JPH08169764A - Production of silicon nitride-based sintered compact - Google Patents

Production of silicon nitride-based sintered compact

Info

Publication number
JPH08169764A
JPH08169764A JP7256267A JP25626795A JPH08169764A JP H08169764 A JPH08169764 A JP H08169764A JP 7256267 A JP7256267 A JP 7256267A JP 25626795 A JP25626795 A JP 25626795A JP H08169764 A JPH08169764 A JP H08169764A
Authority
JP
Japan
Prior art keywords
sintered body
silicon nitride
strength
temperature
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7256267A
Other languages
Japanese (ja)
Inventor
Masashi Yoshimura
雅司 吉村
Takeshi Sato
武 佐藤
Akira Yamaguchi
章 山口
Akira Yamakawa
晃 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP7256267A priority Critical patent/JPH08169764A/en
Publication of JPH08169764A publication Critical patent/JPH08169764A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE: To obtain high strength and high reliability silicon nitride structural parts. CONSTITUTION: When a silicon nitride-based sintered compact is produced, working stock for this sintered compact is heat-treated at a temp. within the range of (a temp. at which the max. value of specific peaks of the internal friction of the stock is shown)±150 deg.C. A typical example of the sintered compact is a sintered compact obtd. by compacting a mixture consisting of 5-15wt.% (expressed in terms of oxides) one or more kinds selected from among rare earth elements and Al, 0.5-5wt.% (expressed in terms of oxides) one or more kinds selected from along Mg, Ti and Ca and the balance Si3 N4 and sintering the resultant compact in an N2 -contg. atmosphere at 1,500-1,700 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は窒化珪素系焼結体の
製造方法に関し、高強度・高信頼性の窒化珪素系構造部
品を提供する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a silicon nitride based sintered body, and provides a silicon nitride based structural component having high strength and high reliability.

【0002】[0002]

【従来の技術】窒化珪素系セラミックスは軽量、耐摩耗
性、高強度及び高温強度に優れるため、極めて過酷な使
用環境下での機械部品として注目されている。しかしな
がらこれらの窒化珪素系セラミックスに対する品質・価
格要求レベルは年々厳しくなりつつあり、そのため、窒
化珪素系材料に関して様々な開発が行われてきた。とこ
ろでこのような機械部品等に使用する製品には寸法及び
表面仕上げ精度が要求されるため、ダイヤモンド砥石等
を用いた研削加工によって目的形状に仕上げる方法が一
般に行われている。
2. Description of the Related Art Since silicon nitride ceramics are excellent in light weight, wear resistance, high strength and high temperature strength, they are attracting attention as mechanical parts under extremely harsh operating environments. However, the quality and price requirements for these silicon nitride ceramics are becoming severer year by year. Therefore, various developments have been made on silicon nitride materials. By the way, since products used for such machine parts and the like are required to have dimensions and surface finishing accuracy, a method of finishing to a target shape by a grinding process using a diamond grindstone or the like is generally performed.

【0003】しかし、セラミックスは一般に脆性材料で
あり、加工によって表面に欠陥が導入されると強度が著
しく低下する。このことはセラミックスを実用化するた
めの最大のネックになってきた。例えば今井氏等(豊田
工機技報,Vol.26,No.3・4,P25,左23
行〜P26,左24行)が示すように研削加工では研削
方向に平行なクラックが極加工表面下に導入され、これ
によって材料本来の強度を著しく低下させることが報告
されている。従ってセラミック部品の研削加工では、材
料表面への損傷をなるべく抑えた粒度の小さいダイヤモ
ンド砥粒を用いて研削加工しなければならず、研削効率
が低下するために生産性、コスト面から考えれば決して
有効な手段とはいえない。そこで、これらの問題点を解
決するために種々の改善方法が提案されている。例えば
種々の温度及び雰囲気下で熱処理を施すことで研削加工
時に導入された加工表面部のクラックを修復させる試み
が各方面で行われている。以下に開示例を示す。
However, ceramics are generally brittle materials, and if defects are introduced into the surface by processing, the strength will be significantly reduced. This has become the biggest bottleneck for practical use of ceramics. For example, Imai et al. (Toyota Machinery Technical Report, Vol.26, No.3.4, P25, left 23
It has been reported that in the grinding process, cracks parallel to the grinding direction are introduced below the surface of the extremely machined work, thereby significantly reducing the original strength of the material. Therefore, when grinding ceramic parts, it is necessary to grind using diamond abrasive grains with a small grain size that suppresses damage to the material surface as much as possible. It is not an effective means. Therefore, various improvement methods have been proposed in order to solve these problems. For example, attempts have been made in various fields to repair cracks in the machined surface portion introduced during grinding by performing heat treatment under various temperatures and atmospheres. An example of disclosure is shown below.

【0004】特開昭60−81076号(2頁、左上3
行〜右上11行)には窒化ケイ素セラミックを大気中で
950〜1400℃で30分以上保持しSi34セラミ
ック中のSiと空気中の酸素(O2)と反応させて、そ
の表面に酸化物を形成させ、この酸化物によって材料表
面のクラック等の欠陥を消失させ、曲げ強度を向上させ
る方法が開示されている。特開昭64−52679号
(2頁、右上9行〜右上14行)にはサイアロンの強度
向上方法として、大気中、900〜950℃での熱処理
が開示されており、この場合の効果として、未熱処理の
無欠陥材以上の強度が得られるとされている。そしてそ
の理由として材料表面の酸化及び粒界相中のAl等の拡
散によって表面が変質相で覆われ、微細な研削傷等の強
度低下につながる欠陥を鈍化させていると述べている。
JP-A-60-81076 (page 2, upper left 3
Rows to upper right row 11) hold silicon nitride ceramics in the air at 950 to 1400 ° C. for 30 minutes or more to react Si in Si 3 N 4 ceramics with oxygen (O 2 ) in the air, A method of forming an oxide, eliminating defects such as cracks on the material surface by the oxide, and improving bending strength is disclosed. Japanese Unexamined Patent Publication No. 64-52679 (page 2, upper right line 9 to upper right line 14) discloses a heat treatment at 900 to 950 ° C. in the atmosphere as a method for improving the strength of sialon. As an effect in this case, It is said that a strength higher than that of a non-heat-treated defect-free material can be obtained. The reason is that the surface of the material is covered with an altered phase due to oxidation of the material surface and diffusion of Al or the like in the grain boundary phase, thereby blunting defects such as fine grinding scratches that reduce the strength.

【0005】特公平3−80755号(1頁、右17行
〜2頁、右22行)には、酸化イットリウム、酸化アル
ミニウム及び窒化アルミニウムを焼結助剤とする窒化ケ
イ素セラミック焼結体を研削加工した後、大気中にて焼
結温度より低い温度、かつガラス相の軟化温度より高い
温度、すなわち800〜1100℃の温度で1〜24時
間加熱処理すると、研削加工時に生じたミクロな鋭角状
の切欠きが鈍化され、また表面には二酸化ケイ素SiO
2からなる酸化膜層が形成され、これらの相互作用によ
り機械的強度が向上することが開示されている。特公平
4−50276号(2頁、左3行〜41行)には、サイ
アロン焼結体を酸素を含む雰囲気中、875〜950℃
の温度範囲で30分以上加熱し、サイアロン焼結体の外
表面にSiO2,Al23,Y23からなるガラス質の
層を形成し、表面欠陥を塞ぎ、耐食性及び強度向上させ
ることが開示されている。
Japanese Patent Publication No. 3-80755 (page 1, right line 17 to page 2, right line 22) grinds a silicon nitride ceramic sintered body using yttrium oxide, aluminum oxide and aluminum nitride as a sintering aid. After processing, when heat-treated at a temperature lower than the sintering temperature and higher than the softening temperature of the glass phase in the air, that is, 800 to 1100 ° C. for 1 to 24 hours in the air, a micro acute angle shape generated during grinding The notches are blunted, and the surface is made of silicon dioxide SiO 2.
It is disclosed that an oxide film layer composed of 2 is formed and the mechanical strength is improved by the interaction thereof. Japanese Examined Patent Publication No. 4-50276 (Page 2, lines 3 to 41 on the left) shows that a sialon sintered body is heated to 875 to 950 ° C. in an atmosphere containing oxygen.
By heating for 30 minutes or more in the temperature range of, the glassy layer made of SiO 2 , Al 2 O 3 , and Y 2 O 3 is formed on the outer surface of the sialon sintered body, the surface defects are closed, and the corrosion resistance and strength are improved. It is disclosed.

【0006】特開平4−367579号(パラグラフ0
008〜0012)には、窒化ケイ素焼結体の表面部に
残存する欠陥を消滅させ耐欠損性及び耐摩耗性を高めた
10000Å以下の酸化膜を形成する方法が記載されて
いる。具体的には焼結体はα−Si34,β−Si
34,α’−サイアロン、β−サイアロンの少なくとも
1種が含まれており、これを酸化性雰囲気で800〜1
100℃に加熱して酸化膜(酸化物、酸窒化物、酸炭化
物、酸窒炭化物)を形成させ、強度を向上させている。
これらの開示例では所定の温度、時間、雰囲気下で加熱
処理し、酸化皮膜によるヒーリング作用だけで強度の信
頼性向上を試みたものであり、強度回復の点で工業的に
十分保証された方法とはいえない。
Japanese Unexamined Patent Publication No. 4-376579 (paragraph 0)
No. 008-0012) describes a method of forming an oxide film of 10,000 Å or less in which defects remaining on the surface of a silicon nitride sintered body are eliminated to improve fracture resistance and wear resistance. Specifically, the sintered body is α-Si 3 N 4 , β-Si.
At least one of 3 N 4 , α'-sialon and β-sialon is contained, and this is contained in an oxidizing atmosphere at 800 to 1
It is heated to 100 ° C. to form an oxide film (oxide, oxynitride, oxycarbide, oxynitride carbide) to improve the strength.
In these disclosed examples, heat treatment is performed under a predetermined temperature, time and atmosphere, and an attempt is made to improve the reliability of the strength only by the healing action of the oxide film. Not really.

【0007】[0007]

【発明が解決しようとする課題】上記した従来の問題点
を解消するため、窒化珪素材料の製造方法を提供し、こ
れによって飛躍的に強度・信頼性・疲労特性を向上させ
る手法を提供するのが本発明の課題である。
In order to solve the above-mentioned conventional problems, a method for manufacturing a silicon nitride material is provided, thereby providing a method for dramatically improving strength, reliability and fatigue characteristics. Is the subject of the present invention.

【0008】[0008]

【課題を解決するための手段】本発明者らは、窒化珪素
系焼結体製造方法について鋭意研究の結果、以下の知見
を得たものである。すなわち、本発明は窒化珪素系焼結
体の製造方法にかかり、該焼結体の加工素材をその内部
摩擦の特異ピークの最大値を示す温度の上下150℃内
の温度で熱処理を行うことを特徴とする方法である。さ
らにその場合、特に熱処理の所定温度保持時間が5〜6
00分とする製造方法であり、さらにその雰囲気が還元
ガス雰囲気以外の雰囲気中で行われる製造方法が挙げら
れる。さらに窒化珪素焼結体からなる熱処理に供する加
工素材の組成物およびその加工方法の代表例としては、
(1)Si34および焼結助剤の粉末を混合し、混合物
とする工程、(2)その混合物を成形し、成形体とする
工程、(3)その成形体をN2含有雰囲気中で焼結し、
焼結体とする工程、(4)その焼結体を所定寸法に加工
して加工素材とする工程、(5)その加工素材をその内
部摩擦の特異ピークの最大値を示す温度の上下150℃
内の温度で熱処理を行う工程を含む窒化珪素系焼結体の
製造方法である。
The present inventors have obtained the following findings as a result of earnest research on a method for producing a silicon nitride-based sintered body. That is, the present invention relates to a method for producing a silicon nitride-based sintered body, in which the material for processing the sintered body is heat-treated at a temperature within 150 ° C. above and below the temperature at which the maximum value of the peculiar peak of internal friction is exhibited. This is a characteristic method. Further, in that case, the predetermined temperature holding time of the heat treatment is 5 to 6
The production method is set to 00 minutes, and a production method in which the atmosphere is performed in an atmosphere other than the reducing gas atmosphere can be mentioned. Further, as a typical example of a composition of a processing material to be subjected to heat treatment composed of a silicon nitride sintered body and a processing method thereof,
(1) A step of mixing powders of Si 3 N 4 and a sintering aid to form a mixture, (2) a step of forming the mixture into a formed body, (3) the formed body in an N 2 -containing atmosphere Sintered with
A step of forming a sintered body, (4) a step of processing the sintered body into a predetermined size to form a processing material, (5) a temperature of 150 ° C. above or below the temperature at which the processing material shows the maximum value of the peculiar peak of internal friction
Is a method for manufacturing a silicon nitride-based sintered body, which includes a step of performing heat treatment at an internal temperature.

【0009】上記第(5)工程の熱処理は、所定温度で
の保持時間が5〜600分、又、還元ガス雰囲気以外の
雰囲気中で行われる。本発明の製造方法は自動車のエン
ジン部品、あるいは中高温(1000℃近辺)で使用さ
れる材料に高強度、高い耐疲労特性、摺動特性の高信頼
性を与えるのに適した製造方法を提供する。
The heat treatment in the step (5) is carried out at a predetermined temperature for 5 to 600 minutes and in an atmosphere other than the reducing gas atmosphere. INDUSTRIAL APPLICABILITY The manufacturing method of the present invention provides a manufacturing method suitable for imparting high strength, high fatigue resistance, and high reliability of sliding characteristics to automobile engine parts or materials used at medium and high temperatures (around 1000 ° C.). To do.

【0010】[0010]

【発明の実施の形態】本発明の窒化珪素系焼結体の製造
方法は、一旦焼結した後に、更に所定形状の加工を行っ
た前記組成の焼結体からなる構造部材において、その強
度特性を向上させるためにその構造部材の内部摩擦が示
した特異的に発現したピークの温度±150℃の温度域
で熱処理を行うことを特徴とする。その熱処理によって
欠陥が修復され、安定した強度を得る焼結体が得られ
る。内部摩擦とは材料に内部から加えられた変形エネル
ギーの一部が熱運動エネルギーに変化して減衰する現象
であり、材料のダンピング特性を表わしている。振動の
ような周期的外力の場合、内部摩擦は1サイクル中に失
われるエネルギーの全弾性エネルギーに対する比として
定義され、材料に振動エネルギーを付与した際のエネル
ギー吸収率を示すものと考えられるので、内部摩擦の値
が大きい材料ほどエネルギー吸収率が高いことになる。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a silicon nitride-based sintered body of the present invention is a method of manufacturing a structural member made of a sintered body having the above-mentioned composition, which has been sintered and then processed into a predetermined shape. In order to improve the temperature, the heat treatment is performed in the temperature range of the peak temperature ± 150 ° C. of the peak that is specifically expressed by the internal friction of the structural member. Defects are repaired by the heat treatment, and a sintered body having stable strength is obtained. Internal friction is a phenomenon in which a part of the deformation energy applied to the material from the inside changes to thermal kinetic energy and is attenuated, and represents the damping characteristic of the material. In the case of a periodic external force such as vibration, internal friction is defined as the ratio of the energy lost in one cycle to the total elastic energy, and is considered to indicate the energy absorption rate when the vibration energy is applied to the material. A material having a larger internal friction value has a higher energy absorption rate.

【0011】この内部摩擦の本発明の測定方法はジャー
ナル オブ マテリアル サイエンス レターズ(Jo
urnal of Material Science
Letters)No.3,349−351,1984
に記載されている共振法である。内部摩擦の温度依存性
を示す図1からわかるように、温度上昇に伴うバルク自
身の変形能の増大に従って増大する。図中の内部摩擦の
ピークが生じるのは特異的に発現する内部摩擦の急増部
分である。一般的にこれらの内部摩擦のピークは温度上
昇に伴い軟化する部分、つまり粒界相によるものである
と考えられる。
This internal friction measuring method of the present invention is described in Journal of Material Science Letters (Jo
urinal of Material Science
Letters) No. 3, 349-351, 1984.
The resonance method described in. As can be seen from FIG. 1, which shows the temperature dependence of internal friction, it increases as the deformability of the bulk itself increases with increasing temperature. The peak of internal friction in the figure occurs in the rapidly increasing portion of internal friction that is specifically expressed. Generally, it is considered that these internal friction peaks are due to the portion softening with increasing temperature, that is, the grain boundary phase.

【0012】ここでこの内部摩擦の特異点の最大ピーク
の150℃を越す温度で熱処理を行った場合、粒界相の
結晶化が進み、材料本体の強度特性が低下するために強
度の向上がはかれない。又、150℃未満の場合でも同
様に強度が向上しない。この原因は明らかではないが材
料の粒界相部が軟化する温度に達していないためである
と考えられる。さらにピーク温度の±100℃の温度域
内で熱処理することが好ましい。この温度域で加熱処理
を行うことによって特に焼結助剤がクラック等の欠陥部
に効率的に拡散したり、または材料の表面相の酸化やヒ
ーリングが効率的に行われる結果、特にクラックの先端
等の修復が行われやすく、強度が向上する。おそらくこ
れは材料内部の粒界相がより変化するためであると考え
られる。又、熱処理の時間は各々の組成(配合量)によ
って適宜決められる。一般には5分〜600分が望まし
い。5分未満では強度向上が十分計られず、600分を
越えると長時間処理になり生産効果が低下、強度低下を
招き好ましくはない。
Here, when the heat treatment is performed at a temperature exceeding 150 ° C., which is the maximum peak of the singular point of the internal friction, crystallization of the grain boundary phase progresses, and the strength characteristics of the material body deteriorate, so that the strength is improved. It cannot be measured. Further, even when the temperature is lower than 150 ° C., the strength is not similarly improved. The reason for this is not clear, but it is considered that it is because the temperature at which the grain boundary phase portion of the material softens has not reached. Further, it is preferable to perform the heat treatment within a temperature range of ± 100 ° C. of the peak temperature. By performing the heat treatment in this temperature range, especially the sintering aid is efficiently diffused to the defective portion such as a crack, or the surface phase of the material is efficiently oxidized or healed, particularly the tip of the crack. Etc. are easily repaired and the strength is improved. Presumably this is because the grain boundary phase inside the material changes more. The heat treatment time is appropriately determined according to each composition (blending amount). Generally, 5 minutes to 600 minutes is desirable. If the time is less than 5 minutes, the strength cannot be sufficiently improved, and if the time exceeds 600 minutes, the treatment is performed for a long time, the production effect is reduced, and the strength is reduced.

【0013】上記製造方法で作製された焼結体において
その強度増加率は高い。特に窒素中においては100k
g/mm2程度あった材料の強度が200kg/mm2
上を示し、約2倍以上の強度回復効果がある。本例のよ
うな高いレベルでの強度回復は未だ例を見ない。本発明
においてはこの熱処理の雰囲気としては水素を含む雰囲
気を除けばいずれの雰囲気としてもよいが、窒素、アル
ゴン等の不活性ガス及びそれらの混合ガス中、及び真空
中が望ましい。その理由としては酸化雰囲気の場合、表
面が酸化し面粗度が変化してしまう。又、水素雰囲気で
は材料の表面層が脆化する。しかし、それ以外では面粗
度及び表面の変質を生じることなく強度を発現でき、精
密な機械材料等で使用する際は有利となる。
The rate of increase in strength is high in the sintered body produced by the above manufacturing method. 100k especially in nitrogen
The strength of the material that was about g / mm 2 is 200 kg / mm 2 or more, and there is a strength recovery effect of about 2 times or more. There is no example of strength recovery at a high level like this example. In the present invention, the atmosphere for this heat treatment may be any atmosphere except an atmosphere containing hydrogen, but is preferably an inert gas such as nitrogen or argon and a mixed gas thereof, and a vacuum. The reason is that in an oxidizing atmosphere, the surface is oxidized and the surface roughness changes. Further, the surface layer of the material becomes brittle in the hydrogen atmosphere. However, other than that, strength can be expressed without causing surface roughness and surface alteration, which is advantageous when used in precision mechanical materials and the like.

【0014】又、窒化珪素系焼結体からなる熱処理に供
する加工素材組成物の代表例としては、希土類元素、A
l元素の少なくとも1種以上を酸化物換算で5〜15重
量、Mg,Ti,Ca元素の少なくとも1種以上を酸化
物換算で0.5〜5重量%、残部Si34よりなるもの
が挙げられる。この場合の製造方法は、まず、上記の粉
末組成物を混合する工程、その混合物を成形し、成形体
とする工程、その成形体を1500〜1700℃のN2
含有雰囲気中で焼結し、相対密度97%以上の焼結体と
する工程、その焼結体を所定寸法に加工して加工素材と
する工程によって加工素材を作り、さらにその加工素材
をその内部摩擦の特異ピークの最大値を示す温度の上下
150℃内の温度で熱処理を行うことが好ましい。
Further, as a typical example of a processing material composition to be subjected to a heat treatment composed of a silicon nitride type sintered body, a rare earth element, A
5 to 15% by weight of at least one element of the 1 element in terms of oxide, 0.5 to 5% by weight of at least one of Mg, Ti and Ca elements in terms of the oxide, and the balance Si 3 N 4. Can be mentioned. The manufacturing method in this case is as follows. First, a step of mixing the above powder composition, a step of molding the mixture to form a molded body, and the molded body of N 2 at 1500 to 1700 ° C.
Processed material is made by the process of sintering in a contained atmosphere to produce a sintered body with a relative density of 97% or more, and the process of processing the sintered body to a predetermined size to make it into a processed material, and further the processed material It is preferable to perform the heat treatment at a temperature within 150 ° C. above and below the temperature at which the maximum value of the unique peak of friction occurs.

【0015】混合する方法としては例えばSi34粉末
にAl23、希土類酸化物の少なくとも1種の粉末とM
gO,TiO2,CaOから選ばれた少なくとも1種の
粉末を所定量の範囲内で混合する。ここで希土類元素と
してはYを選ぶのが望ましい。必要とあればMgAl2
4,MgTiO3等複合酸化物を用いてもよい。成形は
プレス、射出成形、鋳こみ成形等で行い、その方法は特
に問わない。焼結温度については1700℃を越える
と、助剤成分の揮発や、材料の粒径が大きくなり必要な
強度を得られず、かつ強度のばらつきが生じる。又、1
500℃未満であると相対密度が低く所望の強度が得ら
れない。このような製造方法によって得られる焼結体は
任意の2次元断面内の50μm長さあたりの結晶粒子の
線密度が120〜250の範囲にあり、最大面積比率の
最大径が1〜2μm、最大面積比率の最小径が0.1〜
0.5μmの範囲にある。
As a method of mixing, for example, Si 3 N 4 powder, Al 2 O 3 and at least one powder of rare earth oxide and M
At least one powder selected from gO, TiO 2 , and CaO is mixed within a predetermined amount range. Here, it is desirable to select Y as the rare earth element. MgAl 2 if needed
O 4, may be used MgTiO 3 like composite oxide. Molding is performed by pressing, injection molding, casting molding, etc., and the method is not particularly limited. When the sintering temperature exceeds 1700 ° C., the auxiliary component is volatilized and the particle size of the material is increased, so that the required strength cannot be obtained and the strength varies. Also, 1
If it is less than 500 ° C, the relative density is low and desired strength cannot be obtained. The sintered body obtained by such a manufacturing method has a linear density of crystal particles per 50 μm length in an arbitrary two-dimensional cross section in the range of 120 to 250, a maximum area ratio maximum diameter of 1 to 2 μm, and a maximum diameter. The minimum diameter of the area ratio is 0.1
It is in the range of 0.5 μm.

【0016】これによってその焼結体の強度が向上し、
そのばらつきが小さくなると共に熱処理による強度向上
効果が増加する。ここで線密度とは焼結体任意の2次元
断面を観察した際、50μm長の線分で切られる粒子の
個数である。例えば線密度120とは120個の粒子が
50μmの線分内に存在するということである。又、最
大面積比率の最大径及び最大面積比率の最小径は以下の
ように定義される。ここで最大径とは図2に示すような
焼結体2次元断面上で観察される結晶粒子のなかで最も
長い径(図中a1〜5)を示す。また最小径とは最も短
い径(図中b1〜5)のことである。又、各粒子の2次
元断面上での面積を「粒子面積」とし、観察される視野
内の全ての粒子面積の合計を「全粒子面積」とする。
This improves the strength of the sintered body,
The variation becomes smaller and the strength improving effect by the heat treatment increases. Here, the linear density is the number of particles cut by a 50 μm-long line segment when observing an arbitrary two-dimensional cross section of the sintered body. For example, the linear density of 120 means that 120 particles are present within a line segment of 50 μm. The maximum diameter of the maximum area ratio and the minimum diameter of the maximum area ratio are defined as follows. Here, the maximum diameter refers to the longest diameter (a1 to 5 in the figure) among the crystal grains observed on the two-dimensional cross section of the sintered body as shown in FIG. The minimum diameter is the shortest diameter (b1 to 5 in the figure). The area of each particle on the two-dimensional cross section is defined as "particle area", and the total area of all particles in the observed visual field is defined as "total particle area".

【0017】この時観察される各粒子面積Aを最大径
b、最小径aをそれぞれ長軸、短軸とした楕円に近似し
て求め、それらの総和すなわち全粒子面積ΣAとする。
この時最大径同一の粒子群の面積比率(全粒子面積ΣA
に対する最大径同一の粒子群の面積和ΣAbの比率)、
最小径同一の粒子群の面積比率(全粒子面積ΣAに対す
る最小径同一の粒子群の面積和ΣAaの比率)とし、そ
の面積比率ΣAb/ΣA最大となる最大径値を最大面積
比率の最大径とし、同様にその面積比率ΣAa/ΣA最
大となる最小径値を最大面積比率の最小径とする。これ
らの値は各粒子毎に上記b,a,Aを求め、各b,a毎
にΣAb,ΣAaの値を整理して図3のような分布を書
いてそのピーク値を読み取る方法によって得られる。本
発明では所望の微細組織及び機械的特性を満足するもの
であれば、前述した焼結助剤成分以外の助剤成分を選択
してもかまわない。以上に述べたような本発明の製造方
法によれば従来にない高強度かつ信頼性の高い窒化珪素
系焼結体が効率的に得られる。
The particle area A observed at this time is obtained by approximating it to an ellipse having the maximum diameter b and the minimum diameter a as the major axis and the minor axis, respectively, and the sum thereof, that is, the total particle area ΣA.
At this time, the area ratio of the particle groups having the same maximum diameter (total particle area ΣA
The ratio of the area sum ΣAb of particle groups with the same maximum diameter to
The area ratio of the particle groups having the same minimum diameter (the ratio of the area sum ΣAa of the particle groups having the same minimum diameter to the total particle area ΣA) is set, and the maximum diameter value that maximizes the area ratio ΣAb / ΣA is set as the maximum diameter of the maximum area ratio. Similarly, the minimum diameter value that maximizes the area ratio ΣAa / ΣA is set as the minimum diameter of the maximum area ratio. These values can be obtained by obtaining the above b, a, A for each particle, rearranging the values of ΣAb, ΣAa for each b, a, and writing the distribution as shown in FIG. 3 and reading the peak value. . In the present invention, an auxiliary component other than the above-mentioned sintering auxiliary component may be selected as long as it satisfies the desired microstructure and mechanical properties. According to the manufacturing method of the present invention as described above, it is possible to efficiently obtain a high-strength and highly reliable silicon nitride-based sintered body that has never been obtained.

【0018】[0018]

【実施例】以下本発明の実施例について述べる。 実施例1(焼結工程まで) 本窒化珪素系を構成する原料粉末は平均粒径0.5μ
m、α結晶化率96%、酸素量(BET値)1.4重量
%の窒化珪素及び表1からなる助剤を用い、これらの各
粉末を表2に従って秤量を行い、エタノール中、72時
間、ナイロン製ボールミルにて湿式混合し、乾燥させた
後、混合粉末を得た。
Embodiments of the present invention will be described below. Example 1 (up to sintering step) The raw material powder constituting the present silicon nitride system has an average particle size of 0.5 μm.
m, α crystallization rate 96%, oxygen content (BET value) 1.4% by weight of silicon nitride, and an auxiliary agent consisting of Table 1, these powders were weighed according to Table 2, and then in ethanol for 72 hours. After wet-mixing with a nylon ball mill and drying, a mixed powder was obtained.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】(*1 表中の数値はいずれも酸化物換算
の重量%) 次にこれらの粉末をプレスした後、1次焼結を1500
℃、4時間、窒素1気圧中で、2次焼結を1650℃、
1時間、窒素10気圧中で行った。昇温速度は共に40
0℃/hrとした。これらの密度の結果と内部摩擦特異
ピークの発現温度を表3に示す。このピーク温度で各々
120分、大気中で熱処理した後の各焼結体のJIS
R1601準拠の3点曲げ強度を熱処理前と比較して測
定した結果を表3中に示す。
(* 1 All the values in the table are weight% in terms of oxide) Next, after pressing these powders, primary sintering was performed at 1500
℃ 4 hours, nitrogen 1 atmosphere, secondary sintering 1650 ℃,
It was carried out for 1 hour under 10 atm of nitrogen. Both heating rates are 40
It was set to 0 ° C./hr. The results of these densities and the temperature at which the internal friction specific peak appears are shown in Table 3. JIS of each sintered body after heat treatment in the air for 120 minutes at this peak temperature
Table 3 shows the results obtained by measuring the three-point bending strength according to R1601 in comparison with that before heat treatment.

【0022】[0022]

【表3】 [Table 3]

【0023】以上の結果から内部摩擦のピーク温度付近
での熱処理を行うことで150kg/mm2以上の曲げ
強度が容易に得られることが明らかとなった。
From the above results, it has been clarified that a bending strength of 150 kg / mm 2 or more can be easily obtained by performing heat treatment near the peak temperature of internal friction.

【0024】実施例2(加工工程まで) 実施例1の表2のNo.2のサンプルをプレスした後、1
次焼結を1500℃、2次焼結を表4に従って焼結を行
った。いずれも気圧を窒素1000気圧、1時間保持焼
結であり、降温時間は400℃/hrである。更にその
材料をJISR1601に従って加工し、3点曲げの抗
折試験を行った。本結果を表4に示す。次いで各試験片
の一部をRa=0.02μmに仕上げた後、HCl 5
0%+H2225%水溶液で15分間60℃で加熱し
た。よく洗浄した後、ION TECH社製FAB(F
ast−Atom Bombardment)装置を用
いてAr中性粒子を照射し、4〜5KV、2mA(傾斜
角60°)の条件で10分間エッチングを行った。この
ようにして得られた組織を走査型電子顕微鏡を用いて、
10μm×15μmの範囲を倍率15,000倍にて走
査型電子顕微鏡にて観察し、短軸径・長軸径の評価を行
った。また、5000倍で観察し、線密度を測定した。
Example 2 (up to processing step) After pressing No. 2 sample of Table 2 of Example 1, 1
The secondary sintering was performed at 1500 ° C. and the secondary sintering was performed according to Table 4. In all cases, the atmospheric pressure was 1000 atmospheric pressure of nitrogen and the sintering was performed for 1 hour, and the temperature lowering time was 400 ° C./hr. Further, the material was processed in accordance with JISR1601 and subjected to a three-point bending bending test. The results are shown in Table 4. Then, after finishing a part of each test piece to Ra = 0.02 μm, HCl 5
Heat at 0 ° C. + 25% aqueous H 2 O 2 for 15 minutes at 60 ° C. After thoroughly washing, FAB (F
An Ar-neutral particle was irradiated using an ast-Atom Bombardment apparatus, and etching was performed for 10 minutes under the conditions of 4 to 5 KV and 2 mA (inclination angle of 60 °). Using a scanning electron microscope, the tissue thus obtained,
The range of 10 μm × 15 μm was observed with a scanning electron microscope at a magnification of 15,000, and the minor axis diameter and major axis diameter were evaluated. The linear density was measured by observing at 5000 times.

【0025】[0025]

【表4】 [Table 4]

【0026】以上の結果より、1500〜1700℃ま
での焼結体が強度が高く、この範囲であれば線密度が1
50〜250個、粒径においては最大面積比率の最大径
が1〜2μm、最大面積比率の最小径が0.1〜0.5
μmの範囲にあり、曲げ強度150kg/mm2以上の
焼結体が容易に得られることがわかる。
From the above results, the strength of the sintered body up to 1500 to 1700 ° C. is high, and the linear density is 1 within this range.
50 to 250 particles, the maximum diameter of the maximum area ratio is 1 to 2 μm, and the minimum diameter of the maximum area ratio is 0.1 to 0.5.
It can be seen that a sintered body having a bending strength of 150 kg / mm 2 or more is easily obtained in the range of μm.

【0027】実施例3(熱処理工程まで) 実施例1の表2のNo.2の材料を実施例1と同じ方法で
焼結した後、Ra=0.02μm以下(ラップ材)に仕
上げたものと、図4に示す方向での#600砥石で1パ
ス研削を行ったものを作製した(1パス研削材)。これ
らの内部摩擦の特異点のピーク最大値を示す温度は90
0℃であった。これらのサンプルを15本ずつ、表5の
左端に示す各温度で4時間保持し、窒素雰囲気中にて熱
処理を行いその平均強度と同強度のワイプル係数を求め
た。
Example 3 (up to heat treatment step) The material of No. 2 in Table 2 of Example 1 was sintered in the same manner as in Example 1 and then finished to have Ra = 0.02 μm or less (lap material). Then, one-pass grinding was performed with a # 600 grindstone in the direction shown in FIG. 4 (one-pass abrasive). The temperature at which the peak maximum of these singular points of internal friction is 90
It was 0 ° C. Fifteen of these samples were held at each temperature shown in the left end of Table 5 for 4 hours and heat-treated in a nitrogen atmosphere to obtain a wiper coefficient having the same strength as the average strength.

【0028】[0028]

【表5】 [Table 5]

【0029】本結果より内部摩擦のピークをもつ温度1
50℃以内での熱処理によって強度の改善されること、
特に好ましいのは100℃以内での熱処理によって、更
に強度、信頼性の向上することがわかる。
From this result, the temperature 1 having the peak of internal friction was obtained.
Strength is improved by heat treatment within 50 ° C,
It is particularly preferable that the heat treatment within 100 ° C. further improves the strength and reliability.

【0030】実施例4 実施例3で使用した材料の加工条件を変化させ、強度を
測定した。又この表面粗さ計で測定した〔Ra(平均線
粗さ)、Rmax(最大面粗さ)〕。
Example 4 Strength was measured by changing the processing conditions of the material used in Example 3. Moreover, the surface roughness was measured [Ra (average line roughness), R max (maximum surface roughness)].

【0031】[0031]

【表6】 [Table 6]

【0032】本発明ではこのように粗い加工をしても強
度が回復することが理解できる。
In the present invention, it can be understood that the strength recovers even with such rough processing.

【0033】実施例5(熱処理雰囲気) 実施例3の表5の処理なし品の1パス研削品を用いて熱
処理を次の条件に従って行った。又、各々の温度の保持
時間は4時間である。
Example 5 (Heat Treatment Atmosphere) The heat treatment was carried out using the untreated one-pass ground article of Table 5 of Example 3 under the following conditions. The holding time of each temperature is 4 hours.

【0034】[0034]

【表7】 [Table 7]

【0035】本結果から水素以外の雰囲気下で強度特性
の向上していることがわかる。特に酸素を含まない大気
中以外の雰囲気下での熱処理で強度の向上効果の大きい
ことが理解される。
From these results, it can be seen that the strength characteristics are improved under the atmosphere other than hydrogen. In particular, it is understood that the heat treatment in an atmosphere other than the atmosphere containing no oxygen has a great effect of improving the strength.

【0036】実施例6(窒素気流中熱処理) 表5の処理なし品を窒素中熱処理温度と時間を変化させ
て実験を行った。この結果を図5に示す。この結果より
時間としては温度が±150℃の温度域で15〜600
分の熱処理が適当であることが理解される。 実施例7(片振り疲労特性) 実施例3の表5の1パス研削後950℃で熱処理した材
料を用いて室温と800℃中の片振り疲労特性を調べ
た。結果を図6に示す。本焼結体は疲労特性に優れる材
料であることがわかった。
Example 6 (Heat treatment in nitrogen stream) The untreated product of Table 5 was subjected to an experiment by changing the heat treatment temperature and time in nitrogen. The result is shown in FIG. From this result, the time is 15 to 600 in the temperature range of ± 150 ° C.
It is understood that a heat treatment of minutes is suitable. Example 7 (One-sided swing fatigue characteristics) The one-sided swing fatigue characteristics at room temperature and 800 ° C. were examined using a material heat-treated at 950 ° C. after one-pass grinding in Table 5 of Example 3. FIG. 6 shows the results. It was found that this sintered body is a material having excellent fatigue properties.

【0037】[0037]

【発明の効果】本発明によれば静的な強度が優れている
ことはもちろん、特に焼結体を加工した後、本発明に従
った条件で熱処理を行うことにより、極めて優れた特性
の材料を提供できる。この材料によって動弁系部品等の
要求特性の厳しい材料に対して非常に有効である。
According to the present invention, not only is the material excellent in static strength, but especially when a sintered body is processed and then heat-treated under the conditions according to the present invention, a material having extremely excellent characteristics. Can be provided. With this material, it is very effective for materials with severe requirements such as valve train components.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における内部摩擦を説明するグラフであ
る。
FIG. 1 is a graph illustrating internal friction in the present invention.

【図2】本発明の試験結果をみるための粒子の短軸径、
長軸径の説明図である。
FIG. 2 shows the minor axis diameter of particles for examining the test results of the present invention,
It is explanatory drawing of a major axis diameter.

【図3】粒子径の分布を示すグラフである。FIG. 3 is a graph showing a particle size distribution.

【図4】本発明の加工材の説明図である。FIG. 4 is an explanatory diagram of a processed material of the present invention.

【図5】窒素気流中熱処理温度並びに時間と、強度との
関係を示す試験結果のグラフである。
FIG. 5 is a graph of test results showing the relationship between heat treatment temperature and time in a nitrogen stream and strength.

【図6】本発明試験片の片振り疲労特性を示すグラフで
ある。
FIG. 6 is a graph showing the swing fatigue characteristics of the test piece of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山川 晃 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Yamakawa 1-1-1 Kunyokita, Itami City, Hyogo Prefecture Sumitomo Electric Industries, Ltd. Itami Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 窒化珪素系焼結体の製造方法であって、
該焼結体の加工素材をその内部摩擦の特異ピークの最大
値を示す温度の上下150℃内の温度で熱処理を行うこ
とを特徴とする窒化珪素系焼結体の製造方法。
1. A method of manufacturing a silicon nitride-based sintered body, comprising:
A method for producing a silicon nitride-based sintered body, which comprises subjecting the material for processing the sintered body to heat treatment at a temperature within 150 ° C. above and below the temperature at which the maximum value of the peculiar peak of internal friction is exhibited.
【請求項2】 前記熱処理の所定温度保持時間が5〜6
00分である請求項1記載の窒化珪素系焼結体の製造方
法。
2. The predetermined temperature holding time of the heat treatment is 5 to 6
The method for producing a silicon nitride-based sintered body according to claim 1, which is 00 minutes.
【請求項3】 前記熱処理が還元ガス雰囲気以外の雰囲
気中で行われる請求項1記載の窒化珪素系焼結体の製造
方法。
3. The method for producing a silicon nitride-based sintered body according to claim 1, wherein the heat treatment is performed in an atmosphere other than a reducing gas atmosphere.
【請求項4】 前記焼結体の加工素材の製造方法であっ
て、 (1)窒化珪素および焼結助剤の粉末を混合し、混合物
とする工程、 (2)その混合物を成形し、成形体とする工程、 (3)その成形体をN2含有雰囲気中で焼結し、焼結体
とする工程、 (4)その焼結体を所定寸法に加工して加工素材とする
工程、 を含む窒化珪素系焼結体の製造方法。
4. A method of manufacturing a material for processing a sintered body, comprising the steps of (1) mixing powders of silicon nitride and a sintering aid to form a mixture, (2) molding the mixture, and molding. A step of forming a body, (3) a step of sintering the formed body in an N 2 -containing atmosphere to form a sintered body, and (4) a step of processing the sintered body into a predetermined dimension to form a processing material, A method for manufacturing a silicon nitride-based sintered body containing the same.
JP7256267A 1994-10-19 1995-10-03 Production of silicon nitride-based sintered compact Pending JPH08169764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7256267A JPH08169764A (en) 1994-10-19 1995-10-03 Production of silicon nitride-based sintered compact

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25333094 1994-10-19
JP6-253330 1994-10-19
JP7256267A JPH08169764A (en) 1994-10-19 1995-10-03 Production of silicon nitride-based sintered compact

Publications (1)

Publication Number Publication Date
JPH08169764A true JPH08169764A (en) 1996-07-02

Family

ID=26541146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7256267A Pending JPH08169764A (en) 1994-10-19 1995-10-03 Production of silicon nitride-based sintered compact

Country Status (1)

Country Link
JP (1) JPH08169764A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08298996A (en) * 1995-05-09 1996-11-19 Nippon Kayaku Co Ltd Determination of d-sorbitol and kit therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08298996A (en) * 1995-05-09 1996-11-19 Nippon Kayaku Co Ltd Determination of d-sorbitol and kit therefor

Similar Documents

Publication Publication Date Title
JP3624225B2 (en) Silicon nitride or sialon ceramics and molding method thereof
KR0138018B1 (en) Manufacture of silicon nitride system ceramics part
JP3042402B2 (en) Silicon nitride ceramic sliding material and method for producing the same
KR0161596B1 (en) Process for the production of silicon nitride sintered body
US5401450A (en) β-silicon nitride sintered body and method of producing same
JPH08169764A (en) Production of silicon nitride-based sintered compact
US6911162B2 (en) Conductive silicon nitride composite sintered body and a process for the production thereof
JP4820840B2 (en) Method for producing wear-resistant member made of silicon nitride
EP0552635B1 (en) Composite ceramics sintered body and method of manufacturing the same
WO1990008113A1 (en) Super tough monolithic silicon nitride
US7132061B2 (en) Electroconductive silicon nitride based composite sintered body and method for preparation thereof
US5672553A (en) Superplastic silicon nitride sintered body
JPS61155279A (en) Manufacture of ceramics
JP2670222B2 (en) Silicon nitride sintered body and method for producing the same
JPH111370A (en) Heat-treated silicon nitride ceramic and its production
JPH06116072A (en) Heat treatment of silicon nitride-silicon carbide composite sintered compact
JP2600116B2 (en) Superplastic silicon nitride sintered body and its manufacturing method
JP2746911B2 (en) High strength sialon and method for improving strength of sialon
JP2001080963A (en) SiC SINTERED COMPACT
JPH06344203A (en) Cutting tool made of composite ceramic and its manufacture
JPH04114973A (en) Sintered sialon and production thereof
JPH06344204A (en) Cutting tool made of composite ceramics and its manufacture
JPH11139878A (en) Silicon nitride ceramic member and its production
JPH07126075A (en) Ceramic having high toughness and low thermal conductivity and production thereof
JPH11147774A (en) Ceramic material and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061004