treatment for generating Nb 3 Sn for about 100 to 300 hours in a temperature range of 650 to 750 ° C. To do. As the bronzing heat treatment, (a) about 180 hours at 180 to 200 ° C., about 50 hours at about 340 ° C., about 50 to 100 hours at about 550 ° C., or (b) about 50 hours at 300 to 350 ° C. , A combination of multi-stage heat treatments such as 30 to 100 hours at 500 to 550 ° C.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

[実施例1]
下記の手順に従って、前記図6に断面形状を示した前駆体を作製した。まず外径:32.8mm、内径:29mmのCu製パイプ内に、外径:28mmのNb芯を挿入した後、縮径加工してCu/Nb複合単芯線(外径:9.5mm)を作製して矯正後、0.70mの長さに裁断した。これを7本束ねてCuパイプ(外径:32.8mm、内径:29.0mm)内に挿入して伸線し、六角断面形状(六角対辺:2.0mm)のCu/Nb複合多芯線(Nbエレメント線材)を作製して矯正後、0.70mの長さに裁断した。また直径:1.9mmのSn−2質量%Ti棒(Sn芯材)を準備し、矯正後、0.70mの長さに裁断した。このときのNbエレメント線材中のNb芯材2の体積比率は65%である。
[Example 1]
According to the following procedure, the precursor whose cross-sectional shape was shown in FIG. 6 was produced. First, an Nb core having an outer diameter of 28 mm was inserted into a Cu pipe having an outer diameter of 32.8 mm and an inner diameter of 29 mm, and then reduced in diameter to obtain a Cu / Nb composite single core wire (outer diameter: 9.5 mm). After making and correcting, it was cut to a length of 0.70 m. Seven of these are bundled and inserted into a Cu pipe (outer diameter: 32.8 mm, inner diameter: 29.0 mm) and drawn, and a Cu / Nb composite multifilamentary wire having a hexagonal cross-sectional shape (hexagonal opposite side: 2.0 mm) ( Nb element wire) was prepared and corrected, and then cut to a length of 0.70 m. In addition, a Sn-2 mass% Ti rod (Sn core material) having a diameter of 1.9 mm was prepared, and after correction, it was cut into a length of 0.70 m. The volume ratio of the Nb core material 2 in the Nb element wire at this time is 65%.

一方、Cu製外筒(外径:143mm、内径:88.5mm)およびCu製内筒(外径:76mm、内径:51mm)からなるCu中空ビレットを準備した。そして、Cu中空ビレットの前記Cu製内筒の外周面にNbシート(厚み:0.2mm)を巻き付け、前記Cu製外筒内に挿入し、蓋をして真空引きした後、前記蓋を溶接した。こうして得られた中空ビレットを、熱間中空押出しして複合パイプ(外径:45mm、内径:38mm)とした。   On the other hand, a Cu hollow billet comprising a Cu outer cylinder (outer diameter: 143 mm, inner diameter: 88.5 mm) and a Cu inner cylinder (outer diameter: 76 mm, inner diameter: 51 mm) was prepared. Then, an Nb sheet (thickness: 0.2 mm) is wound around the outer peripheral surface of the Cu inner cylinder of the Cu hollow billet, inserted into the Cu outer cylinder, covered, vacuumed, and then welded. did. The hollow billet thus obtained was hot hollow extruded to obtain a composite pipe (outer diameter: 45 mm, inner diameter: 38 mm).

前記Nbエレンメント線材:210本と、Sn芯材:73本とを、Nbエレンメント線材がSn芯材の周りを取り囲むようにして組み合わせて複合線材群とし、この複合線材群を、複合パイプ内に挿入して伸線し、外径:1.0mmの前駆体とした(前記図6参照)。この段階でのSn芯材の直径は43μmである。   The Nb element wire: 210 and the Sn core material: 73 are combined so that the Nb element wire surrounds the Sn core material to form a composite wire group, and this composite wire group is formed in the composite pipe. And drawn to obtain a precursor having an outer diameter of 1.0 mm (see FIG. 6). The diameter of the Sn core material at this stage is 43 μm.

得られた前駆体(外径:1.0mmのもの)を、210℃×50時間+350℃×100時間+670℃×100時間の熱処理(拡散熱処理)を施して、Nb3Sn超電導線材とした。得られたNb3Sn超電導線材について、下記に示す各方法によって、臨界電流密度Jc、有効フィラメント径および磁場減衰率を求めた。また、縮径加工(若しくは伸線加工)時の断線回数も調査した。 The obtained precursor (with an outer diameter of 1.0 mm) was subjected to heat treatment (diffusion heat treatment) of 210 ° C. × 50 hours + 350 ° C. × 100 hours + 670 ° C. × 100 hours to obtain an Nb 3 Sn superconducting wire. The resulting Nb 3 Sn superconducting wire, by the method described below, was determined in terms of critical current density Jc, an effective filament diameter and the magnetic field attenuation rate. In addition, the number of breaks during diameter reduction (or wire drawing) was also investigated.

[臨界電流密度Jcの測定]
液体ヘリウム中(温度4.2K)で、12T(テスラ)の外部磁場の下、試料(超電導線材)に通電し、4端子法によって発生電圧を測定し、この値が0.1μV/cmの電界が発生した電流値(臨界電流Ic)を測定し、この電流値を、線材の非Cu部当りの断面積で除して臨界電流密度Jcを求めた。
[Measurement of critical current density Jc]
In liquid helium (temperature 4.2K), a sample (superconducting wire) is energized under an external magnetic field of 12T (Tesla), and the generated voltage is measured by the 4-terminal method. This value is an electric field of 0.1 μV / cm. The critical current density Jc was determined by measuring the current value (critical current Ic) at which the current occurred and dividing this current value by the cross-sectional area per non-Cu portion of the wire.

[有効フィラメント径の測定方法]
3T(テスラ)内での磁場変動に対する磁化曲線を測定し、下記(1)式に基づいて有効フィラメント径defを求めた。
有効フィラメント径def=(3π×ΔM)/(4μ0×Jc) …(1)
但し、ΔM:磁化曲線の幅(mT)、μ0:4π×10-7(H/m)、Jc:臨界電流密度(A/mm2)を夫々示す。
[Measurement method of effective filament diameter]
The magnetization curve with respect to the magnetic field fluctuation within 3T (Tesla) was measured, and the effective filament diameter def was determined based on the following equation (1).
Effective filament diameter d ef = (3π × ΔM) / (4 μ 0 × Jc) (1)
Where ΔM: magnetization curve width (mT), μ 0 : 4π × 10 −7 (H / m), Jc: critical current density (A / mm 2 ), respectively.

[磁場減衰率の測定]
図8に示すような接続抵抗評価回路を形成した。この図8において、21は製造したNb3Sn超電導線材によって作成した接続用U字サンプル、22は永久電流スイッチ、23は電源、24は超電導コイルを夫々示す。上記接続用U字サンプル21を熱処理後に、図7に示すように、接続用U字サンプル21の端部17の外皮Cuを除去して、Nb3Snフィラメント20を露出させ、超電導中間介在物18(例えば、Pb基合金)を介して、超電導膜マグネット(超電導コイル24)の超電導線材16と、接続を2箇所(接続用U字サンプル21の両端部)で行い、接続箇所に4.2Kで、0.5Tの磁場を印加してコイル24の中心部の磁場の減衰率を測定した。このとき、減衰率(ppm/hr)はNMRプローブにて、共鳴周波数(磁場に対応)の変化によって測定した。尚、図7中、19はCu基容器を示す。
[Measurement of magnetic field decay rate]
A connection resistance evaluation circuit as shown in FIG. 8 was formed. In FIG. 8, 21 is a U-shaped sample for connection made by the manufactured Nb 3 Sn superconducting wire, 22 is a permanent current switch, 23 is a power source, and 24 is a superconducting coil. After the heat treatment of the connection U-shaped sample 21, as shown in FIG. 7, the outer shell Cu of the end 17 of the connection U-shaped sample 21 is removed to expose the Nb 3 Sn filament 20, and the superconducting intermediate 18 The superconducting wire magnet 16 (superconducting coil 24) and the superconducting wire 16 are connected at two locations (both ends of the connecting U-shaped sample 21) via (for example, a Pb-based alloy), and the connection location is 4.2K. A magnetic field of 0.5 T was applied to measure the attenuation rate of the magnetic field at the center of the coil 24. At this time, the attenuation rate (ppm / hr) was measured by a change in resonance frequency (corresponding to a magnetic field) with an NMR probe. In FIG. 7, reference numeral 19 denotes a Cu base container.

(比較例1)
下記の手順に従って、前記図3に断面形状を示した前駆体を作製した。まず外径:32.8mm、内径:29mmのCu製パイプ内に、外径:28mmのNb芯を挿入した後、縮径加工してCu/Nb複合単芯線(外径:9.5mm)を作製して矯正後、0.70mの長さに裁断した。これを7本束ねてCuパイプ(外径:32.8mm、内径:29.0mm)内に挿入して伸線し、直径:2.0mmのCu/Nb複合多芯線(Nbエレメント線材)を作製して矯正後、0.70mの長さに裁断した。また直径:2.0mmのSn−2質量%Ti棒(Sn芯材)を準備し、矯正後、0.70mの長さに裁断した。このときのNbエレメント線材中のNb芯材2の体積比率は0.17%である。
(Comparative Example 1)
According to the following procedure, a precursor whose cross-sectional shape was shown in FIG. 3 was prepared. First, an Nb core having an outer diameter of 28 mm was inserted into a Cu pipe having an outer diameter of 32.8 mm and an inner diameter of 29 mm, and then reduced in diameter to obtain a Cu / Nb composite single core wire (outer diameter: 9.5 mm). After making and correcting, it was cut to a length of 0.70 m. Seven of these are bundled and inserted into a Cu pipe (outer diameter: 32.8 mm, inner diameter: 29.0 mm) and drawn to produce a Cu / Nb composite multifilamentary wire (Nb element wire) with a diameter of 2.0 mm. Then, after correction, it was cut into a length of 0.70 m. Moreover, a Sn-2 mass% Ti rod (Sn core material) having a diameter of 2.0 mm was prepared, and after correction, it was cut into a length of 0.70 m. At this time, the volume ratio of the Nb core material 2 in the Nb element wire is 0.17%.

Cuパイプ(外径:45mm、内径:38mm)の内周面にNbシート(厚み:0.2mm)を巻き付けた。前記Nbエレンメント線材:210本と、Sn芯材:73本とを、Nbエレンメント線材がSn芯材の周りを取り囲むようにして組み合わせて複合線材群とし、この複合線材群を、Cuパイプ内に挿入して伸線し、外径:1.0mmの前駆体とした(前記図3参照)。この段階でのSn芯材の直径は70μmである。   An Nb sheet (thickness: 0.2 mm) was wound around the inner peripheral surface of a Cu pipe (outer diameter: 45 mm, inner diameter: 38 mm). The Nb element wire: 210 and the Sn core material: 73 are combined so that the Nb element wire surrounds the Sn core material to form a composite wire group, and this composite wire group is formed in the Cu pipe. And was drawn into a precursor having an outer diameter of 1.0 mm (see FIG. 3). The diameter of the Sn core material at this stage is 70 μm.

得られた前駆体(外径:1.0mmのもの)を、210℃×50時間+350℃×100時間+670℃×100時間の熱処理(拡散熱処理)を施して、Nb3Sn超電導線材とした。得られたNb3Sn超電導線材について、実施例1と同様にして臨界電流密度Jc、磁場減衰率および有効フィラメント径を測定した。 The obtained precursor (with an outer diameter of 1.0 mm) was subjected to heat treatment (diffusion heat treatment) of 210 ° C. × 50 hours + 350 ° C. × 100 hours + 670 ° C. × 100 hours to obtain an Nb 3 Sn superconducting wire. For the obtained Nb 3 Sn superconducting wire, the critical current density Jc, the magnetic field attenuation factor, and the effective filament diameter were measured in the same manner as in Example 1.

(比較例2)
下記の手順に従って、前記図5に断面形状を示した前駆体を作製した。まず外径:32.8mm、内径:29mmのCuパイプ内に、外径:28mmのNb芯を挿入した後、縮径加工してCu/Nb複合単芯線(外径:9.5mm)を作製して矯正後、0.70mの長さに裁断した。これを7本束ねてCuパイプ(外径:32.8mm、内径:29.0mm)内に挿入して伸線し、直径:2.0mmのCu/Nb複合多芯線(Nbエレメント線材)を作製して矯正後、0.70mの長さに裁断した。このときのNbエレメント線材中のNb芯材2の体積比率は28%である。
(Comparative Example 2)
According to the following procedure, the precursor whose cross-sectional shape was shown in FIG. 5 was prepared. First, an Nb core having an outer diameter of 28 mm is inserted into a Cu pipe having an outer diameter of 32.8 mm and an inner diameter of 29 mm, and then reduced in diameter to produce a Cu / Nb composite single core wire (outer diameter: 9.5 mm). Then, after correction, it was cut into a length of 0.70 m. Seven of these are bundled and inserted into a Cu pipe (outer diameter: 32.8 mm, inner diameter: 29.0 mm) and drawn to produce a Cu / Nb composite multifilamentary wire (Nb element wire) with a diameter of 2.0 mm. Then, after correction, it was cut into a length of 0.70 m. At this time, the volume ratio of the Nb core material 2 in the Nb element wire is 28%.

一方、Cuパイプ(外径:23mm、内径:21mm)内に、直径:20mmのSn−2質量%Ti棒(Sn芯材)を挿入して伸線し、六角断面形状(六角対辺:2.0mm)のCu/Sn複合単芯線を作製し、これを矯正後、0.70mの長さに裁断した。   On the other hand, in a Cu pipe (outer diameter: 23 mm, inner diameter: 21 mm), an Sn-2 mass% Ti rod (Sn core material) having a diameter of 20 mm is inserted and drawn, and a hexagonal cross section (hexagonal opposite side: 2.. 0 mm) Cu / Sn composite single core wire was prepared, and after correcting this, it was cut into a length of 0.70 m.

Cuパイプ(外径:45mm、内径:38mm)の内周面にNbシート(厚み:0.2mm)を巻き付けた。前記Nbエレンメント線材:192本と、Cu/Sn複合単芯線:91本とを、Nbエレンメント線材がSn芯材の周りを取り囲むようにして組み合わせて複合線材群とし、この複合線材群を、Cuパイプ内に挿入して伸線し、外径:1.0mmの超電導線材製造用前駆体とした(前記図5参照)。この段階でのSn芯材の直径は64μmである。   An Nb sheet (thickness: 0.2 mm) was wound around the inner peripheral surface of a Cu pipe (outer diameter: 45 mm, inner diameter: 38 mm). The Nb element wire: 192 and the Cu / Sn composite single core wire: 91 are combined so that the Nb element wire surrounds the Sn core material to form a composite wire group, and this composite wire group, It was inserted into a Cu pipe and drawn to obtain a precursor for producing a superconducting wire having an outer diameter of 1.0 mm (see FIG. 5). The diameter of the Sn core material at this stage is 64 μm.

得られた前駆体(外径:1.0mmのもの)を、210℃×50時間+350℃×100時間+670℃×100時間の熱処理(拡散熱処理)を施して、Nb3Sn超電導線材とした。得られたNb3Sn超電導線材について、実施例1と同様にして臨界電流密度Jc、磁場減衰率および有効フィラメント径を測定した。 The obtained precursor (with an outer diameter of 1.0 mm) was subjected to heat treatment (diffusion heat treatment) of 210 ° C. × 50 hours + 350 ° C. × 100 hours + 670 ° C. × 100 hours to obtain an Nb 3 Sn superconducting wire. For the obtained Nb 3 Sn superconducting wire, the critical current density Jc, the magnetic field attenuation factor, and the effective filament diameter were measured in the same manner as in Example 1.

(比較例3)
下記の手順に従って、ブロンズ法による前駆体を作製した。直径:8.0mmのNb棒を、外径:67mmのCu−15質量%Sn合金中に挿入し、溶接によって端部を封止し、押出しビレットを作製した。この押し出しビレットを、途中で適宜400〜600℃で1時間の焼鈍を入れながら伸線加工し、六角断面形状のCu−Sn/Nb複合線(六角対辺:2.5mm)とした。このCu−Sn/Nb複合線を433本束ねて、その外周に厚さ:0.2mmのNbシートを2回巻き(拡散バリア層)、その周囲に外径:67mm、内径:59mmのCuパイプ(安定化銅)を配置した。こうして得られた複合線材を、エレクトロンビーム溶接によって端部を封止し、押出しビレットをした。この押出しビレットを、押出し、伸線加工によって線径:1.0mmの線材(超電導線材製造用前駆体)とした。
(Comparative Example 3)
A precursor by the bronze method was prepared according to the following procedure. An Nb rod having a diameter of 8.0 mm was inserted into a Cu-15 mass% Sn alloy having an outer diameter of 67 mm, the end was sealed by welding, and an extruded billet was produced. This extruded billet was drawn while appropriately annealing at 400 to 600 ° C. for 1 hour to obtain a Cu—Sn / Nb composite wire having a hexagonal cross section (hexagon opposite side: 2.5 mm). 433 Cu-Sn / Nb composite wires are bundled, and a Nb sheet having a thickness of 0.2 mm is wound twice around the outer periphery (diffusion barrier layer), and a Cu pipe having an outer diameter of 67 mm and an inner diameter of 59 mm around the periphery. (Stabilized copper) was placed. The composite wire thus obtained was sealed at the end by electron beam welding and extruded billet. This extruded billet was extruded and drawn into a wire having a wire diameter of 1.0 mm (precursor for producing a superconducting wire).

得られた前駆体(外径:1.0mmのもの)を、700℃×100時間の熱処理(拡散熱処理)を施してNb3Sn超電導線材とした。得られたNb3Sn超電導線材について、実施例1と同様にして臨界電流密度(Jc)、有効フィラメント径、磁場減衰率、および断線回数を測定した。 The obtained precursor (with an outer diameter of 1.0 mm) was subjected to a heat treatment (diffusion heat treatment) at 700 ° C. for 100 hours to obtain an Nb 3 Sn superconducting wire. The resulting Nb 3 Sn superconducting wire, the critical current density in the same manner as in Example 1 (Jc), the effective filament diameter, the magnetic field attenuation rate, and breakage number was measured.

実施例1、および比較例1〜3で得られた超電導線材の超電導特性(磁場:12T、温度:4.2Kでの臨界電流密度Jc、コイルの磁場減衰率)、有効フィラメント径、断線回数を、下記表1に一括して示す。尚、臨界電流密度Jcは少なくとも800A/mm2以上は必要であり(好ましくは2000A/mm2以上)、磁場減衰率は0.01ppm/hr以下であることが必要である。 The superconducting characteristics (magnetic field: 12T, temperature: critical current density Jc at 4.2K), effective filament diameter, and number of disconnections of the superconducting wires obtained in Example 1 and Comparative Examples 1 to 3 are as follows. These are shown collectively in Table 1 below. The critical current density Jc needs to be at least 800 A / mm 2 (preferably 2000 A / mm 2 or more), and the magnetic field attenuation factor needs to be 0.01 ppm / hr or less.

この結果から明らかなように、本発明で規定する要件を満足する実施例1のものでは、磁場減衰率が極めて低くなっており、また臨界電流密度Jcも良好な値が得られており、しかも伸線加工時に断線が発生することなく、有効フィラメント径を小さくできていることが分かる。   As is clear from this result, in Example 1 that satisfies the requirements defined in the present invention, the magnetic field attenuation rate is extremely low, and the critical current density Jc is also good, and It can be seen that the effective filament diameter can be reduced without any disconnection during the wire drawing.

内部Sn法に適用される超電導線材製造用前駆体の基本構成例を模式的に示した断面図である。It is sectional drawing which showed typically the example of a basic composition of the precursor for superconducting wire manufacturing applied to the internal Sn method. 内部Sn法に適用される超電導線材製造用前駆体の他の構成例を模式的に示した断面図である。It is sectional drawing which showed typically the other structural example of the precursor for superconducting wire manufacturing applied to the internal Sn method. 従来技術における超電導線材製造用前駆体の構成例を模式的に示した断面図である。It is sectional drawing which showed typically the example of a structure of the precursor for superconducting wire manufacturing in a prior art. 従来技術における超電導線材製造用前駆体の他の構成例を模式的に示した断面図である。It is sectional drawing which showed typically the example of another structure of the precursor for superconducting wire manufacturing in a prior art. 従来技術における超電導線材製造用前駆体の更に他の構成例を模式的に示した断面図である。It is sectional drawing which showed typically the example of another structure of the precursor for superconducting wire manufacturing in a prior art. 本発明の超電導線材製造用前駆体の構成例を模式的に示した断面図である。It is sectional drawing which showed typically the example of a structure of the precursor for superconducting wire manufacture of this invention. 本発明のNb3Sn超電導線材と接続抵抗評価用超電導マグネットの超電導線材との接続状況を示す概略断面図である。It is a schematic sectional view showing a connection status between the Nb 3 Sn superconducting wire and connection resistance evaluation superconducting magnet of a superconducting wire of the present invention. 本発明のNb3Sn超電導線材を用いた接続U字サンプル、永久電流スイッチ、超電導コイルを接続して作製した接続抵抗評価回路の概略説明図である。Connecting U-shaped samples using a Nb 3 Sn superconducting wire of the present invention, a permanent current switch, which is a schematic illustration of a connection resistance evaluation circuit manufactured by connecting the superconducting coil.

符号の説明Explanation of symbols

1,5,11,13,14,15 超電導線材製造用前駆体
2 NbまたはNb基合金芯(Nb芯材)
3 SnまたはSn基合金芯(Sn芯材)
4 Cuマトリクス
4a 安定化銅層
6 拡散バリア層(筒状拡散バリア層)
7 Nbエレメント線材
8 Snエレメント線材
16 電導コイル24の超電導線材
17 接続用U字サンプル21の端部
18 超電導中間介在物
19 Cu基容器
20 超電導フィラメント
21 本発明のNb3Sn超電導線材によって作成した接続用U字サンプル
22 永久電流スイッチ
23 電源
24 超電導コイル
1, 5, 11, 13, 14, 15 Superconducting wire production precursor 2 Nb or Nb-based alloy core (Nb core material)
3 Sn or Sn-based alloy core (Sn core material)
4 Cu matrix 4a Stabilized copper layer 6 Diffusion barrier layer (tubular diffusion barrier layer)
7 Nb element wire 8 Sn element wire 16 Superconducting wire 17 of conductive coil 24 End 18 of connecting U-shaped sample 21 Superconducting intermediate inclusion 19 Cu-based container 20 Superconducting filament 21 U for connection made with Nb3Sn superconducting wire of the present invention Sample 22 Permanent current switch 23 Power supply 24 Superconducting coil

Claims (6)

内部Sn法によってNb3Sn超電導線材を製造する際に用いる前駆体において、外周に安定化銅層を設けた筒状拡散バリア層を有し、該筒状拡散バリア層内に複合線材群が挿入された複合管を線材化して得られる前駆体であって、
前記複合線材群は、
Nb若しくはNb基合金芯がCu若しくはCu基合金マトリクスに埋設され、且つ断面形状が六角形である複数のNbエレメント線材と、
Sn若しくはSn基合金からなり、断面形状が多角形または円形である複数のSn芯材を備え、
前記Nbエレメント線材が前記Sn芯材を取り囲むように相互に接して配置されたものであることを特徴とするNb3Sn超電導線材製造用前駆体。
Precursor used when manufacturing Nb 3 Sn superconducting wire by the internal Sn method has a cylindrical diffusion barrier layer provided with a stabilized copper layer on the outer periphery, and a composite wire group is inserted into the cylindrical diffusion barrier layer A precursor obtained by converting the composite pipe made into a wire,
The composite wire rod group is
A plurality of Nb element wires in which a Nb or Nb-based alloy core is embedded in a Cu or Cu-based alloy matrix and the cross-sectional shape is a hexagon;
A plurality of Sn cores made of Sn or Sn-based alloy and having a polygonal or circular cross-sectional shape,
A precursor for producing a Nb 3 Sn superconducting wire, wherein the Nb element wire is disposed so as to surround the Sn core material.
前記Sn芯材の断面の大きさが、Nbエレメント線材の断面の大きさと同じ、またはそれよりも小さいものである請求項1に記載のNb3Sn超電導線材製造用前駆体。 2. The precursor for producing an Nb 3 Sn superconducting wire according to claim 1, wherein a size of a cross section of the Sn core material is the same as or smaller than a size of a cross section of the Nb element wire. 前記筒状拡散バリア層は、Nb若しくはNb基合金からなる層および/またはTa若しくはTa基合金からなる層であり、該筒状拡散バリア層と複合線材群との間に、更にCu若しくはCu基合金からなる層を配置したものである請求項1または2に記載のNb3Sn超電導線材製造用前駆体。 The cylindrical diffusion barrier layer is a layer made of Nb or an Nb-based alloy and / or a layer made of Ta or a Ta-based alloy, and a Cu or Cu group is further interposed between the cylindrical diffusion barrier layer and the composite wire rod group. The precursor for producing a Nb 3 Sn superconducting wire according to claim 1 or 2, wherein an alloy layer is disposed. 請求項1〜3のいずれかに記載の超電導線材製造用前駆体を、拡散熱処理することによってNb3Sn超電導相を形成したものであるNb3Sn超電導線材。 Nb 3 Sn superconducting wire a precursor for fabricating a superconducting wire according to any one of claims 1 to 3, is obtained by forming a Nb 3 Sn superconducting phase by diffusion heat treatment. 内部Sn法によってNb3Sn超電導線材を製造する際に用いる前駆体を製造するに当り、Nb若しくはNb基合金芯が、Cu若しくはCu基合金マトリクスに埋設され、且つ断面形状が六角形である複数のNbエレメント線材と、Sn若しくはSn基合金からなり、断面形状が多角形または円形である複数のSn芯材とを準備し、
前記Nbエレメント線材が前記Sn芯材を取り囲むように相互に接して配置して複合線材群とすると共に、
外周に安定化銅層を設けた筒状拡散バリア層内に、前記複合線材群を挿入して複合管とし、この複合管を縮径加工して線材化すること特徴とするNb3Sn超電導線材製造用前駆体の製造方法。
A plurality of Nb or Nb-based alloy cores embedded in a Cu or Cu-based alloy matrix and having a hexagonal cross-sectional shape when manufacturing a precursor used in manufacturing an Nb 3 Sn superconducting wire by the internal Sn method Nb element wire and a plurality of Sn cores made of Sn or Sn-based alloy and having a polygonal or circular cross-sectional shape,
The Nb element wires are arranged in contact with each other so as to surround the Sn core material to form a composite wire group,
An Nb 3 Sn superconducting wire, characterized in that the composite wire group is inserted into a cylindrical diffusion barrier layer provided with a stabilizing copper layer on the outer periphery to form a composite tube, and the composite tube is reduced in diameter to form a wire. A method for producing a precursor for production.
請求項3に記載のNb3Sn超電導線材製造用前駆体を製造するに当り、Cu製外筒およびCu製内筒からなるCu中空ビレットを準備し、該Cu製内筒の外周面に前記筒状拡散バリア層を形成してから前記Cu製外筒内に挿入し、これを熱間中空押出しした後、前記Cu製内筒内に前記複合線材群を挿入して複合管とする工程と、この複合管を縮径加工して線材化する工程を含むこと特徴とする請求項5に記載の製造方法。 In producing the precursor for producing the Nb 3 Sn superconducting wire according to claim 3, a Cu hollow billet comprising a Cu outer tube and a Cu inner tube is prepared, and the tube is formed on the outer peripheral surface of the Cu inner tube. Forming a cylindrical diffusion barrier layer and then inserting it into the Cu outer cylinder, hot-extruding it, and then inserting the composite wire group into the Cu inner cylinder to form a composite pipe; and The manufacturing method according to claim 5, further comprising a step of reducing the diameter of the composite pipe to form a wire.
JP2008174685A 2008-07-03 2008-07-03 Precursor for producing Nb3Sn superconducting wire, method for producing the same, and Nb3Sn superconducting wire Expired - Fee Related JP5258424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008174685A JP5258424B2 (en) 2008-07-03 2008-07-03 Precursor for producing Nb3Sn superconducting wire, method for producing the same, and Nb3Sn superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008174685A JP5258424B2 (en) 2008-07-03 2008-07-03 Precursor for producing Nb3Sn superconducting wire, method for producing the same, and Nb3Sn superconducting wire

Publications (2)

Publication Number Publication Date
JP2010015821A true JP2010015821A (en) 2010-01-21
JP5258424B2 JP5258424B2 (en) 2013-08-07

Family

ID=41701751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008174685A Expired - Fee Related JP5258424B2 (en) 2008-07-03 2008-07-03 Precursor for producing Nb3Sn superconducting wire, method for producing the same, and Nb3Sn superconducting wire

Country Status (1)

Country Link
JP (1) JP5258424B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142301A (en) * 2010-12-30 2011-08-03 西部超导材料科技有限公司 Method for assembling 300 to 1000-core composite superconducting blank
EP2448029A3 (en) * 2010-10-28 2015-03-25 SH Copper Products Co., Ltd. Precursor for Nb3Sn superconductor wire, superconductor wire using the same and method for manufacturing Nb3Sn superconductor wire
KR101981664B1 (en) * 2018-05-16 2019-05-24 케이. 에이. 티. (주) Superconducting wire
WO2020095734A1 (en) 2018-11-09 2020-05-14 株式会社神戸製鋼所 Precursor used for manufacturing superconductive wire rod, method for manufacturing precursor, and superconductive wire rod
CN114752938A (en) * 2022-04-07 2022-07-15 中国科学院赣江创新研究院 Completely removed Nb3Method for stabilizing layer and blocking layer of Sn superconducting line
EP4071769A1 (en) * 2019-12-04 2022-10-12 Furukawa Electric Co., Ltd. Precursor for nb3sn single-core superconducting wire rods and method for producing same, nb3sn single-core superconducting wire rod, precursor for nb3sn multicore superconducting wire rods and method for producing same, and nb3sn multicore superconducting wire rod

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227310A (en) * 1985-03-30 1986-10-09 昭和電線電纜株式会社 Manufacture of nb3 sn by internal diffusion
JPS62160608A (en) * 1986-01-09 1987-07-16 株式会社東芝 Compound superconductor
JPS62240751A (en) * 1986-04-11 1987-10-21 Showa Electric Wire & Cable Co Ltd Manufacture of nb3sn super conducting wire by internal diffusion method
JP2006004684A (en) * 2004-06-16 2006-01-05 Mitsubishi Electric Corp Manufacturing method of superconductive wire rod
JP2006339041A (en) * 2005-06-02 2006-12-14 Mitsubishi Electric Corp Manufacturing method of nb3sn superconductive wire

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227310A (en) * 1985-03-30 1986-10-09 昭和電線電纜株式会社 Manufacture of nb3 sn by internal diffusion
JPS62160608A (en) * 1986-01-09 1987-07-16 株式会社東芝 Compound superconductor
JPS62240751A (en) * 1986-04-11 1987-10-21 Showa Electric Wire & Cable Co Ltd Manufacture of nb3sn super conducting wire by internal diffusion method
JP2006004684A (en) * 2004-06-16 2006-01-05 Mitsubishi Electric Corp Manufacturing method of superconductive wire rod
JP2006339041A (en) * 2005-06-02 2006-12-14 Mitsubishi Electric Corp Manufacturing method of nb3sn superconductive wire

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2448029A3 (en) * 2010-10-28 2015-03-25 SH Copper Products Co., Ltd. Precursor for Nb3Sn superconductor wire, superconductor wire using the same and method for manufacturing Nb3Sn superconductor wire
CN102142301A (en) * 2010-12-30 2011-08-03 西部超导材料科技有限公司 Method for assembling 300 to 1000-core composite superconducting blank
CN102142301B (en) * 2010-12-30 2012-09-26 西部超导材料科技有限公司 Method for assembling 300 to 1000-core composite superconducting blank
KR101981664B1 (en) * 2018-05-16 2019-05-24 케이. 에이. 티. (주) Superconducting wire
WO2020095734A1 (en) 2018-11-09 2020-05-14 株式会社神戸製鋼所 Precursor used for manufacturing superconductive wire rod, method for manufacturing precursor, and superconductive wire rod
CN112823400A (en) * 2018-11-09 2021-05-18 株式会社神户制钢所 Precursor for manufacturing superconducting wire, method for manufacturing precursor, and superconducting wire
KR20210087067A (en) 2018-11-09 2021-07-09 가부시키가이샤 고베 세이코쇼 Precursors used in the manufacture of superconducting wires, methods for producing precursors, and superconducting wires
CN112823400B (en) * 2018-11-09 2022-11-15 株式会社神户制钢所 Precursor for manufacturing superconducting wire, method for manufacturing precursor, and superconducting wire
EP4071769A1 (en) * 2019-12-04 2022-10-12 Furukawa Electric Co., Ltd. Precursor for nb3sn single-core superconducting wire rods and method for producing same, nb3sn single-core superconducting wire rod, precursor for nb3sn multicore superconducting wire rods and method for producing same, and nb3sn multicore superconducting wire rod
EP4071769A4 (en) * 2019-12-04 2023-12-27 Furukawa Electric Co., Ltd. Precursor for nb3sn single-core superconducting wire rods and method for producing same, nb3sn single-core superconducting wire rod, precursor for nb3sn multicore superconducting wire rods and method for producing same, and nb3sn multicore superconducting wire rod
CN114752938A (en) * 2022-04-07 2022-07-15 中国科学院赣江创新研究院 Completely removed Nb3Method for stabilizing layer and blocking layer of Sn superconducting line

Also Published As

Publication number Publication date
JP5258424B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP4791309B2 (en) Nb3Sn superconducting wire and precursor therefor
JP5258424B2 (en) Precursor for producing Nb3Sn superconducting wire, method for producing the same, and Nb3Sn superconducting wire
JP4185548B1 (en) Nb3Sn superconducting wire and precursor therefor
JP2009211880A (en) Nb3Sn SUPERCONDUCTING WIRE ROD MADE BY USING INTERNAL Sn METHOD, AND PRECURSOR THEREFOR
JP4934497B2 (en) Nb3Sn superconducting wire, precursor therefor, and method for producing the precursor
JP5642727B2 (en) Precursor for producing internal Sn method Nb3Sn superconducting wire, Nb3Sn superconducting wire, and production method thereof
JP2008091136A (en) Nbti based superconductive wire
JP4227143B2 (en) Nb3Sn superconducting wire and precursor therefor
US7718898B2 (en) Precursor for manufacturing Nb3Sn superconducting wire and Nb3Sn superconducting wire
JP6585519B2 (en) Precursor for producing Nb3Sn superconducting wire, and method for producing Nb3Sn superconducting wire
JP2007128686A (en) Nb3Sn SUPERCONDUCTING WIRE MATERIAL MANUFACTURED BY INSIDE DIFFUSION METHOD
JP2014072039A (en) PRECURSOR FOR MANUFACTURING Nb3Sn SUPERCONDUCTING WIRE ROD AND Nb3Sn SUPERCONDUCTING WIRE ROD
JP2010097902A (en) PRECURSOR FOR MANUFACTURING Nb3Sn SUPERCONDUCTIVE WIRE, AND Nb3Sn SUPERCONDUCTIVE WIRE
JP2007294375A (en) Nb3Sn SUPERCONDUCTING WIRING MATERIAL FABRICATION PRECURSOR, METHOD FOR FABRICATION THEREOF AND Nb3Sn SUPERCONDUCTING WIRING MATERIAL
JP5164815B2 (en) Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire
JP4791346B2 (en) Nb3Sn superconducting wire, precursor therefor, and Nb composite single core wire for precursor
JP2009059652A (en) BRONZE PROCESS Nb3Sn SUPERCONDUCTING WIRE ROD AND ITS PRECURSOR
JP2009004128A (en) BRONZE-PROCESS Nb3Sn SUPERCONDUCTING WIRE, AND PRECURSOR THEREOF
JP3127181B2 (en) Method for manufacturing composite superconducting wire and method for manufacturing composite superconducting coil
JP2019179674A (en) PRECURSOR FOR Nb3Sn SUPERCONDUCTING WIRE ROD, Nb3Sn SUPERCONDUCTING WIRE ROD, AND MODULE
JP4237341B2 (en) Nb3Sn compound superconducting wire and manufacturing method thereof
JP2007149494A (en) METHOD OF MANUFACTURING Nb3Sn SUPERCONDUCTIVE WIRE, AND PRECURSOR THEREFOR
JP2005141968A (en) Compound superconducting wire material and its manufacturing method
JP2007220493A (en) MANUFACTURING METHOD OF Nb3Sn SUPERCONDUCTING WIRE ROD AND PRECURSOR FOR THE SAME
JP2003045247A (en) Superconductive cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5258424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees