JPH08170139A - Aluminium-magnesium-zinc-copper type aluminum alloy material having high strength and high extrudability - Google Patents

Aluminium-magnesium-zinc-copper type aluminum alloy material having high strength and high extrudability

Info

Publication number
JPH08170139A
JPH08170139A JP31100194A JP31100194A JPH08170139A JP H08170139 A JPH08170139 A JP H08170139A JP 31100194 A JP31100194 A JP 31100194A JP 31100194 A JP31100194 A JP 31100194A JP H08170139 A JPH08170139 A JP H08170139A
Authority
JP
Japan
Prior art keywords
weight
less
extruded material
strength
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31100194A
Other languages
Japanese (ja)
Other versions
JP2908993B2 (en
Inventor
Takashi Oka
貴志 岡
Kazuhiro Kaita
一浩 貝田
Masakazu Hirano
正和 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18011939&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH08170139(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP31100194A priority Critical patent/JP2908993B2/en
Publication of JPH08170139A publication Critical patent/JPH08170139A/en
Application granted granted Critical
Publication of JP2908993B2 publication Critical patent/JP2908993B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To produce an Al-Mg-Zn-Cu type Al alloy material excellent in stress corrosion cracking resistance and having high strength and high extrudability by providing an extruded material of specific composition, consisting of Mg, Zn, Cu, Zr, Ti, and Al, with specific recrystallization layers and fibrous structure. CONSTITUTION: A hollow port hole extruded material 1, consisting of intermediate parts 4 and corner parts 5, is composed of an Al-Mg-Zn-Cu type Al alloy material which has a composition consisting of, by weight, 0.5-0.9% Mg, 6.7-9.0% Zn, 0.1-0.4% Cu, 0.05-0.25% Zr, 0.005-0.2% Ti, and the balance Al with inevitable impurities and further containing, if necessary, 0.1-0.4% Ag. Further, recrystallization layers 8, 9, each having a thickness (t) 10% or less the wall thickness 3 and also having <=150μm average grain size, are formed at the external and the internal surface 6, 7 of the intermediate part 4, and the structure in the inner part is formed into fibrous structure 10. Moreover, it is preferable that the minimum width W of the recrystallized structure 13 in the deposition zones 3a to 3d in respective corner parts 5 is regulated to a value 15% or less than the wall thickness 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車のバンパー又は自
動車の構造材等に使用され、またその他の構造材等にも
使用される高強度及び高押出性Al−Mg−Zn−Cu
系アルミニウム合金材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for automobile bumpers, automobile structural materials and the like, and also for other structural materials and the like. High strength and high extrudability Al-Mg-Zn-Cu.
System aluminum alloy material.

【0002】[0002]

【従来の技術】アルミニウム押出し材は、軽量であると
共に優れたエネルギー吸収性を有するため、軽量化及び
エネルギー吸収性が要求される自動車構造材等におい
て、広く使用されている。特に自動車のバンパー又はフ
レーム材等は、軽量性及びエネルギー吸収性が特に必要
であるため、アルミニウム合金の押出し材が使用されて
いる。
2. Description of the Related Art Aluminum extruded materials are lightweight and have excellent energy absorption properties, and are therefore widely used in automobile structural materials and the like which are required to be lightweight and have energy absorption properties. In particular, for automobile bumpers, frame materials, and the like, extruded materials of aluminum alloy are used because lightness and energy absorption are particularly required.

【0003】中空押出しには、ポートホール押出しとマ
ンドレル押出しとがあるが、マンドレル押出しは完全な
円形である円筒パイプを押し出す場合は有効であるが、
角筒等のように円形でない場合は、マンドレルの挿入が
困難である。このため、マンドレル押出し法は、工業的
にはあまり使用されていない。一方、角筒状の部材の押
出しに工業的に使用されている中空ポートホール押出し
法においては、角筒の4つのコーナー部における溶着部
で再結晶が発生する。
Hollow extrusion includes porthole extrusion and mandrel extrusion. Mandrel extrusion is effective for extruding a cylindrical pipe having a perfect circular shape.
If it is not circular like a square tube, it is difficult to insert the mandrel. For this reason, the mandrel extrusion method is rarely used industrially. On the other hand, in the hollow porthole extrusion method that is industrially used for extruding a rectangular tube-shaped member, recrystallization occurs at the welded portions at the four corners of the rectangular tube.

【0004】バンパー又は自動車構造材のような自動車
部品等の押出し断面は中空部を有する複雑な形状のもの
が多く、押出し性が優れた合金でなければ、精度が高い
押出し材を得ることが極めて困難である。また、このよ
うな押出し材は構造材として使用されるため、より高強
度な合金であることが望まれるが、一般に合金の強度が
向上すると、それに伴い変形抵抗も増大し、押出し性は
低下してしまう。従って、合金の強度を向上させること
ができても、合金の変形抵抗が大きいため、押出し形状
を複雑な形状とすることが困難となる。このように合金
の強度と押出し性とは、一方を向上させると他方が低下
してしまうという相反する関係にある。このため、従
来、両特性をともに向上させた合金、即ち高強度で高押
出し性を有するアルミニウム合金の開発が要望されてい
る。
Extruded sections of automobile parts such as bumpers or automobile structural materials often have a complicated shape having a hollow portion, and unless the alloy has excellent extrudability, it is extremely possible to obtain an extruded material with high accuracy. Have difficulty. Further, since such an extruded material is used as a structural material, it is desired that the alloy has a higher strength, but generally, when the strength of the alloy is improved, the deformation resistance is also increased, and the extrudability is lowered. Will end up. Therefore, even if the strength of the alloy can be improved, it is difficult to make the extruded shape into a complicated shape because the deformation resistance of the alloy is large. As described above, the strength of the alloy and the extrudability have a contradictory relationship in that when one is improved, the other is decreased. Therefore, conventionally, there has been a demand for the development of an alloy having both properties improved, that is, an aluminum alloy having high strength and high extrudability.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
この種の用途に使用される合金として、JIS7003
合金があるが、この合金は7000系合金において比較
的押出し性が優れているものの、自動車の構造材として
使用する場合には強度が不十分である。一方、7000
系合金においてJIS7075合金は高強度を有する
が、押出し性が劣るため、複雑形状の自動車構造材等を
製造することは困難である。
However, as an alloy used for this kind of conventional application, JIS7003 is used.
Although there is an alloy, this alloy is relatively excellent in extrudability in the 7000 series alloy, but its strength is insufficient when used as a structural material for automobiles. On the other hand, 7,000
Among the type alloys, JIS7075 alloy has high strength, but it is difficult to manufacture an automobile structural material having a complicated shape because of its poor extrudability.

【0006】なお、このJIS7003合金は、Zn:
5.0〜6.5重量%、Mg:0.5〜1.0重量%、
Cu:0.2重量%、Zr:0.05重量%〜0.25
重量%、Ti:0.2重量%、Mn:0.3重量%及び
Cr:0.2重量%を含むアルミニウム合金である。
This JIS7003 alloy has Zn:
5.0-6.5% by weight, Mg: 0.5-1.0% by weight,
Cu: 0.2 wt%, Zr: 0.05 wt% to 0.25
It is an aluminum alloy containing wt%, Ti: 0.2 wt%, Mn: 0.3 wt% and Cr: 0.2 wt%.

【0007】本発明はかかる問題点に鑑みてなされたも
のであって、JIS7003合金よりも優れた強度を有
し、押出し性及び耐応力腐食割れ性がJIS7003合
金と同等かそれ以上であり、自動車のバンパー又は構造
材等に使用して自動車の軽量化及び安全性の向上を図る
ことができる高強度及び高押出性Al−Mg−Zn−C
u系アルミニウム合金材を提供することを目的とする。
The present invention has been made in view of the above problems, has strength superior to JIS 7003 alloy, extrudability and stress corrosion cracking resistance are equal to or higher than those of JIS 7003 alloy, and High strength and high extrudability Al-Mg-Zn-C that can be used as a bumper or structural material for automobiles to reduce the weight of automobiles and improve safety
It is an object to provide a u-based aluminum alloy material.

【0008】[0008]

【課題を解決するための手段】本発明に係る高強度及び
高押出性Al−Mg−Zn−Cu系アルミニウム合金材
は、Mg:0.5乃至0.9重量%、Zn:6.7乃至
9.0重量%、Cu:0.1乃至0.4重量%、Zr:
0.05乃至0.25重量%及びTi:0.005乃至
0.2重量%を含有し、残部がAl及び不可避的不純物
からなる中空ポートホール押出し材であって、この押出
し材の溶着部以外の部分の外面及び内面に夫々肉厚の1
0%以下の厚さの再結晶層が形成されており、内部が繊
維状組織を有し、前記再結晶の平均粒径が150μm以
下であることを特徴とする。
A high-strength and high-extrudable Al-Mg-Zn-Cu-based aluminum alloy material according to the present invention comprises Mg: 0.5 to 0.9 wt% and Zn: 6.7 to. 9.0% by weight, Cu: 0.1 to 0.4% by weight, Zr:
A hollow porthole extruded material containing 0.05 to 0.25% by weight and Ti: 0.005 to 0.2% by weight, with the balance being Al and inevitable impurities, and other than the welded part of the extruded material. 1 on each of the outer and inner surfaces of the
A recrystallized layer having a thickness of 0% or less is formed, the inside has a fibrous structure, and the average grain size of the recrystallization is 150 μm or less.

【0009】また、このアルミニウム合金押出し材の組
成として、前記成分の他にAgを0.1乃至0.4重量
%含有することもできる。
Further, as the composition of the aluminum alloy extruded material, Ag can be contained in an amount of 0.1 to 0.4% by weight in addition to the above components.

【0010】更に、上述の成分組成を有する中空ポート
ホール押出し材の代わりに、中実又はマンドレル押出し
材を使用し、この押出し材の外面に肉厚の10%以下の
厚さの再結晶層が形成され、内部が繊維状組織を有し、
前記再結晶の平均粒径が150μm以下のものに構成す
ることもできる。
Further, a solid or mandrel extruded material is used in place of the hollow porthole extruded material having the above-described composition, and a recrystallized layer having a thickness of 10% or less of the wall thickness is formed on the outer surface of the extruded material. Is formed and has a fibrous structure inside,
The average particle size of the recrystallization may be 150 μm or less.

【0011】[0011]

【作用】本願発明者等は、高強度及び高押出性の双方の
特性が改善されたアルミニウム合金材を開発すべく種々
の実験研究を行った。その結果、アルミニウム合金中の
Znの含有量を増加させることにより変形抵抗を増大さ
せることなく、押出し材の強度を向上させることができ
ることを見出した。また、一般に、Zn量を増加するこ
とにより耐SCC性は悪化してしまうが、Cuの添加量
を増加させ、表面再結晶層の厚さを所定値以下とするこ
とにより、アルミニウム合金は良好な耐SCC性を確保
できることも見出した。
The present inventors conducted various experimental studies to develop an aluminum alloy material having improved properties of both high strength and high extrudability. As a result, it has been found that the strength of the extruded material can be improved without increasing the deformation resistance by increasing the content of Zn in the aluminum alloy. Further, generally, the SCC resistance is deteriorated by increasing the Zn amount, but by increasing the addition amount of Cu and setting the thickness of the surface recrystallized layer to a predetermined value or less, an aluminum alloy has a good It has also been found that SCC resistance can be secured.

【0012】以下、本発明に係る高強度及び高押出性ア
ルミニウム合金材の成分添加理由及び組成限定理由につ
いて説明する。
The reasons for adding the components and limiting the composition of the high strength and high extrudability aluminum alloy material according to the present invention will be described below.

【0013】Mg(マグネシウム):0.5乃至0.9
重量% MgはZnと結合してMgZn2を形成することによ
り、合金強度を向上させる。この効果を発揮するには、
Mgの添加量は0.5重量%以上必要である。一方、M
gの添加量が0.9重量%を超えると押出し性等を阻害
してしまう。従って、Mgの含有量は0.5乃至0.9
重量%とする。なお、より一層の合金強度の向上を図る
には、Mgの含有量を0.7乃至0.9重量%とするこ
とが好ましい。
Mg (magnesium): 0.5 to 0.9
Weight% Mg improves alloy strength by combining with Zn to form MgZn 2 . To achieve this effect,
The amount of Mg added must be 0.5% by weight or more. On the other hand, M
If the addition amount of g exceeds 0.9% by weight, extrudability and the like will be impaired. Therefore, the content of Mg is 0.5 to 0.9.
Weight% In order to further improve the alloy strength, the Mg content is preferably 0.7 to 0.9% by weight.

【0014】Zn(亜鉛):6.7乃至9.0重量% Znは上述したように、MgZn2を形成して、合金強
度を向上させる。この場合、Znの添加量が6.7重量
%未満では合金強度の向上を図ることができず、一方Z
nの添加量が9.0重量%を超えると耐応力腐食割れ性
が劣化してしまう。従って、Znの含有量は6.7乃至
9.0重量%とする。なお、より一層の合金強度の向上
を図るには、Znの含有量を7.0乃至9.0重量%と
することが好ましい。
Zn (Zinc): 6.7 to 9.0 wt% Zn forms MgZn 2 and improves alloy strength as described above. In this case, if the amount of Zn added is less than 6.7% by weight, alloy strength cannot be improved, while Z
If the added amount of n exceeds 9.0% by weight, the stress corrosion cracking resistance deteriorates. Therefore, the Zn content is 6.7 to 9.0% by weight. In order to further improve the alloy strength, the Zn content is preferably 7.0 to 9.0% by weight.

【0015】Cu(銅):0.1乃至0.4重量% Cuは析出強化により合金強度を向上させると共に、伸
び及び耐応力腐食割れ性を向上させる。しかし、Cuの
添加量が0.1重量%未満では、前記効果を発揮し得え
ない。一方、Cuの添加量が0.4重量%を超えると耐
食性及び焼入れ性を低下させてしまう。従って、Cuの
含有量は、0.1乃至0.4重量%とする。なお、より
一層の合金強度及び耐応力腐食割れ性の向上を図るに
は、Cuの含有量は0.1乃至0.2重量%であること
が好ましい。
Cu (copper): 0.1 to 0.4 wt% Cu improves alloy strength by precipitation strengthening, and improves elongation and stress corrosion cracking resistance. However, if the added amount of Cu is less than 0.1% by weight, the above effect cannot be exhibited. On the other hand, if the addition amount of Cu exceeds 0.4% by weight, the corrosion resistance and hardenability are deteriorated. Therefore, the Cu content is 0.1 to 0.4% by weight. In order to further improve alloy strength and stress corrosion cracking resistance, the content of Cu is preferably 0.1 to 0.2% by weight.

【0016】Zr(ジルコニウム):0.05乃至0.
25重量% Zrはビレットの均質化処理時において微細な金属間化
合物として析出し、結晶粒を微細化させることにより、
強度、伸び及び耐応力腐食割れ性を向上させる。Zrの
添加量が0.05重量%未満では前記効果を発揮し得な
い。一方、Zrの添加量が0.25重量%を超えると、
粗大な金属間化合物が晶出してしまい、所定の合金強度
の向上が図れない。従って、Zrの含有量は0.05乃
至0.25重量%とする。なお、より一層の強度、伸び
及び耐応力腐食性の向上を図るには、Zrの含有量は
0.1乃至0.2重量%であることが好ましい。
Zr (zirconium): 0.05 to 0.
25 wt% Zr is precipitated as a fine intermetallic compound during the homogenization treatment of the billet, and by refining the crystal grains,
Improves strength, elongation and stress corrosion cracking resistance. If the added amount of Zr is less than 0.05% by weight, the above effect cannot be exhibited. On the other hand, if the added amount of Zr exceeds 0.25% by weight,
Coarse intermetallic compounds crystallize out, and the predetermined alloy strength cannot be improved. Therefore, the Zr content is 0.05 to 0.25% by weight. In order to further improve strength, elongation and stress corrosion resistance, the Zr content is preferably 0.1 to 0.2% by weight.

【0017】Ti(チタン):0.005乃至0.2重
量% Tiは鋳造時における結晶粒を微細化することにより合
金強度を向上させる。この効果を発揮させるにはTiの
添加量を0.005重量%以上とすることが必要であ
る。一方、Tiの添加量が0.2重量%を超えると前記
効果が飽和してしまい、また粗大な金属間化合物が晶出
し所定の合金強度が得られない。従って、Tiの含有量
は0.005乃至0.2重量%とする。なお、より一層
の合金強度の向上を図るには、Tiの含有量は0.01
乃至0.04重量%であることが好ましい。
Ti (titanium): 0.005 to 0.2
Amount% Ti improves the alloy strength by refining the crystal grains during casting. In order to exert this effect, it is necessary to add Ti in an amount of 0.005% by weight or more. On the other hand, if the addition amount of Ti exceeds 0.2% by weight, the above effect is saturated, and a coarse intermetallic compound crystallizes, so that a predetermined alloy strength cannot be obtained. Therefore, the content of Ti is set to 0.005 to 0.2% by weight. In order to further improve the alloy strength, the Ti content should be 0.01
It is preferably 0.04 to 0.04% by weight.

【0018】Ag(銀):0.1乃至0.4重量% Agは合金中に析出することにより、耐応力腐食割れ性
を向上させる。合金材が腐食作用が激しい環境において
使用される場合、又は大きな負荷応力が作用する環境に
おいて使用される場合に添加することが好ましい。Ag
の添加量が0.1重量%未満では前記効果を発揮し得
ず、0.4重量%を超えて添加されると、合金中におい
て粗大な晶出物を生成してしまい、所定の合金強度が得
られない。従って、Agの含有量は0.1乃至0.4重
量%とする。なお、より一層の耐腐食性割れ性を向上さ
せるには、Agの含有量は0.1乃至0.3重量%であ
ることが好ましい。
Ag (silver): 0.1 to 0.4 wt% Ag precipitates in the alloy to improve stress corrosion cracking resistance. It is preferable to add the alloy material when it is used in an environment where the corrosive action is severe or when it is used in an environment where a large load stress acts. Ag
If the addition amount of Al is less than 0.1% by weight, the above effect cannot be exhibited, and if it is added in excess of 0.4% by weight, coarse crystallized substances are generated in the alloy, and the predetermined alloy strength is obtained. Can't get Therefore, the content of Ag is set to 0.1 to 0.4% by weight. In order to further improve the corrosion resistance and cracking resistance, the content of Ag is preferably 0.1 to 0.3% by weight.

【0019】次に、表面再結晶層の厚さ及び再結晶の平
均粒径の限定理由について説明する。
Next, the reasons for limiting the thickness of the surface recrystallized layer and the average grain size of recrystallization will be described.

【0020】図1(a)は中空押出し材の一例を示す断
面図であり、図1(b)はその一辺の中間部4の断面組
織を示す拡大図である。また、図1(c)は中空押出し
材のコーナー部である溶着部の断面組織を示す拡大図で
ある。この中空押出し材1のコーナー部には溶着部3
a、3b、3c及び3dが形成されている。図1(b)
に示すように、押出し時において押出し材がダイスベア
リングとの摩擦熱等により、その押出し材の外面6及び
内面7において表面再結晶組織8及び9が形成される。
この表面再結晶組織8及び9間の内部は繊維状組織10
となっている。また、図1(c)に示す溶着部において
は、外面6から内面7まで続く再結晶組織13が形成さ
れている。
FIG. 1 (a) is a sectional view showing an example of the hollow extruded material, and FIG. 1 (b) is an enlarged view showing the sectional structure of the intermediate portion 4 on one side thereof. Further, FIG. 1C is an enlarged view showing a cross-sectional structure of a welded portion which is a corner portion of the hollow extruded material. A welded portion 3 is provided at a corner of the hollow extruded material 1.
a, 3b, 3c and 3d are formed. Figure 1 (b)
As shown in (1), the surface recrystallized structures 8 and 9 are formed on the outer surface 6 and the inner surface 7 of the extruded material due to frictional heat of the extruded material and the like during extrusion.
The inside between the surface recrystallized structures 8 and 9 is a fibrous structure 10.
Has become. Further, in the welded portion shown in FIG. 1C, a recrystallized structure 13 continuing from the outer surface 6 to the inner surface 7 is formed.

【0021】本発明においては、図1(b)に示す表面
再結晶組織8及び9が占める部分の厚さtを肉厚3の1
0%以下にする。また、JISH0501における切断
法により求められたこの再結晶組織8及び9の平均粒径
を150μm以下にする。これは、中空押出し材1の外
面6及び内面7において形成される表面結晶組織8又は
9のうち少なくとも一方の再結晶層の厚さtが肉厚3の
10%を超える場合、または前記再結晶の平均粒径が1
50μmを超えて大きくなる場合には耐応力腐食割れ性
が著しく劣化すると共に、強度も低下してしまうからで
ある。従って、溶着部3a〜3d以外の部分の外面6及
び内面7の各表面再結晶層の厚さtを夫々肉厚3の10
%以下とすると共に、前記再結晶の平均粒径を150μ
m以下とする。
In the present invention, the thickness t of the portion occupied by the surface recrystallization structures 8 and 9 shown in FIG.
Keep it below 0%. Further, the average grain size of the recrystallized structures 8 and 9 determined by the cutting method in JIS H0501 is set to 150 μm or less. This is because when the thickness t of the recrystallized layer of at least one of the surface crystal structures 8 or 9 formed on the outer surface 6 and the inner surface 7 of the hollow extruded material 1 exceeds 10% of the wall thickness 3, or Has an average particle size of 1
If it exceeds 50 μm, the stress corrosion cracking resistance is significantly deteriorated and the strength is also reduced. Therefore, the thickness t of each surface recrystallized layer on the outer surface 6 and the inner surface 7 other than the welded portions 3a to 3d is set to 10 of the thickness 3 respectively.
% And the average grain size of the recrystallization is 150 μm.
m or less.

【0022】また、図1(c)に示すように、溶着部3
a〜3dにおける各再結晶組織13の最小幅wは、肉厚
の15%を超えると中空押出し材の強度が低下すると共
に耐SCCも劣化してしまう。そのため、各再結晶組織
13の最小幅wは肉厚の15%以下にすることが好まし
い。
Further, as shown in FIG. 1 (c), the welded portion 3
If the minimum width w of each recrystallized structure 13 in a to 3d exceeds 15% of the wall thickness, the strength of the hollow extruded material decreases and the SCC resistance also deteriorates. Therefore, the minimum width w of each recrystallized structure 13 is preferably 15% or less of the wall thickness.

【0023】なお、図1(b)及び(c)に示すよう
に、押出しにより表面再結晶8及び9に挟まれた部分は
細長く伸ばされた繊維状組織10となるが、ビレットの
温度が約540℃の高温になると繊維状組織10の内部
においても再結晶組織が析出する。また、従来のように
押出し温度が470〜480℃であると、押出し時の摩
擦熱等により押出し材の温度が500℃を超えてしまう
ことがあり、500℃の温度を超えて再結晶が形成され
る場合はその再結晶は粗大化してしまうことを本願発明
者等は実験により知見した。
As shown in FIGS. 1 (b) and 1 (c), the portion sandwiched between the surface recrystallizations 8 and 9 by extrusion becomes a fibrous structure 10 elongated and elongated, but the temperature of the billet is about 10. At a high temperature of 540 ° C., a recrystallized structure is deposited even inside the fibrous structure 10. Further, if the extrusion temperature is 470 to 480 ° C. as in the conventional case, the temperature of the extruded material may exceed 500 ° C. due to frictional heat during extrusion, etc., and recrystallization is formed above the temperature of 500 ° C. The inventors of the present application have found by experiments that the recrystallization becomes coarser when the above is performed.

【0024】従って、押出し材が500℃の温度を超え
ないように、押出し温度は約450℃であることが好ま
しい。また、再結晶の粗大化の原因として、押出し速
度、押出し比又はビレットの成分等があるが、押出し速
度については10m/分であれば、再結晶が粗大化する
ことはない。
Therefore, the extrusion temperature is preferably about 450 ° C. so that the extruded material does not exceed a temperature of 500 ° C. The cause of coarsening of the recrystallization is the extrusion rate, the extrusion ratio, the component of the billet, and the like. However, if the extrusion rate is 10 m / min, the recrystallization does not coarsen.

【0025】一般に、7000系アルミニウム合金で
は、常に応力腐食割れが問題となるため、上述したよう
に、本発明においてはZr、Cu及びAgをアルミニウ
ム合金に添加することにより耐応力腐食割れ性の向上を
図っている。
In general, stress corrosion cracking is always a problem in 7000 series aluminum alloys. Therefore, as described above, in the present invention, addition of Zr, Cu and Ag to the aluminum alloy improves stress corrosion cracking resistance. I am trying to

【0026】なお、表面再結晶層の厚さは測定位置によ
ってばらつきがあり一定ではないが、合金材の先端部、
中間部及び後端部を観察し、夫々の位置における平均厚
さが肉厚の10%以下であればよい。
The thickness of the surface recrystallized layer is not constant because it varies depending on the measurement position.
The average thickness at each position may be 10% or less of the wall thickness by observing the intermediate portion and the rear end portion.

【0027】また、本発明に係る高強度及び高押出性A
l−Mg−Zn−Cu系アルミニウム合金材は、ビレッ
トを均質化処理した後、押出し成形し、その後、溶体化
処理、焼入れ処理及び時効処理を順次行うことにより、
自動車構造材等に成形することができる。なお、均質化
処理、焼入れ処理及び時効処理の条件は従来の7003
合金の場合と同様の条件により行うことができる。
The high strength and high extrudability A according to the present invention
The 1-Mg-Zn-Cu-based aluminum alloy material is obtained by homogenizing the billet, extruding the billet, and then performing solution treatment, quenching treatment, and aging treatment in this order.
It can be molded into automobile structural materials. The conditions for homogenization, quenching and aging are 7003
It can be performed under the same conditions as in the case of the alloy.

【0028】[0028]

【実施例】以下、本発明の実施例について、本発明の特
許請求の範囲から外れる比較例と比較して説明する。図
1(a)は、中空押出し材1をその長手方向と直角な方
向に切断した場合の断面形状を示す模式図である。ま
た、図1(b)は、中空押出し材1の一辺の中間部4の
断面組織を示す拡大図であり、図1(c)は、中空押出
し材1のコーナー部5の溶着部の断面組織を示す拡大図
である。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples that depart from the claims of the present invention. FIG. 1A is a schematic view showing a cross-sectional shape when the hollow extruded material 1 is cut in a direction perpendicular to its longitudinal direction. 1B is an enlarged view showing the cross-sectional structure of the intermediate portion 4 on one side of the hollow extruded material 1, and FIG. 1C is the cross-sectional structure of the welded portion of the corner portion 5 of the hollow extruded material 1. FIG.

【0029】先ず、下記表1に示す組成のアルミニウム
合金ビレットに対して均質化処理を施した。この場合、
全てのビレットに対して、520℃の温度下で4時間の
均質化処理を行った。
First, an aluminum alloy billet having the composition shown in Table 1 below was homogenized. in this case,
All billets were homogenized at a temperature of 520 ° C. for 4 hours.

【0030】次に外径が150mmである円筒形のアル
ミニウム合金ビレットを5m/分の押出し速度により押
出し、図1に示すような一辺の長さが40.0mm、肉
厚が2.0mmである中空押出し材を製作した。そし
て、500℃の温度により溶体化処理を施した後、強制
ファン空冷により焼入れを行った。その後、70℃の温
度で5時間と130℃の温度で12時間の2段階の時効
処理を行った。なお、押出し時のビレットを480℃の
温度にして押出しを行った。
Next, a cylindrical aluminum alloy billet having an outer diameter of 150 mm was extruded at an extrusion speed of 5 m / min, and the side length was 40.0 mm and the wall thickness was 2.0 mm as shown in FIG. A hollow extruded material was produced. Then, after solution treatment was performed at a temperature of 500 ° C., quenching was performed by forced air cooling with a fan. Then, a two-step aging treatment was performed at a temperature of 70 ° C. for 5 hours and at a temperature of 130 ° C. for 12 hours. In addition, the billet at the time of extrusion was extruded at a temperature of 480 ° C.

【0031】また、以上のようにして製作した供試材
は、中空ポートホール押出しによるものであるが、中実
押出し材においてもその特性は何等異なるものではな
い。
The test material produced as described above was produced by hollow port hole extrusion, but the characteristics of solid extruded materials are not different.

【0032】なお、比較例No11は従来使用されてい
るJIS7003合金より製作した供試材である。
Comparative example No. 11 is a test material manufactured from the conventionally used JIS7003 alloy.

【0033】[0033]

【表1】 [Table 1]

【0034】以下に、上述のように製作した中空押出し
材である供試材の評価方法について説明する。
The method for evaluating the test material, which is a hollow extruded material manufactured as described above, will be described below.

【0035】先ず、表面再結晶層の厚さ及び平均粒径に
ついては、図1(a)に示すように、点線で囲まれた中
空押出し材の一辺の中間部4を押出し方向に所定長さ切
り取り、その断面を鏡面研磨仕上げをして、その後エッ
チングを施した。図1(b)は、このような処理を施し
た供試材の断面組織を示す拡大図である。中空押出し材
の外面6及び内面7において夫々表面再結晶組織8及び
9が形成される。この場合の表面再結晶層の厚さ及び平
均粒径は、表面再結晶組織8又は9のいずれか値の大き
い側の結晶層について測定を行った。なお、表面再結晶
層の厚さは供試材の外面6及び内面7の間の肉厚に対す
る表面再結晶組織8又9の結晶層の厚さの割合により示
す。
First, regarding the thickness and average grain size of the surface recrystallized layer, as shown in FIG. 1A, the intermediate portion 4 on one side of the hollow extruded material surrounded by the dotted line has a predetermined length in the extruding direction. It was cut out, its cross-section was mirror-polished, and then etched. FIG. 1 (b) is an enlarged view showing the cross-sectional structure of the test material subjected to such treatment. Surface recrystallization structures 8 and 9 are formed on the outer surface 6 and the inner surface 7 of the hollow extruded material, respectively. In this case, the thickness and the average grain size of the surface recrystallized layer were measured for the crystal layer having the larger surface recrystallized structure 8 or 9 on either side. The thickness of the surface recrystallized layer is indicated by the ratio of the thickness of the crystal layer of the surface recrystallized structure 8 or 9 to the thickness between the outer surface 6 and the inner surface 7 of the test material.

【0036】次に、中空押出し材の機械的性質を評価す
べく、供試材から引張試験において使用するJIS5号
試験片を製作し、引張強さ、耐力及び伸びについて評価
を行った。
Next, in order to evaluate the mechanical properties of the hollow extruded material, a JIS No. 5 test piece used in a tensile test was produced from the test material and evaluated for tensile strength, proof stress and elongation.

【0037】また、合金の押出し性については、押出し
後の供試材の表面性状を観察すると共に、均質化処理後
のビレットより採取した試験片の高温圧縮試験による変
形抵抗値により評価を行った。なお、前記試験における
試験片の温度は500℃である。
The extrudability of the alloy was evaluated by observing the surface properties of the test material after extrusion and the deformation resistance value of the test piece taken from the billet after the homogenization treatment by the high temperature compression test. . The temperature of the test piece in the above test is 500 ° C.

【0038】更に、耐応力腐食割れ性については、3点
支持法により耐力の80%の応力を負荷した試験片を沸
騰状態のクロム酸溶液に360分浸漬させるSCC試験
を行った。この試験によるSCC発生時間により耐応力
腐食割れ性の評価を行った。
Further, regarding the stress corrosion cracking resistance, an SCC test was carried out by dipping a test piece loaded with a stress of 80% of the proof stress by the three-point supporting method in a boiling chromic acid solution for 360 minutes. The stress corrosion cracking resistance was evaluated by the SCC generation time in this test.

【0039】以上の試験結果は、下記表2に示すとおり
である。
The above test results are shown in Table 2 below.

【0040】[0040]

【表2】 [Table 2]

【0041】上記表2に示すように実施例No1〜No
4はいずれも従来品である比較例No11に比べ、優れ
た強度を有しており、強度が向上しても押出し性及び耐
応力腐食割れ性は同等以上の特性を有している。
As shown in Table 2 above, Examples No. 1 to No.
4 has excellent strength as compared with the conventional product, Comparative Example No. 11, and even if the strength is improved, the extrudability and the stress corrosion cracking resistance are equal or higher.

【0042】一方、比較例No1及びNo2の結果よ
り、Mgの含有量が0.9重量%を超える場合は、押出
し性が低下してしまい、逆にMgの含有量が0.5重量
%未満では合金強度を向上させることができないことが
わかる。
On the other hand, from the results of Comparative Examples No. 1 and No. 2, when the Mg content exceeds 0.9% by weight, the extrudability deteriorates, and conversely, the Mg content is less than 0.5% by weight. Then, it is understood that the alloy strength cannot be improved.

【0043】比較例No3及びNo4の結果より、Zn
の含有量が9.0重量%を超える場合は、耐応力腐食性
が劣化してしまい、一方Znの含有量が6.7重量%未
満では合金強度の向上が十分ではないことがわかる。
From the results of Comparative Examples No. 3 and No. 4, Zn
When the content of Zn exceeds 9.0% by weight, the stress corrosion resistance deteriorates, while when the content of Zn is less than 6.7% by weight, the alloy strength is not sufficiently improved.

【0044】比較例No5及びNo6の結果より、Cu
の含有量が0.4重量%を超える場合は、プレス焼入れ
性が低下してしまうため、合金強度の向上が見られず、
一方Cuの含有量が0.1重量%未満では強度の向上が
十分ではなく、また耐応力腐食割れ性が劣化してしまう
ことがわかる。
From the results of Comparative Examples No. 5 and No. 6, Cu
When the content of Al exceeds 0.4% by weight, press hardenability is deteriorated, so that no improvement in alloy strength is observed,
On the other hand, when the Cu content is less than 0.1% by weight, the strength is not sufficiently improved and the stress corrosion cracking resistance is deteriorated.

【0045】比較例No7及びNo8の結果より、Zr
の含有量が0.25重量%を超える場合は、伸びが低下
してしまい、逆にZrの含有量が0.05重量%未満で
は耐応力腐食割れ性が劣化してしまうことがわかる。
From the results of Comparative Examples No. 7 and No. 8, Zr
It can be seen that when the content of Al exceeds 0.25% by weight, the elongation decreases, and conversely, when the content of Zr is less than 0.05% by weight, the stress corrosion cracking resistance deteriorates.

【0046】比較例No9及びNo10の結果より、T
iの含有量が0.2重量%を超える場合は、合金強度の
向上が十分ではなく、また押出し性が劣化してしまっ
た。一方、Tiの含有量が0.005重量%未満では押
出し性は従来と同等であるが、合金強度の向上が十分で
はないことがわかる。
From the results of Comparative Examples No. 9 and No. 10, T
When the content of i exceeds 0.2% by weight, the alloy strength is not sufficiently improved and the extrudability deteriorates. On the other hand, when the Ti content is less than 0.005% by weight, the extrudability is the same as the conventional one, but it is understood that the alloy strength is not sufficiently improved.

【0047】また、上記表1に示す実施例No4の組成
を有するビレットを種々の押出し温度で押出しすること
により表面再結晶の状態を変えて、耐力及び耐SCC性
について評価を行った。その結果を下記表3に示す。
Further, a billet having the composition of Example No. 4 shown in Table 1 above was extruded at various extrusion temperatures to change the state of surface recrystallization, and the yield strength and SCC resistance were evaluated. The results are shown in Table 3 below.

【0048】[0048]

【表3】 [Table 3]

【0049】上記表3の実施例No5及びNo6に示す
ように、押出し温度が500℃以下であれば、表面再結
晶の粒径及び層厚さについては本発明の範囲内であり、
耐力及び耐SCC性について良好な結果が得られた。
As shown in Examples No. 5 and No. 6 in Table 3, if the extrusion temperature is 500 ° C. or less, the grain size and layer thickness of the surface recrystallization are within the range of the present invention,
Good results were obtained for yield strength and SCC resistance.

【0050】一方、比較例No12乃至No14に示す
ように押出し温度が500℃を超えている場合は、表面
再結晶の粒径は粗大化すると共に肉厚に対する表面再結
晶層の厚さの割合が10%を超えてしまうため、これら
の耐力及び耐SCC性はともに劣化している。
On the other hand, as shown in Comparative Examples No. 12 to No. 14, when the extrusion temperature exceeds 500 ° C., the grain size of the surface recrystallization becomes coarse and the ratio of the thickness of the surface recrystallization layer to the wall thickness becomes large. Since it exceeds 10%, both the proof stress and the SCC resistance are deteriorated.

【0051】[0051]

【発明の効果】以上説明したように、本発明によれば、
所定の組成を有するアルミニウム合金を押出しして所定
の表面再結晶を形成させることにより、自動車のバンパ
ー又は自動車構造材等に従来使用されているJIS70
03のAl合金と同等以上の押出し性及び耐応力腐食割
れ性を有していると共に、前記Al合金よりも極めて優
れた強度を有するアルミニウム合金材を製造することが
できる。また、前記アルミニウム合金材を自動車のバン
パー又は自動車構造材等に使用することにより、自動車
のより一層の軽量化及び安全性の向上を図ることができ
る。
As described above, according to the present invention,
JIS 70 conventionally used for automobile bumpers, automobile structural materials, etc. by extruding an aluminum alloy having a predetermined composition to form a predetermined surface recrystallization.
It is possible to manufacture an aluminum alloy material having extrudability and stress corrosion cracking resistance equal to or higher than those of the Al alloy No. 03, and having extremely superior strength to the Al alloy. Further, by using the aluminum alloy material for a bumper of an automobile, an automobile structural material, or the like, it is possible to further reduce the weight of the automobile and improve the safety.

【図面の簡単な説明】[Brief description of drawings]

【図1】中空押出し材をその長手方向と直角な方向に切
断した場合の断面形状を示す模式図並びにその一辺及び
1コーナー部の結晶組織を示す拡大図である。
FIG. 1 is a schematic view showing a cross-sectional shape when a hollow extruded material is cut in a direction perpendicular to its longitudinal direction, and an enlarged view showing crystal structures of one side and one corner thereof.

【図2】肉厚に対する表面再結晶層の厚さと耐力及びS
CC発生時間との関係を示すグラフ図である。
[Fig. 2] Thickness and yield strength of surface recrystallized layer with respect to wall thickness and S
It is a graph which shows the relationship with CC generation time.

【符号の説明】[Explanation of symbols]

1;中空押出し材 2a,6;中空押出し材の外面 2b,7;同じく内面 3;同じく肉厚 3a〜3d;溶着部 4;中空押出し材の一辺の中間部 5;同じく1コーナー部 8;同じく外面の表面再結晶組織 9;同じく内面の表面再結晶組織 10;同じく肉厚内部の繊維状組織 13;溶着部の再結晶組織 1; Hollow extruded material 2a, 6; Outer surface 2b, 7 of hollow extruded material 2b, 7; Inner surface 3; Similarly wall thickness 3a to 3d; Welded portion 4; Surface recrystallized structure on the outer surface 9; Surface recrystallized structure on the inner surface 10; Fibrous structure inside the wall 13; Recrystallized structure on the welded portion

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Mg:0.5乃至0.9重量%、Zn:
6.7乃至9.0重量%、Cu:0.1乃至0.4重量
%、Zr:0.05乃至0.25重量%及びTi:0.
005乃至0.2重量%を含有し、残部がAl及び不可
避的不純物からなる中空ポートホール押出し材であっ
て、この押出し材の溶着部以外の部分の外面及び内面に
夫々肉厚の10%以下の厚さの再結晶層が形成されてお
り、内部が繊維状組織を有し、前記再結晶の平均粒径が
150μm以下であることを特徴とする高強度及び高押
出性Al−Mg−Zn−Cu系アルミニウム合金材。
1. Mg: 0.5 to 0.9% by weight, Zn:
6.7 to 9.0% by weight, Cu: 0.1 to 0.4% by weight, Zr: 0.05 to 0.25% by weight and Ti: 0.
A hollow porthole extruded material containing 005 to 0.2% by weight and the balance consisting of Al and inevitable impurities, and the outer and inner surfaces of the extruded material other than the welded portion each have a wall thickness of 10% or less. A recrystallized layer having a thickness of 100 μm, a fibrous structure inside, and an average grain size of the recrystallized particles of 150 μm or less. High strength and high extrudability Al—Mg—Zn -Cu-based aluminum alloy material.
【請求項2】 Mg:0.5乃至0.9重量%、Zn:
6.7乃至9.0重量%、Cu:0.1乃至0.4重量
%、Zr:0.05乃至0.25重量%、Ti:0.0
05乃至0.2重量%及びAg:0.1乃至0.4重量
%を含有し、残部がAl及び不可避的不純物からなる中
空ポートホール押出し材であって、この押出し材の溶着
部以外の部分の外面及び内面に夫々肉厚の10%以下の
厚さの再結晶層が形成されており、内部が繊維状組織を
有し、前記再結晶の平均粒径が150μm以下であるこ
とを特徴とする高強度及び高押出性Al−Mg−Zn−
Cu系アルミニウム合金材。
2. Mg: 0.5 to 0.9% by weight, Zn:
6.7 to 9.0% by weight, Cu: 0.1 to 0.4% by weight, Zr: 0.05 to 0.25% by weight, Ti: 0.0
A hollow porthole extruded material containing 0.05 to 0.2% by weight and Ag: 0.1 to 0.4% by weight, the balance being Al and inevitable impurities, and a portion other than the welded portion of the extruded material. Characterized in that a recrystallized layer having a thickness of 10% or less of the wall thickness is formed on each of the outer surface and the inner surface thereof, the inside has a fibrous structure, and the average particle diameter of the recrystallization is 150 μm or less. High strength and high extrudability Al-Mg-Zn-
Cu-based aluminum alloy material.
【請求項3】 Mg:0.5乃至0.9重量%、Zn:
6.7乃至9.0重量%、Cu:0.1乃至0.4重量
%、Zr:0.05乃至0.25重量%及びTi:0.
005乃至0.2重量%を含有し、残部がAl及び不可
避的不純物からなる中実又はマンドレル押出し材であっ
て、この押出材の外面に肉厚の10%以下の厚さの再結
晶層が形成されており、内部が繊維状組織を有し、前記
再結晶の平均粒径が150μm以下であることを特徴と
する高強度及び高押出性Al−Mg−Zn−Cu系アル
ミニウム合金材。
3. Mg: 0.5 to 0.9% by weight, Zn:
6.7 to 9.0% by weight, Cu: 0.1 to 0.4% by weight, Zr: 0.05 to 0.25% by weight and Ti: 0.
A solid or mandrel extruded material containing 005 to 0.2% by weight and the balance Al and unavoidable impurities, and a recrystallized layer having a thickness of 10% or less of the wall thickness is formed on the outer surface of the extruded material. A high-strength and highly extrudable Al-Mg-Zn-Cu-based aluminum alloy material, which is formed, has an internal fibrous structure, and has an average grain size of recrystallization of 150 μm or less.
【請求項4】 Mg:0.5乃至0.9重量%、Zn:
6.7乃至9.0重量%、Cu:0.1乃至0.4重量
%、Zr:0.05乃至0.25重量%、Ti:0.0
05乃至0.2重量%及びAg:0.1乃至0.4重量
%を含有し、残部がAl及び不可避的不純物からなる中
実又はマンドレル押出し材であって、この押出材の外面
に肉厚の10%以下の厚さの再結晶層が形成されてお
り、内部が繊維状組織を有し、前記再結晶の平均粒径が
150μm以下であることを特徴とする高強度及び高押
出性Al−Mg−Zn−Cu系アルミニウム合金材。
4. Mg: 0.5 to 0.9% by weight, Zn:
6.7 to 9.0% by weight, Cu: 0.1 to 0.4% by weight, Zr: 0.05 to 0.25% by weight, Ti: 0.0
A solid or mandrel extruded material containing 0.05 to 0.2% by weight and Ag: 0.1 to 0.4% by weight, the balance consisting of Al and unavoidable impurities, and having a wall thickness on the outer surface of the extruded material. A recrystallization layer having a thickness of 10% or less is formed, the inside has a fibrous structure, and the average grain size of the recrystallization is 150 μm or less. -Mg-Zn-Cu based aluminum alloy material.
JP31100194A 1994-12-14 1994-12-14 High strength and high extrudability Al-Mg-Zn-Cu-based aluminum alloy material Expired - Lifetime JP2908993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31100194A JP2908993B2 (en) 1994-12-14 1994-12-14 High strength and high extrudability Al-Mg-Zn-Cu-based aluminum alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31100194A JP2908993B2 (en) 1994-12-14 1994-12-14 High strength and high extrudability Al-Mg-Zn-Cu-based aluminum alloy material

Publications (2)

Publication Number Publication Date
JPH08170139A true JPH08170139A (en) 1996-07-02
JP2908993B2 JP2908993B2 (en) 1999-06-23

Family

ID=18011939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31100194A Expired - Lifetime JP2908993B2 (en) 1994-12-14 1994-12-14 High strength and high extrudability Al-Mg-Zn-Cu-based aluminum alloy material

Country Status (1)

Country Link
JP (1) JP2908993B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1081242A1 (en) * 1999-09-02 2001-03-07 Kabushiki Kaisha Kobe Seiko Sho Energy-absorbing member
US6231995B1 (en) * 1997-06-07 2001-05-15 Kabushiki Kaisha Kobe Seiko Sho Aluminum extruded door beam material
JP2010077497A (en) * 2008-09-26 2010-04-08 Furukawa-Sky Aluminum Corp Method for producing seamless aluminum alloy tubular material
JP2013189706A (en) * 2012-02-16 2013-09-26 Kobe Steel Ltd Aluminum alloy hollow-extruded material for electromagnetic forming
JP2018090839A (en) * 2016-11-30 2018-06-14 アイシン軽金属株式会社 Extrusion material aluminium alloy, extrusion material using the same and method for manufacturing extrusion material
CN109022857A (en) * 2018-08-16 2018-12-18 西京学院 A method of improving aluminium alloy recrystallization temperature
US10562087B2 (en) 2018-04-24 2020-02-18 Kobe Steel, Ltd. Door beam
EP3702059A1 (en) 2019-03-01 2020-09-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy component

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231995B1 (en) * 1997-06-07 2001-05-15 Kabushiki Kaisha Kobe Seiko Sho Aluminum extruded door beam material
US6338817B2 (en) 1997-06-07 2002-01-15 Kabushiki Kaisha Kobe Seiko Sho Aluminum extruded door beam material
EP1081242A1 (en) * 1999-09-02 2001-03-07 Kabushiki Kaisha Kobe Seiko Sho Energy-absorbing member
US6342111B1 (en) * 1999-09-02 2002-01-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Energy-absorbing member
JP2010077497A (en) * 2008-09-26 2010-04-08 Furukawa-Sky Aluminum Corp Method for producing seamless aluminum alloy tubular material
JP2013189706A (en) * 2012-02-16 2013-09-26 Kobe Steel Ltd Aluminum alloy hollow-extruded material for electromagnetic forming
JP2018090839A (en) * 2016-11-30 2018-06-14 アイシン軽金属株式会社 Extrusion material aluminium alloy, extrusion material using the same and method for manufacturing extrusion material
US10562087B2 (en) 2018-04-24 2020-02-18 Kobe Steel, Ltd. Door beam
US10814368B2 (en) 2018-04-24 2020-10-27 Kobe Steel, Ltd. Door beam
CN109022857A (en) * 2018-08-16 2018-12-18 西京学院 A method of improving aluminium alloy recrystallization temperature
EP3702059A1 (en) 2019-03-01 2020-09-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Aluminum alloy component
US11491525B2 (en) 2019-03-01 2022-11-08 Kobe Steel, Ltd. Aluminum alloy component

Also Published As

Publication number Publication date
JP2908993B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
US8105449B2 (en) High-strength aluminum alloy extruded product with excellent impact absorption and stress corrosion cracking resistance and method of manufacturing the same
JP4398428B2 (en) High strength aluminum alloy extruded material with excellent corrosion resistance and method for producing the same
JP5204793B2 (en) High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance
WO2019171818A1 (en) Al-Mg-Si-BASED ALUMINUM ALLOY HOLLOW EXTRUDED MATERIAL AND METHOD FOR PRODUCING SAME
JPH08144031A (en) Production of aluminum-zinc-magnesium alloy hollow shape excellent in strength and formability
JP2018090839A (en) Extrusion material aluminium alloy, extrusion material using the same and method for manufacturing extrusion material
JP2003221636A (en) Al-Mg-Si ALUMINUM ALLOY EXTRUSION MOLDED MATERIAL SHOWING EXCELLENT RESISTANCE TO IMPACT FRACTURE
JP2908993B2 (en) High strength and high extrudability Al-Mg-Zn-Cu-based aluminum alloy material
JP2928445B2 (en) High-strength aluminum alloy extruded material and method for producing the same
JPH108172A (en) Production of high strength aluminum-magnesium-silicon base alloy for structural material excellent in extrudability and extruded material
US20150329949A1 (en) High proof stress al-zn aluminum alloy extrusion material superior in bendability
JP5166702B2 (en) 6000 series aluminum extrudate excellent in paint bake hardenability and method for producing the same
JPH08269652A (en) Production of aluminum alloy extruded shape having excellent bendability and high strength
JP2931538B2 (en) High strength aluminum alloy material for bumpers excellent in bending workability and method for producing the same
EP2354263B1 (en) Connector made of an aluminium alloy extrusion, excellent in extrudability and sacrificial anode property.
JPH0625783A (en) Aluminum alloy extruded material excellent in bendability and impact absorption and its manufacture
JP5823010B2 (en) High-strength aluminum alloy extruded material for automotive structural members with excellent stress corrosion cracking resistance
JPH04311545A (en) Al-mg-si alloy having superior strength and ductility
JPH10306338A (en) Hollow extruded material of al-cu-mg-si alloy, excellent in strength and corrosion resistance, and its manufacture
JPH05171328A (en) Thin hollow shape of aluminum alloy excellent in bendability and its production
JP4169941B2 (en) Aluminum alloy extruded shape having excellent bending workability and manufacturing method thereof
JP5631379B2 (en) High strength aluminum alloy extruded material for bumper reinforcement with excellent stress corrosion cracking resistance
JPH09202933A (en) High strength aluminum alloy excellent in hardenability
JP2873165B2 (en) Extruded Al-Mg-Si alloy with excellent bendability
JP2006097104A (en) 6,000-series aluminum extruded material superior in paint-baking hardenability, and manufacturing method therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 15

EXPY Cancellation because of completion of term