JP2006339041A - Manufacturing method of nb3sn superconductive wire - Google Patents

Manufacturing method of nb3sn superconductive wire Download PDF

Info

Publication number
JP2006339041A
JP2006339041A JP2005162786A JP2005162786A JP2006339041A JP 2006339041 A JP2006339041 A JP 2006339041A JP 2005162786 A JP2005162786 A JP 2005162786A JP 2005162786 A JP2005162786 A JP 2005162786A JP 2006339041 A JP2006339041 A JP 2006339041A
Authority
JP
Japan
Prior art keywords
composite
wire
based alloy
nb3sn
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005162786A
Other languages
Japanese (ja)
Inventor
Kiyoshi Hiramoto
清 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005162786A priority Critical patent/JP2006339041A/en
Publication of JP2006339041A publication Critical patent/JP2006339041A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a superconductive wire wherein the composite manufacturing method of the Nb3Sn superconductive wire is stabilized so that breaking of composite wire can be effectively prevented, its material cost can be reduced, and its assembling method can be simplified. <P>SOLUTION: In this manufacturing method of the Nb3Sn superconductive wire in which the periphery of a composite wire formed by assembling and bundling a plurality of composite module wires comprising a superconductive composite material containing three kinds of material of Nb or Nb based alloy, Cu or Cu based alloy, and Sn or Sn based alloy compounded in them are surrounded by a Sn diffusion preventing barrier material, a stabilizing material is then disposed around it to assemble a composit structural body, and after that, drawing process is applied to it, a thin copper tube made of Cu or a Cu based alloy material is interposed between the composite wire and the Sn diffusion preventing barrier material to assemble the composite structural body. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、例えば超電導マグネット用のコイル等に使用されるNb3Sn化合物超電導線の製造方法に関するものである。   The present invention relates to a method of manufacturing a Nb3Sn compound superconducting wire used for, for example, a coil for a superconducting magnet.

従来のNb3Sn超電導線の製造方法は、Nb複合ビレットを所定形状の複合線材に伸延加工したのち、この複合線材に所定の熱処理を施してNb3Sn相を形成する方法が一般的であるが、複合ビレツトを構成する際にNb線を組み込んだその外周にSn拡散防止用のTa条を成形ロールで丸め縁端部の突合せ部分を溶接して製造した溶接Ta管を用いる方法と、Ta条にCu条を張り合わせクラッド状にしたものを成形ロールで筒状に丸めた管を用い拡散防止用のバリア材としたものを複合モジュール線材の外周に組み込む方法と、Ta棒に孔を空け引抜き等により製造した継ぎ目無しのTa管をSn拡散防止用バリア材として複合モジュール線材の外周に組み込む方法とがある。(例えば、特許文献1参照) A conventional method for producing a Nb3Sn superconducting wire is generally a method in which an Nb composite billet is processed into a composite wire having a predetermined shape and then subjected to a predetermined heat treatment to form an Nb3Sn phase. The method using a welded Ta tube manufactured by welding a Ta strip for preventing Sn diffusion to the outer periphery of the Nb wire and forming a butt portion of the rounded edge with a forming roll, and a Cu strip on the Ta strip. Manufactured by using a tube rolled into a cylindrical shape with a forming roll and incorporating a barrier material for diffusion prevention into the outer periphery of the composite module wire, and by drilling a hole in a Ta bar. There is a method of incorporating a seamless Ta tube into the outer periphery of the composite module wire as a barrier material for preventing Sn diffusion. (For example, see Patent Document 1)

特開平10−69823号公報(図2)Japanese Patent Laid-Open No. 10-69823 (FIG. 2)

このように従来のNb3Sn超電導線の製造方法によれば、例えば、Ta条を成形ロールで丸め縁端部を溶接したものをSn拡散防止用のバリアとして複合ビレット内に組み込んでいるが、熱間押出し加工あるいは伸延引抜き加工時の塑性加工で、このTa管の溶接部硬度が高く、また溶接による歪等が発生するため非常に不安定であり加工時の塑性変形が大きくなり破断する問題点がある。
また、Ta条にCu条を張り合わせクラッド板状にしたものを成型ロールで筒状に丸めた管をSn拡散防止用バリア材として用い複合モジュール線材の外周に組みいれる方法については、前記クラッド加工時にTaとCu条の間に空気や不純物を巻き込んだりする欠点があった。
また、複合後の伸延加工では、ロール状に成型された管の内側縁端部が伸延加工と同時に、内側に螺旋状に絞られながら自由に動いてしまうので、伸延加工の際前記管の内側縁端部が複合されたモジュール線の整列された溝に引っかかり、複合モジュール線材の外周数本を押し退け複合線同士が交差することとなるので複数回伸延加工を繰り返すうちに座屈し断線に到る欠点がある。
さらに前記クラッド板はロール状に成型し筒状に丸めた状態の管であるため、縁端部が重なり合う場所にCu部分が出来るのでSn拡散防止用バリア材としての性能が低下しSn拡散処理時にSn漏れが発生する欠点がありNb3Sn超電導特性の低下を招く問題点があった。
また、引抜き等により製造した継ぎ目無しのTa管については、継ぎ目なし管加工をするためのコストが高くおよそ量産性には不向きであり、材料費用がNb3Sn超電導線全体の40%近くになる等の問題点があった。
Thus, according to the conventional method for manufacturing a Nb3Sn superconducting wire, for example, a Ta strip rolled with a forming roll and welded at its edge is incorporated into a composite billet as a barrier for Sn diffusion prevention. The plastic working during extrusion or drawing, the hardness of the welded portion of this Ta tube is high, and distortion due to welding is very unstable, so there is a problem that plastic deformation during processing becomes large and breaks. is there.
In addition, regarding a method of using a tube obtained by laminating a Cu strip on a Ta strip and forming a clad plate into a cylindrical shape with a molding roll as a barrier material for Sn diffusion prevention, There was a defect that air and impurities were involved between Ta and Cu strips.
In addition, in the distraction process after the composite, the inner edge of the roll-shaped tube moves freely while being constricted in a spiral shape at the same time as the distraction process. The edge is caught in the aligned groove of the composite module wire, and several composite module wire rods are pushed away and the composite wires cross each other. There are drawbacks.
Further, since the clad plate is a tube formed in a roll shape and rounded into a cylindrical shape, a Cu portion is formed at a place where the edge ends overlap, so the performance as a barrier material for preventing Sn diffusion is reduced and Sn diffusion treatment is performed. There is a drawback that Sn leakage occurs and there is a problem in that the Nb3Sn superconducting characteristics are deteriorated.
In addition, the seamless Ta tube manufactured by drawing or the like has a high cost for processing the seamless tube and is not suitable for mass production, and the material cost is nearly 40% of the entire Nb3Sn superconducting wire. There was a problem.

この発明は上記のような課題を解決するためになされたものであり、複合線材の断線を効果的に防止できるようNb3Sn超電導線の複合製作方法を安定化し、材料のコストダウンと組立て方法を簡略化できるNb3Sn超電導線の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and stabilizes the composite manufacturing method of the Nb3Sn superconducting wire so as to effectively prevent the disconnection of the composite wire, thereby reducing the cost of the material and simplifying the assembly method. It aims at providing the manufacturing method of the Nb3Sn superconducting wire which can be formed.

この発明は、Nb又はNb基合金、CuまたはCu基合金、およびこれらの内部に複合するSn又はSn基合金の3種類の材料を含む超電導複合材料の周囲をSn拡散防止用バリア材で取り囲み、更にこれらの周囲に安定化材を配置して複合構成体を組立てたのちこれを伸延加工するNb3Sn超電導線の製造方法において、複合線とSn拡散防止用バリア材との間にCu又はCu基合金材からなる薄肉銅管を介在させて構成体を組立てるようにしたものである。   The present invention surrounds the periphery of a superconducting composite material including three types of materials of Nb or Nb-based alloy, Cu or Cu-based alloy, and Sn or Sn-based alloy composited therein, with a barrier material for preventing Sn diffusion, Furthermore, in the manufacturing method of the Nb3Sn superconducting wire in which a stabilizing member is arranged around these and the composite structure is assembled and then stretched, a Cu or Cu-based alloy is interposed between the composite wire and the Sn diffusion preventing barrier material. The structure is assembled by interposing a thin-walled copper tube made of a material.

この発明のNb3Sn超電導線の製造方法によれば、Nb3Sn複合線材の断線を効果的に防止して歩留りの改善および超電導性能を向上させることができると共に、材料のコストダウンと組立て方法の簡略化を図ることができる。   According to the manufacturing method of the Nb3Sn superconducting wire of the present invention, it is possible to effectively prevent the disconnection of the Nb3Sn composite wire, improve the yield and improve the superconducting performance, reduce the material cost and simplify the assembling method. Can be planned.

実施の形態1.
以下、この発明の実施の形態1を図に基づいて説明する。
図1はNb3Sn超電導線を構成する複合構成体5の横断面であり、Nb又はNb基合金、CuまたはCu基合金、およびこれらの内部に複合するSn又はSn基合金の3種類の材料を含む超電導複合材料からなる複合モジュール線材1を複数本組み合わせ集束した複合線の周囲に、Cu又はCu基合金材からなる薄肉銅管2を配置し、この外側にTa板をロール状に成型したSn拡散防止用バリア材3を配置し、さらに外周に安定化銅管4を配置している。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-section of a composite structure 5 constituting an Nb3Sn superconducting wire, and includes three types of materials: Nb or Nb-based alloy, Cu or Cu-based alloy, and Sn or Sn-based alloy compounded inside these Sn diffusion in which a thin copper tube 2 made of Cu or a Cu-based alloy material is arranged around a composite wire obtained by combining a plurality of composite module wires 1 made of a superconducting composite material, and a Ta plate is molded into a roll shape on the outside. The barrier material 3 for prevention is arrange | positioned, and also the stabilization copper pipe 4 is arrange | positioned on the outer periphery.

図2は上記Nb3Sn超電導線を構成する複合構成体5の斜視図で複合方法を示した図であり、複合モジュール線材1を61モジュール束ね、超電導モジュール線外径寸法が、複合構成体5の全体断面積比の45%となる複合線を構成し、さらにこの複合線を、複合構成体5に対する断面積比が1.6%とした厚さの薄肉銅管2内に複合し、これを安定化銅管4内に純Ta板をロール状に成型したSn拡散防止用バリア材3を挿入した内側に組み入れ複合構成体5とする。
このようにSn拡散防止用バリア材3の内側に薄肉銅管2を配置し、外側に安定化銅管材4を配置したNb3Sn超電導線を構成しているので、複合構成体5全体のクリアランスが極力小さくできる。
FIG. 2 is a perspective view of the composite structure 5 constituting the Nb3Sn superconducting wire, showing the composite method. The composite module wire 1 is bundled in 61 modules, and the outer diameter of the superconducting module wire is the entire composite structure 5. A composite wire having a cross-sectional area ratio of 45% is formed, and this composite wire is further combined into a thin copper tube 2 having a thickness of 1.6% for the composite body 5 to stabilize it. A composite structure 5 is obtained by incorporating the Sn diffusion preventing barrier material 3 formed by rolling a pure Ta plate into a roll inside the copper tube 4.
As described above, the Nb3Sn superconducting wire in which the thin copper tube 2 is arranged inside the Sn diffusion preventing barrier material 3 and the stabilized copper tube material 4 is arranged outside is configured, so that the clearance of the entire composite structure 5 is as much as possible. Can be small.

そして、この複合構成体5を冷間引き抜き加工で密着させ、Nb3Sn超電導線を得る。この場合、Sn拡散防止用バリア材3が、複合構成体5としたのちの引き抜き加工での挙動として、成形ロールで丸めた状態のSn拡散防止用バリア材3の縁端部が内側に絞られながら螺旋状に動いていくが、内側縁端部は薄肉銅管2が存在するため複合モジュール線材1との接触は無く薄肉銅管2の外径側を滑りながら加工されるので、複合モジュール線1の整列溝に引っかかる原因による複合線材崩れ、座屈断線の防止ができる。   And this composite structure 5 is closely_contact | adhered by cold drawing, and a Nb3Sn superconducting wire is obtained. In this case, the edge portion of the Sn diffusion prevention barrier material 3 in a state of being rounded by a forming roll is squeezed inward as a behavior in a drawing process after the Sn diffusion prevention barrier material 3 is made into the composite structure 5. However, since the inner edge of the thin copper tube 2 is present, there is no contact with the composite module wire 1 and it is processed while sliding on the outer diameter side of the thin copper tube 2. It is possible to prevent the composite wire from collapsing and the buckling breakage due to the cause of being caught in one alignment groove.

なお、上記薄肉銅管2は、純銅棒に穴をあけた材料を製作しドローベンチを用いた引き抜き方法で得られる。例えば外径50mm,内径30mm,長さ1mの純銅材料を製作し引き抜き用ダイスとプラグにより複数回繰り返し引き伸ばすが、工業的に引き抜きで製造できる銅管の厚さ限界以下を達成するために銅材料の引き抜き速度の微調整とダイスおよびプラグによる多段引き抜きにより厚さ0.3mm以下の薄肉銅管2を得た。   In addition, the said thin-walled copper tube 2 is obtained by the drawing method which manufactured the material which pierced the pure copper rod, and used the draw bench. For example, a pure copper material having an outer diameter of 50 mm, an inner diameter of 30 mm, and a length of 1 m is manufactured and repeatedly stretched a plurality of times by a drawing die and a plug, but the copper material is used to achieve a thickness below the copper tube thickness limit that can be produced by industrial drawing. A thin copper tube 2 having a thickness of 0.3 mm or less was obtained by fine adjustment of the drawing speed of the steel sheet and multistage drawing with a die and a plug.

図3は、この発明の方法と従来の方法とで得られたNb3Sn超電導線の加工履歴を示す図である。この発明によりSn拡散バリア材3の内側に配置した薄肉銅管2の厚さを複合構成体5に対する断面積比が1.6%以下とした複合構成体5を目的線径である最終線径のφ0.8mmまで引抜き、伸線加工により得たNb3Sn超電導線Aとした。またTa板の上下に銅板を挟み製作した従来の銅クラッドTa拡散バリアを筒状に成形ロールで丸めた管内に前記と同等の複合モジュール線材1を詰めた複合構成体を前記の目的線径と同等まで加工しNb3Sn超電導線Bとした。
図4は、上記のNb3Sn超電導線A,Bを不活性ガス雰囲気中で温度650℃,240時間でNb3Sn生成熱処理を施したのち臨界電流密度およびヒステリシス損失の測定を実施した結果を示すものである。
図3,図4の結果から分かるように、この発明の製造方法によるNb3Sn超電導線は、引抜加工における断線や拡散バリア材Taの破損がない優れた加工性を示し、また優れた臨界電流密度およびヒステリシス損失を示すことが明らかである。
従って、このような超電導特性の優れたNb3Sn超電導線を得るためには薄肉銅管2の厚さを複合構成体5の断面積比に対し1.6%以下に抑えることが好ましい。
FIG. 3 is a diagram showing the processing history of the Nb3Sn superconducting wire obtained by the method of the present invention and the conventional method. According to the present invention, the final wire diameter, which is the target wire diameter, is the composite structure 5 in which the thickness of the thin copper tube 2 disposed inside the Sn diffusion barrier material 3 is 1.6% or less in cross-sectional area ratio with respect to the composite structure Nb3Sn superconducting wire A obtained by drawing to a diameter of 0.8 mm and drawing. A composite structure in which a conventional copper clad Ta diffusion barrier produced by sandwiching a copper plate above and below a Ta plate and rolled into a tubular shape with a forming roll is packed with a composite module wire 1 equivalent to the above is used as the target wire diameter. The Nb3Sn superconducting wire B was processed to the same level.
FIG. 4 shows the results of measurement of critical current density and hysteresis loss after the Nb3Sn superconducting wires A and B were subjected to Nb3Sn heat treatment in an inert gas atmosphere at a temperature of 650 ° C. for 240 hours. .
As can be seen from the results of FIGS. 3 and 4, the Nb3Sn superconducting wire according to the manufacturing method of the present invention exhibits excellent workability without disconnection or damage to the diffusion barrier material Ta in the drawing process, and has an excellent critical current density and It is clear that hysteresis loss is exhibited.
Therefore, in order to obtain such a superconducting Nb3Sn superconducting wire, it is preferable to suppress the thickness of the thin copper tube 2 to 1.6% or less with respect to the cross-sectional area ratio of the composite structure 5.

更に、図5は、この発明の製造方法によりSn拡散バリア材3の内側に配置した薄肉銅管2の厚さを複合構成体5に対する断面積比を1.3〜1.6%の範囲に設定した場合と、これと比較するため上記断面積比を2.0〜3.8%の範囲に設定した場合について、Nb3Sn超電導線の界電流密度を測定した結果を示すものである。
この結果からも超電導特性の優れたNb3Sn超電導線を得るためには薄肉銅管2の厚さを複合構成体5の断面積比に対し1.6%以下に抑えることが好ましいことが分かる。
Further, FIG. 5 shows that the thickness of the thin-walled copper tube 2 disposed inside the Sn diffusion barrier material 3 by the manufacturing method of the present invention has a cross-sectional area ratio with respect to the composite structure 5 in the range of 1.3 to 1.6%. The result of having measured the field current density of the Nb3Sn superconducting wire about the case where it sets, and the case where the said cross-sectional area ratio is set to the range of 2.0-3.8% for comparison with this is shown.
This result also shows that it is preferable to suppress the thickness of the thin copper tube 2 to 1.6% or less with respect to the cross-sectional area ratio of the composite structure 5 in order to obtain an Nb3Sn superconducting wire having excellent superconducting characteristics.

この発明の実施の形態1を示す複合構成体の断面図である。It is sectional drawing of the composite structure which shows Embodiment 1 of this invention. この発明の実施の形態1を示す複合構成体の斜視図である。It is a perspective view of the composite structure which shows Embodiment 1 of this invention. この発明方法と従来方法とで得られたNb3Sn超電導線の加工履歴を比較して示す図である。It is a figure which compares and shows the process log | history of the Nb3Sn superconducting wire obtained by this invention method and the conventional method. この発明方法と従来法とで得られたNb3Sn超電導線の強磁界中における臨界電流密度とヒステリシス損失のデータを比較して示す図である。It is a figure which compares and shows the critical current density and the hysteresis loss data in the strong magnetic field of the Nb3Sn superconducting wire obtained by this invention method and the conventional method. この発明方法により複合構成体に対する薄肉銅管の厚さ断面積比を変えた場合の臨界電流密度のデータを比較して示す図である。It is a figure which compares and shows the data of the critical current density at the time of changing the thickness cross-sectional area ratio of the thin copper tube with respect to a composite structure by this invention method.

符号の説明Explanation of symbols

1 複合モジュール線材
2 薄肉銅管
3 Sn拡散防止用バリア材
4 安定化銅管材
5 複合構成体
DESCRIPTION OF SYMBOLS 1 Composite module wire 2 Thin copper tube 3 Barrier material for Sn diffusion prevention 4 Stabilized copper tube material 5 Composite structure

Claims (3)

Nb又はNb基合金、CuまたはCu基合金、およびこれらの内部に複合するSn又はSn基合金の3種類の材料を含む超電導複合材料からなる複合モジュール線材を複数本組み合わせ集束した複合線の周囲をSn拡散防止用バリア材で取り囲み、更にこれらの周囲に安定化材を配置して複合構成体を組立てたのちこれを伸延加工するNb3Sn超電導線の製造方法において、
前記複合線と前記Sn拡散防止用バリア材との間にCu又はCu基合金材からなる薄肉銅管を介在させて前記複合構成体を組立てるようにしたことを特徴とするNb3Sn超電導線の製造方法。
Around a composite wire that is focused by combining a plurality of composite module wires made of a superconducting composite material including three types of materials of Nb or Nb-based alloy, Cu or Cu-based alloy, and Sn or Sn-based alloy composited inside these. In a method for manufacturing a Nb3Sn superconducting wire, which is surrounded by a barrier material for preventing Sn diffusion, and further, a stabilizing member is arranged around these parts, a composite structure is assembled, and then this is stretched.
A method of manufacturing an Nb3Sn superconducting wire, wherein the composite structure is assembled by interposing a thin copper tube made of Cu or a Cu-based alloy material between the composite wire and the Sn diffusion preventing barrier material. .
前記薄肉銅管は、前記複合構成体全体に対する断面積比が1.6%以下に相当する厚さに設定されていることを特徴とするNb3Sn超電導線の製造方法。   The method for producing a Nb3Sn superconducting wire, wherein the thin copper tube is set to a thickness corresponding to a cross-sectional area ratio of 1.6% or less with respect to the entire composite structure. 前記薄肉銅管は、純銅棒に穴をあけた材料を製作しドローベンチを用いた引き抜き方法で製作されたものであることを特徴とするNb3Sn超電導線の製造方法。   The method for producing a Nb3Sn superconducting wire, wherein the thin-walled copper tube is produced by producing a material in which a hole is made in a pure copper rod and drawing it using a draw bench.
JP2005162786A 2005-06-02 2005-06-02 Manufacturing method of nb3sn superconductive wire Pending JP2006339041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005162786A JP2006339041A (en) 2005-06-02 2005-06-02 Manufacturing method of nb3sn superconductive wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005162786A JP2006339041A (en) 2005-06-02 2005-06-02 Manufacturing method of nb3sn superconductive wire

Publications (1)

Publication Number Publication Date
JP2006339041A true JP2006339041A (en) 2006-12-14

Family

ID=37559421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005162786A Pending JP2006339041A (en) 2005-06-02 2005-06-02 Manufacturing method of nb3sn superconductive wire

Country Status (1)

Country Link
JP (1) JP2006339041A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015821A (en) * 2008-07-03 2010-01-21 Kobe Steel Ltd Precursor for manufacturing nb3sn superconductive wire rod and method of manufacturing the same, and nb3sn superconductive wire rod
CN105513712A (en) * 2015-11-25 2016-04-20 西部超导材料科技股份有限公司 Preparation method of high-critical-current-density Nb3Sn superconductive wire rod
CN110474029A (en) * 2019-07-11 2019-11-19 江苏师范大学 A kind of anode composite material of lithium sulfur battery and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607014A (en) * 1983-06-24 1985-01-14 昭和電線電纜株式会社 Method of producing nb3sn superconductive wire
JPH0266814A (en) * 1988-08-31 1990-03-06 Showa Electric Wire & Cable Co Ltd Manufacture of nb3sn superconducting wire
JPH1069827A (en) * 1996-08-28 1998-03-10 Mitsubishi Electric Corp Manufacture of niobium3-tin superconductive wire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607014A (en) * 1983-06-24 1985-01-14 昭和電線電纜株式会社 Method of producing nb3sn superconductive wire
JPH0266814A (en) * 1988-08-31 1990-03-06 Showa Electric Wire & Cable Co Ltd Manufacture of nb3sn superconducting wire
JPH1069827A (en) * 1996-08-28 1998-03-10 Mitsubishi Electric Corp Manufacture of niobium3-tin superconductive wire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010015821A (en) * 2008-07-03 2010-01-21 Kobe Steel Ltd Precursor for manufacturing nb3sn superconductive wire rod and method of manufacturing the same, and nb3sn superconductive wire rod
CN105513712A (en) * 2015-11-25 2016-04-20 西部超导材料科技股份有限公司 Preparation method of high-critical-current-density Nb3Sn superconductive wire rod
CN110474029A (en) * 2019-07-11 2019-11-19 江苏师范大学 A kind of anode composite material of lithium sulfur battery and preparation method thereof
CN110474029B (en) * 2019-07-11 2022-06-10 江苏师范大学 Lithium-sulfur battery positive electrode composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6847914B2 (en) Manufacture of reinforced superconducting wire
KR102205386B1 (en) Diffusion barrier for metallic superconducting wires
US9711262B2 (en) Compound superconducting wire and method for manufacturing the same
US8173901B2 (en) Multifilament superconductor, as well as method for its production
JP5642727B2 (en) Precursor for producing internal Sn method Nb3Sn superconducting wire, Nb3Sn superconducting wire, and production method thereof
JP2006339041A (en) Manufacturing method of nb3sn superconductive wire
JP2006004684A (en) Manufacturing method of superconductive wire rod
JP5258424B2 (en) Precursor for producing Nb3Sn superconducting wire, method for producing the same, and Nb3Sn superconducting wire
CN111819639B (en) Diffusion barrier for metal superconducting wires
US5504984A (en) Methods of manufacturing Nb3 Al superconducting wire and coil
JP2007294375A (en) Nb3Sn SUPERCONDUCTING WIRING MATERIAL FABRICATION PRECURSOR, METHOD FOR FABRICATION THEREOF AND Nb3Sn SUPERCONDUCTING WIRING MATERIAL
US20060289836A1 (en) Precursor wire of Nb-Sn phase superconducting wire
JP2008027706A (en) Die for manufacturing superconducting wire and method of manufacturing superconducting wire using above die for manufacturing superconducting wire
JPS6137764B2 (en)
JP2013062039A (en) PRECURSOR FOR MANUFACTURING Nb3Sn SUPERCONDUCTING WIRE ROD AND Nb3Sn SUPERCONDUCTING WIRE ROD
JP5164815B2 (en) Precursor for producing Nb3Sn superconducting wire and Nb3Sn superconducting wire
JP2013051082A (en) Precursor for manufacturing triniobium-tin superconducting wire rod, and triniobium-tin superconducting wire rod
CN108292532A (en) Fast neutron reactor fuel rod
JP2007042455A (en) MANUFACTURING METHOD FOR Nb3Al SUPERCONDUCTIVE WIRE ROD, PRIMARY COMPOSITE FOR MANUFACTURING Nb3Al SUPERCONDUCTIVE WIRE ROD AND ITS MANUFACTURING METHOD, AND MULTICORE COMPOSITE FOR MANUFACTURING Nb3Al SUPERCONDUCTIVE WIRE ROD
JP4697240B2 (en) Manufacturing method of Nb3Sn superconducting wire
JPH04277416A (en) Manufacture of nb3sn superconducting wire
JPH08138467A (en) Manufacture of a3b type compound superconductive wire
JP5308683B2 (en) Bronze method Nb3Sn superconducting wire production Nb or Nb-based alloy rod, Nb3Sn superconducting wire production precursor and production method thereof, and Nb3Sn superconducting wire
JP2003045247A (en) Superconductive cable
WO2021112211A1 (en) PRECURSOR FOR Nb3Sn SINGLE-CORE SUPERCONDUCTING WIRE RODS AND METHOD FOR PRODUCING SAME, Nb3Sn SINGLE-CORE SUPERCONDUCTING WIRE ROD, PRECURSOR FOR Nb3Sn MULTICORE SUPERCONDUCTING WIRE RODS AND METHOD FOR PRODUCING SAME, AND Nb3Sn MULTICORE SUPERCONDUCTING WIRE ROD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100330