JPH06344203A - Cutting tool made of composite ceramic and its manufacture - Google Patents

Cutting tool made of composite ceramic and its manufacture

Info

Publication number
JPH06344203A
JPH06344203A JP5135818A JP13581893A JPH06344203A JP H06344203 A JPH06344203 A JP H06344203A JP 5135818 A JP5135818 A JP 5135818A JP 13581893 A JP13581893 A JP 13581893A JP H06344203 A JPH06344203 A JP H06344203A
Authority
JP
Japan
Prior art keywords
silicon carbide
silicon nitride
cutting tool
sintered body
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5135818A
Other languages
Japanese (ja)
Inventor
Hiromasa Isaki
寛正 伊崎
Emiko Yokose
恵美子 横瀬
Nobuyoshi Yamazaki
修良 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP5135818A priority Critical patent/JPH06344203A/en
Publication of JPH06344203A publication Critical patent/JPH06344203A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To provide a cutting tool made of the composite ceramics of silicon nitride and silicon carbide which can be used as a cutting tool such as a throw away tip for lathing and milling, a drill and an end mill. CONSTITUTION:A cutting tool is provided made of the composite ceramics of silicon nitride and silicon carbide which is the composite sintered compact of silicon nitride and silicon carbide having a fine structure where particles of silicon carbide of <=1mum in the average grain size are dispersed in the grain boundary and silicon carbide of several nm to several hundred nm in size are dispersed in the particle of silicon nitride, and where the oxide layer containing silica on the surface of the sintered compact and/or the layer with different hue from that of the inside part is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、窒化ケイ素−炭化ケイ
素複合切削工具およびその製造法に関し、旋削、フライ
ス用のスローアウェイチップやドリル、エンドミル等の
切削工具として用いることができる窒化ケイ素−炭化ケ
イ素からなる複合セラミックス切削工具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon nitride-silicon carbide composite cutting tool and a method for producing the same, which can be used as a cutting tool such as a throw-away tip for turning and milling, a drill, an end mill and the like. A composite ceramic cutting tool made of silicon.

【0002】[0002]

【従来の技術】窒化ケイ素のセラミックス切削工具はア
ルミナ系の切削工具に比較して、高い強度と破壊靭性あ
るいは耐熱性や耐熱衝撃性を生かし、近年特に鋳鉄の高
速切削用工具として利用され始めてきた。しかしながら
切削速度が大きくなるほど機械的、熱的衝撃が高まり、
従来の窒化ケイ素では摩耗や欠損によって十分な寿命を
得ることができないため、様々な改良が加えられてい
る。
2. Description of the Prior Art Ceramic cutting tools made of silicon nitride, which have higher strength and fracture toughness, or heat resistance and thermal shock resistance as compared with alumina cutting tools, have recently begun to be used especially as high speed cutting tools for cast iron. . However, as the cutting speed increases, the mechanical and thermal shock increases,
Since conventional silicon nitride cannot obtain a sufficient life due to wear or chipping, various improvements have been made.

【0003】その一つの方法として、窒化ケイ素の表面
にアルミナやチタン系の単層または多層のコーティング
層を設け、それによって破壊靭性と耐摩耗性を改善する
ことが知られている。しかしこの方法ではコーティング
層の剥離により十分な耐欠損性や耐摩耗性を示さなかっ
たり、コーティングの工程が切削工具のコスト高を招く
などの欠点がある。
As one of the methods, it is known that a single layer or a multi-layer coating layer of alumina or titanium is provided on the surface of silicon nitride to improve fracture toughness and wear resistance. However, this method has drawbacks in that it does not exhibit sufficient fracture resistance and abrasion resistance due to peeling of the coating layer, and the coating process causes an increase in cost of the cutting tool.

【0004】また別の方法として、従来の窒化ケイ素よ
りも優れた強度や破壊靭性あるいは耐欠損性と耐摩耗性
をもつ材料の開発が行われている。
As another method, a material having strength, fracture toughness, fracture resistance and wear resistance superior to those of conventional silicon nitride has been developed.

【0005】例えば特開昭 63-159256号には、非晶質複
合粉末から得られる窒化ケイ素−炭化ケイ素複合焼結体
が、平均粒径1μm以下の炭化ケイ素粒子が粒界に分散
し、かつ数nmから数百nmの炭化ケイ素粒子が窒化ケ
イ素粒子内に分散した特異な微構造を持ち、室温強度お
よび破壊靭性値ともに窒化ケイ素より優ることが示され
ている。
For example, Japanese Patent Laid-Open No. 63-159256 discloses a silicon nitride-silicon carbide composite sintered body obtained from an amorphous composite powder in which silicon carbide particles having an average particle size of 1 μm or less are dispersed at grain boundaries. It has been shown that silicon carbide particles of several nm to several hundred nm have a unique microstructure in which they are dispersed in silicon nitride particles, and both room temperature strength and fracture toughness values are superior to those of silicon nitride.

【0006】さらに上記焼結体を製造する方法におい
て、成形・焼結後、酸化雰囲気中、常圧あるいは加圧
下、800 〜1600℃で熱処理を行うことにより、さらに優
れた強度特性を有し、これがガスタービンやエンジンな
どの高温部材、あるいは耐摩耗材料や切削工具として利
用できることが特開平 2-218183 に開示されている。
Further, in the method for producing the above-mentioned sintered body, after the molding and sintering, by heat treatment at 800 to 1600 ° C. in an oxidizing atmosphere at atmospheric pressure or under pressure, it has more excellent strength characteristics, It is disclosed in JP-A-2-218183 that this can be used as a high temperature member such as a gas turbine or an engine, or as a wear resistant material or a cutting tool.

【0007】[0007]

【発明が解決しようとする問題点】しかしながら上記発
明による窒化ケイ素−炭化ケイ素複合焼結体は強度が高
いという特徴をもつものの、熱処理表面の粗れによる強
度のばらつきや、破壊靭性が不十分であるという問題を
抱えていた。このため本材料を切削工具として使用する
場合には、強度のばらつきが小さく、しかも破壊靭性、
耐摩耗性、耐欠損性のさらなる改善が求められていた。
However, although the silicon nitride-silicon carbide composite sintered body according to the above-mentioned invention is characterized by high strength, variations in strength due to roughness of heat-treated surface and fracture toughness are not sufficient. I had a problem. Therefore, when this material is used as a cutting tool, the variation in strength is small and the fracture toughness,
Further improvements in wear resistance and fracture resistance have been demanded.

【0008】[0008]

【課題を解決するための手段】本発明は、窒化ケイ素−
炭化ケイ素複合焼結体に熱処理を施した後表面を研削す
ることにより、強度のばらつきを抑えしかも表面の破壊
靭性を向上させうることを見出した。
SUMMARY OF THE INVENTION The present invention is directed to silicon nitride-
It has been found that, by subjecting the silicon carbide composite sintered body to heat treatment and then grinding the surface, variation in strength can be suppressed and the fracture toughness of the surface can be improved.

【0009】すなわち本発明は、平均粒径1μm以下の
炭化ケイ素粒子が粒界に分散し、かつ数nmから数百n
mの炭化ケイ素粒子が窒化ケイ素粒子内に分散した微構
造を有する窒化ケイ素−炭化ケイ素複合焼結体であっ
て、焼結体表面にシリカを含む酸化層および/または内
部と色相が異なる層を有していることを特徴とする窒化
ケイ素−炭化ケイ素複合セラミックス切削工具に関す
る。
That is, according to the present invention, silicon carbide particles having an average particle size of 1 μm or less are dispersed at the grain boundaries, and a few nm to a few hundreds n.
A silicon nitride-silicon carbide composite sintered body having a fine structure in which silicon carbide particles of m are dispersed in the silicon nitride particles, and an oxide layer containing silica and / or a layer having a different hue from the inside is formed on the surface of the sintered body. The present invention relates to a silicon nitride-silicon carbide composite ceramic cutting tool characterized by having.

【0010】さらに本発明は、平均粒径1μm以下の炭
化ケイ素粒子が粒界に分散し、かつ数nmから数百nm
の炭化ケイ素粒子が窒化ケイ素粒子内に分散した微構造
を有する窒化ケイ素−炭化ケイ素複合焼結体を、酸化雰
囲気中、1300〜1600℃で熱処理し、しかる後表面を 5-2
000 μm除去することを特徴とする窒化ケイ素−炭化ケ
イ素からなる複合セラミックス切削工具の製造法に関す
る。
Further, according to the present invention, silicon carbide particles having an average particle size of 1 μm or less are dispersed in the grain boundaries, and several nm to several hundreds nm.
Of silicon carbide particles having a fine structure in which the silicon carbide particles are dispersed in the silicon nitride particles, heat treatment in an oxidizing atmosphere at 1300 ~ 1600 ℃, the surface after 5-2
The present invention relates to a method for producing a composite ceramic cutting tool made of silicon nitride-silicon carbide, which is characterized by removing 000 μm.

【0011】本発明によれば簡単な表面の熱処理と引き
続く研削によって切削工具の強度のばらつきが抑えら
れ、しかも表面の破壊靭性が向上しコーティングと同様
な効果が得られるため、十分な耐欠損性と耐摩耗性を有
する複合セラミックス切削工具を得ることができる。そ
の結果、本発明による切削工具は鋳鉄などの長寿命の高
速切削用工具のみならず、ドリル、エンドミル等の切削
工具としても利用できる。
According to the present invention, the variation in strength of the cutting tool can be suppressed by the simple heat treatment of the surface and the subsequent grinding, and the fracture toughness of the surface can be improved and the same effect as the coating can be obtained. And a composite ceramic cutting tool having wear resistance can be obtained. As a result, the cutting tool according to the present invention can be used not only as a long-lived high-speed cutting tool such as cast iron, but also as a cutting tool such as a drill and an end mill.

【0012】本発明に用いられる窒化ケイ素−炭化ケイ
素複合焼結体は、平均粒径1μm 以下の炭化ケイ素粒子
が粒界に分散し、かつ数nm から数百nm の炭化ケイ素
粒子が窒化ケイ素粒子内に分散した微構造から成ってい
る。
In the silicon nitride-silicon carbide composite sintered body used in the present invention, silicon carbide particles having an average particle size of 1 μm or less are dispersed at grain boundaries, and silicon carbide particles having a particle size of several nm to several hundred nm are silicon nitride particles. It consists of microstructures dispersed within.

【0013】このような微構造を有する窒化ケイ素−炭
化ケイ素複合焼結体を得るための原料としては、たとへ
ば、焼結時において少なくとも 0.5μm 以下で存在する
炭化ケイ素粉末と窒化ケイ素粉末が用いられる。より好
適な原料としては、特開昭 60-235707号公報等に示され
る方法により得られる非晶質のケイ素、炭素、窒素およ
び酸素からなる粉末、あるいはそれらの一部ないし全部
を結晶化した粉末が用いられる。
As a raw material for obtaining a silicon nitride-silicon carbide composite sintered body having such a microstructure, for example, silicon carbide powder and silicon nitride powder which are present at 0.5 μm or less at the time of sintering are used. . More preferable raw materials include amorphous silicon, carbon, nitrogen and oxygen powders obtained by the method disclosed in JP-A-60-235707, or powders obtained by crystallizing a part or all of them. Is used.

【0014】これらの粉末は焼結中に液相を生成する焼
結助剤および必要に応じて成形バインダーなどとよく混
合される。焼結助剤は、従来から窒化ケイ素、炭化ケイ
素に用いられているいずれのものも使用することがで
き、たとえば、B, C, MgO, Al2O3, Y2O3, AlN, ZrO2, S
iO2,CrO2, Sc2O3, HfO2, その他のランタン系酸化物等
が例示される。これらは単体のみならず炭酸塩、硝酸
塩、あるいはアルコキシドや非晶質の状態でも添加する
ことができる。これら焼結助剤の少なくとも一種を上記
原料粉末と混合するが、その使用量は通常0.1 〜20重量
% の範囲である。
These powders are well mixed with a sintering aid that produces a liquid phase during sintering and, if necessary, a molding binder and the like. As the sintering aid, any of those conventionally used for silicon nitride and silicon carbide can be used.For example, B, C, MgO, Al 2 O 3 , Y 2 O 3 , AlN, ZrO 2 , S
Examples thereof include iO 2 , CrO 2 , Sc 2 O 3 , HfO 2 , and other lanthanum-based oxides. These can be added not only as a simple substance but also as a carbonate, a nitrate, an alkoxide, or an amorphous state. At least one of these sintering aids is mixed with the above-mentioned raw material powder, and the amount used is usually 0.1 to 20 weight.
It is in the range of%.

【0015】この焼結助剤のなかでも Y2O3 は焼結体の
強度特性を高めるのに有効であり、本発明においては
0.5-15 重量%、好ましくは 2-10 重量%を添加するの
が好ましい。この Y2O3 は本発明の熱処理の過程におい
て、拡散により焼結体表面に移動し複合焼結体表面の酸
化生成物と固溶体を形成したり、また焼結体の内部にお
いては粒界に耐熱性の高い結晶相を形成したりする。
Among these sintering aids, Y 2 O 3 is effective in enhancing the strength characteristics of the sintered body, and in the present invention,
It is preferred to add 0.5-15% by weight, preferably 2-10% by weight. During the heat treatment process of the present invention, this Y 2 O 3 moves to the surface of the sintered body by diffusion, forms a solid solution with the oxidation product on the surface of the composite sintered body, and also forms grain boundaries inside the sintered body. It forms a crystal phase with high heat resistance.

【0016】混合の方法は従来から用いられている乾式
あるいは湿式混合法のいずれの方法でも構わない。この
混合粉末は、ホットプレス焼結の場合は直接ダイスに充
填して焼結工程へ、それ以外の場合は金型成形や射出成
形などの方法によって成形され、次の焼結工程へ入る。
この焼結方法は、通常の常圧焼結、ガス圧焼結、あるい
はホットプレスやHIP等の従来から実施されている方
法がそのまま適用できる。
The mixing method may be any conventionally used dry method or wet mixing method. In the case of hot press sintering, this mixed powder is directly filled in a die to be sintered, and in other cases, it is molded by a method such as die molding or injection molding, and the next sintering step is performed.
As the sintering method, a normal atmospheric pressure sintering, a gas pressure sintering, or a conventionally practiced method such as hot pressing or HIP can be applied as it is.

【0017】以上のようにして得られる窒化ケイ素−炭
化ケイ素複合焼結体を本発明の方法に従って熱処理し、
しかるのち研削によって表面の除去を行う。すなわち上
述した窒化ケイ素−炭化ケイ素複合焼結体を、酸化雰囲
気中、1300〜1600℃で熱処理し、しかる後表面を 5-200
0 μm除去する。
The silicon nitride-silicon carbide composite sintered body obtained as described above is heat treated according to the method of the present invention,
After that, the surface is removed by grinding. That is, the above-mentioned silicon nitride-silicon carbide composite sintered body was heat-treated at 1300 to 1600 ° C. in an oxidizing atmosphere, and then the surface was treated with 5-200
Remove 0 μm.

【0018】本発明における熱処理は、たとえば酸素中
や空気中のような酸化性ガス雰囲気下、あるいはガス気
流下で実施される。その熱処理の条件は、処理する焼結
体の大きさや用いた焼結助剤あるいは処理雰囲気により
適宜選択する必要があるが、一般に処理温度は 1300 〜
1600℃、好ましくは 1400 〜1550℃、処理時間は 1〜48
時間が選ばれる。この熱処理は常圧、加圧のいずれで実
施してもよい。
The heat treatment in the present invention is carried out in an oxidizing gas atmosphere such as oxygen or air, or in a gas stream. The heat treatment conditions should be appropriately selected depending on the size of the sintered body to be treated, the sintering aid used, or the treatment atmosphere, but generally the treatment temperature is 1300 to
1600 ° C, preferably 1400 to 1550 ° C, treatment time 1 to 48
Time is chosen. This heat treatment may be carried out either under normal pressure or under pressure.

【0019】本発明に従って熱処理を行うと、焼結体に
は次のような変化が起こる。すなわち、焼結体の内部に
おいては粒界層に存在している焼結助剤成分の一部が耐
熱性の高い結晶相に変化する。また焼結体の表面におい
ては内部と色相の異なる層が生成する。この色相は内部
が緑灰色であるの対して、表面は暗緑灰色ないしは黒色
である。これは酸化によって表面にシリカが生成した
り、あるいは拡散にともなう焼結助剤成分がシリカや窒
化ケイ素成分と反応して、結晶質あるいはガラス質の複
雑な酸化層が生成するためと推察される。
When heat treatment is performed according to the present invention, the following changes occur in the sintered body. That is, inside the sintered body, a part of the sintering aid component existing in the grain boundary layer changes to a crystal phase having high heat resistance. In addition, a layer having a hue different from that of the inside is formed on the surface of the sintered body. This hue is greenish gray inside, whereas the surface is dark greenish gray or black. It is speculated that this is because silica is formed on the surface by oxidation, or the sintering aid component accompanying diffusion reacts with silica and silicon nitride components to form a complex oxide layer of crystalline or vitreous material. .

【0020】たとえば、Y2O3を焼結助剤として得られた
窒化ケイ素−炭化ケイ素複合焼結体を本発明にしたがっ
て熱処理すると、焼結体の表面は黒色を呈し、イットリ
ウムのイオンが拡散した結果として結晶質のイットリウ
ムジシリケート(Y2O3 2SiO2)が生成したり、窒化ケイ素
や炭化ケイ素の酸化による結晶質のクリストバライト(S
iO2)やシリカを含むガラス相が生成する。
For example, when a silicon nitride-silicon carbide composite sintered body obtained by using Y 2 O 3 as a sintering aid is heat-treated in accordance with the present invention, the surface of the sintered body exhibits a black color and yttrium ions diffuse. As a result, crystalline yttrium disilicate (Y 2 O 3 2SiO 2 ) is produced, or crystalline cristobalite (S
A glass phase containing iO 2 ) and silica is formed.

【0021】この酸化層の厚みは熱処理の条件にもよる
が通常 5μm以上となり、たとえば、1500℃で空気中 2
時間の熱処理を行うと酸化層の厚みはおよそ 10 μmに
達する。このとき焼結体表面の一部では、不均一な酸化
により酸化が急速に進行して、表面が粗れて強度のばら
つきを引き起こす。
The thickness of this oxide layer is usually 5 μm or more, though it depends on the heat treatment conditions.
After heat treatment for a long time, the thickness of the oxide layer reaches about 10 μm. At this time, in a part of the surface of the sintered body, the oxidation progresses rapidly due to the non-uniform oxidation, and the surface is roughened to cause variations in strength.

【0022】したがって、本発明においては熱処理した
焼結体の表面を研削除去する。この研削により表面に生
成した酸化生成層が次第に除去されていくが、本発明に
おいては、完全に酸化生成層を除去するのは好ましくな
い。すなわち表面層の除去の程度は要求される表面の粗
らさや切削工具の大きさによって決定されるが、通常5-
2000μmの範囲であり、好ましくは 10-200 μmであ
る。
Therefore, in the present invention, the surface of the heat-treated sintered body is ground and removed. The oxidation product layer formed on the surface by this grinding is gradually removed, but in the present invention, it is not preferable to completely remove the oxidation product layer. That is, the degree of removal of the surface layer is determined by the required surface roughness and the size of the cutting tool.
It is in the range of 2000 μm, preferably 10-200 μm.

【0023】この研削によってまず表面のあれた部分が
除かれ、強度のばらつきを小さくすることができる。一
方、焼結体表面の破壊靭性は研削量が多くなるに従って
低下し、最終的に内部の破壊靭性値となる。またこの変
化に伴い、焼結体表面の色は黒色からしだいに暗い緑灰
色にと変化し、最終的に焼結体内部の色である緑灰色と
なる。
By this grinding, the surface roughened portion is first removed, and the variation in strength can be reduced. On the other hand, the fracture toughness of the surface of the sintered body decreases as the grinding amount increases, and finally reaches the internal fracture toughness value. With this change, the color of the surface of the sintered body gradually changes from black to dark green-grey, and finally becomes green-grey which is the color inside the sintered body.

【0024】以上のような本発明の方法によって得られ
る焼結体の中で、より切削工具に適したものは、焼結体
表面にシリカを含む酸化層および/または内部と色相が
異なる層を有している複合焼結体である。この焼結体は
上述した熱処理条件と研削量を本発明に従って実施する
ことにより得ることができ、こうして得られた焼結体は
強度のばらつきが小さく、しかも内部より表面の破壊靭
性が高いため、切削工具としてはより優れた耐欠損性と
耐摩耗性を示すようになる。
Among the sintered bodies obtained by the method of the present invention as described above, those more suitable for a cutting tool include an oxide layer containing silica on the surface of the sintered body and / or a layer having a hue different from that of the inside. It is a composite sintered body that has. This sintered body can be obtained by carrying out the heat treatment conditions and the grinding amount described above according to the present invention. The thus obtained sintered body has a small variation in strength and a higher fracture toughness than the inside. As a cutting tool, it shows more excellent fracture resistance and wear resistance.

【0025】焼結体の表面を除去する具体的な方法とし
ては、部材が平面である場合には、平面研削盤により、
また複雑な形状の場合にはNC旋盤やバレル研磨などの
方法がとられる。
As a specific method for removing the surface of the sintered body, when the member is a flat surface, a surface grinding machine is used.
When the shape is complicated, NC lathe or barrel polishing is used.

【0026】以下に示す実施例は本発明の一例を示すも
のであって本発明の要旨を超えない限り、これに限定さ
れるものでない。
The following examples show one example of the present invention, and are not limited to these as long as they do not exceed the gist of the present invention.

【0027】尚、本発明において、室温および高温強度
の試験片は3×4×>36mmのサイズで行い、強度試験
は4点曲げ強度で、スパン30mm、クロスヘッドスピー
ド0.5mm/minで行った。また焼結体表面の破壊靭性は、
焼結体の表面を鏡面研磨したのち、圧子圧入法(荷重2
0kg、保持時間20秒)で測定した。
In the present invention, the room temperature and high temperature strength test pieces were tested with a size of 3 × 4 ×> 36 mm, and the strength test was performed with a 4-point bending strength, a span of 30 mm and a crosshead speed of 0.5 mm / min. . The fracture toughness of the surface of the sintered body is
After the surface of the sintered body is mirror-polished, the indenter press-fitting method (load 2
It was measured at 0 kg and a holding time of 20 seconds).

【0028】実施例1、2および比較例1 炭素を8.5 重量%含有するケイ素、炭素、窒素および酸
素からなる平均粒径が1μm 以下の非晶質粉末にY2O3 8
wt% を焼結助剤として加え、エタノール中で湿式混合を
行い乾燥した後、窒素ガス中 350 kg/cm2 の圧力で1750
℃、4hのホットプレス焼結を行った。得られた焼結体を
空気中、1500℃、2 時間で熱処理し、表面を 20 μm な
らびに50μm 研削した2種類の試験片を得た。また同様
のホットプレス焼結を行い、熱処理せずに研削して所定
の試験片を得た。
Examples 1 and 2 and Comparative Example 1 Y 2 O 3 8 was added to an amorphous powder containing 8.5% by weight of carbon and containing silicon, carbon, nitrogen and oxygen and having an average particle size of 1 μm or less.
wt% was added as a sintering aid, wet-mixed in ethanol and dried, then 1750 in nitrogen gas at a pressure of 350 kg / cm 2.
Hot press sintering was performed at 4 ° C. for 4 hours. The obtained sintered body was heat-treated in air at 1500 ° C. for 2 hours to obtain two types of test pieces whose surfaces were ground to 20 μm and 50 μm. Further, similar hot press sintering was performed, and grinding was performed without heat treatment to obtain a predetermined test piece.

【0029】熱処理を行った焼結体の表面は黒っぽい暗
緑灰色をしており、X線回折では窒化ケイ素や炭化ケイ
素のほかにイットリウムジシリケート(Y2O3 2SiO2)とク
リストバライト(SiO2)の結晶相が強く認められた。
The surface of the heat-treated sintered body has a dark dark greenish gray color, and X-ray diffraction shows that in addition to silicon nitride and silicon carbide, yttrium disilicate (Y 2 O 3 2SiO 2 ) and cristobalite (SiO 2 The crystal phase of) was strongly recognized.

【0030】また、この試験片の内部は熱処理しない焼
結体と同様の緑灰色をしており、X線回折では熱処理し
ない焼結体と同様の結晶相が少量認められた。さらに焼
結体内部の微構造を電子顕微鏡により観察した結果、焼
結体は 1μm 以下の等軸状粒子と、5 μm 以下の長さの
窒化ケイ素の柱状粒子から成っていた。また1μm以下
の炭化ケイ素粒子は粒界に分散し、数nmから数百nm
の炭化ケイ素粒子が窒化ケイ素粒子内に分散していた。
The inside of this test piece had the same greenish gray color as that of the non-heat-treated sintered body, and a small amount of crystal phase similar to that of the non-heat-treated sintered body was observed by X-ray diffraction. As a result of observing the microstructure inside the sintered body with an electron microscope, the sintered body was composed of equiaxed particles of 1 μm or less and columnar particles of silicon nitride having a length of 5 μm or less. In addition, silicon carbide particles of 1 μm or less are dispersed in the grain boundary, and are several nm to several hundred nm.
The silicon carbide particles of No. 3 were dispersed in the silicon nitride particles.

【0031】一方、熱処理しない焼結体は表面が緑灰色
であり、X線回折では窒化ケイ素や炭化ケイ素のほか
に、酸化イットリウムとシリカあるいは窒化ケイ素との
反応生成物である Si3Y3O3N4, Si3NY5O12, Y2SiO5, Y2S
i2O7などが少量認められた。
On the other hand, the surface of the non-heat-treated sintered body is greenish gray, and in X-ray diffraction, in addition to silicon nitride and silicon carbide, Si 3 Y 3 O which is a reaction product of yttrium oxide and silica or silicon nitride. 3 N 4 , Si 3 NY 5 O 12 , Y 2 SiO 5 , Y 2 S
A small amount of i 2 O 7 etc. was observed.

【0032】得られた3種類の焼結体について試験片1
5本の測定による室温の平均曲げ強度と、強度のばらつ
きの指標となるワイブル係数(m)、ならびに焼結体表
面の破壊靭性を求めた。結果を表1に示す。
Specimen 1 of the obtained three kinds of sintered bodies
The average bending strength at room temperature by the measurement of 5 pieces, the Weibull coefficient (m) as an index of the variation in strength, and the fracture toughness of the surface of the sintered body were obtained. The results are shown in Table 1.

【0033】[0033]

【表1】 表 1 ─────────────────────────── 実施例1 実施例2 比較例1 ─────────────────────────── 熱処理の有無 有り 有り なし 研削量(μm) 20 50 − 室温平均曲げ強度 (MPa) 1320 1230 1100 ワイフ゛ル 係数 15.4 16.7 9.8 破壊靭性 8.5 7.9 6.3 (MPa・m1/2) ───────────────────────────[Table 1] Table 1 ─────────────────────────── Example 1 Example 2 Comparative Example 1 ───────── ─────────────────── With or without heat treatment Grinding amount (μm) 20 50 − Room temperature average bending strength (MPa) 1320 1230 1100 Weibull coefficient 15.4 16.7 9.8 Fracture toughness 8.5 7.9 6.3 (MPa ・ m 1/2 ) ────────────────────────────

【0034】実施例3、4および比較例2、3 実施例1、2と同様の焼結体を空気中で表2に示す熱処
理を行い、表面およそ50μm を研削したものと研削しな
い2種類の試験片を作製した。それぞれ15本の試験片
について室温曲げ強度と1400℃の強度を測定し、平
均強度とワイブル係数を求めたところ表2に示す結果が
得られた。 (以下余白)
Examples 3 and 4 and Comparative Examples 2 and 3 Sintered bodies similar to those of Examples 1 and 2 were subjected to heat treatment shown in Table 2 in air, and two types, one having a surface of about 50 μm ground and the other not ground. A test piece was prepared. The room temperature bending strength and the strength at 1400 ° C. were measured for each of 15 test pieces, and the average strength and the Weibull coefficient were determined. The results shown in Table 2 were obtained. (The following margin)

【0035】[0035]

【表2】 表 2 ─────────────────────────────── 実施例3 比較例2 実施例4 比較例3 ─────────────────────────────── 熱処理温度 1550 1550 1450 1450 (℃) 時間(h) 1 1 5 5 研削量(μm) 50 0 50 0 平均曲げ強度 (MPa) 室温 1210 950 1300 1040 1400℃ 970 870 1000 900ワイフ゛ル 係数 室温 14.8 8.7 18.9 11.0 1400℃ 16.5 11.2 23.5 14.6 ──────────────────────────────[Table 2] Table 2 ─────────────────────────────── Example 3 Comparative Example 2 Example 4 Comparative Example 3 ────────────────────────────── Heat treatment temperature 1550 1550 1450 1450 (° C) Time (h) 1 1 5 5 Grinding amount ( μm) 50 0 50 0 Average bending strength (MPa) Room temperature 1210 950 1300 1040 1400 ° C 970 870 1000 900 Weibull coefficient Room temperature 14.8 8.7 18.9 11.0 1400 ° C 16.5 11.2 23.5 14.6 ─────────────── ────────────────

【0036】実施例5、6および比較例4、5 実施例1、2で得られた熱処理前の焼結体を用いて次の
2種類の切削チップを作製した。すなわち、焼結体を実
施例1に従って熱処理したのち、研削加工によって〜50
μm表面を除きSNGN 120408 形状のスローアウェイ
チップとした焼結体(実施例5、6)と、あらかじめS
NGN 120408 形状のスローアウェイチップに加工した
後、実施例1と同様の熱処理を行い表面の研削をしない
ものを準備した(比較例4)。また市販の同一形状の窒
化ケイ素切削チップ(比較例5)も含めて以下の条件で
連続旋削試験を行い、逃げ面摩耗幅(VB )と寿命の比
較を行った。結果を表3に示す。
Examples 5 and 6 and Comparative Examples 4 and 5 Using the sintered bodies obtained in Examples 1 and 2 before heat treatment, the following two types of cutting chips were produced. That is, the sintered body was heat treated according to Example 1 and then ground by up to 50%.
A sintered body (Examples 5 and 6) which was a throwaway chip in the shape of SNGN 120408 except for the μm surface, and S
After processing into an NGN 120408 shape throw-away tip, the same heat treatment as in Example 1 was performed to prepare a surface not ground (Comparative Example 4). In addition, a continuous turning test was performed under the following conditions, including a commercially available silicon nitride cutting tip of the same shape (Comparative Example 5), and the flank wear width (VB) and the life were compared. The results are shown in Table 3.

【0037】被削材 : FC30 切削速度: 400 m/min 、180 m/min 切込み : 1.5 mm 送り : 0.3 mm/rev. 切削時間: < 40 minWork Material: FC30 Cutting Speed: 400 m / min, 180 m / min Cutting Depth: 1.5 mm Feed: 0.3 mm / rev. Cutting Time: <40 min

【0038】[0038]

【表3】 表 3 ───────────────────────────── 実施例5 実施例6 比較例4 比較例5 ────────────────────────────── 切削速度 180 400 400 400 (m/min) VB (mm) 0.21 0.52 − − 寿命(min) >40 >40 35 12 備考 欠損せず 欠損せず 欠損 欠損 ──────────────────────────────[Table 3] Table 3 ───────────────────────────── Example 5 Example 6 Comparative Example 4 Comparative Example 5 ─── ─────────────────────────── Cutting speed 180 400 400 400 (m / min) VB (mm) 0.21 0.52 − − Life (min) > 40> 40 35 12 Remark Not missing Not missing Not missing ────────────────────────────────

【0039】[0039]

【発明の効果】本発明によって得られる窒化ケイ素−炭
化ケイ素複合切削工具は、優れた強度を維持しながらば
らつきが小さくしかも破壊靭性に優れる。このため従来
の窒化ケイ素工具に比べて長寿命の切削工具として、鋳
鉄のみならず広範な材料に使用することが可能である。
EFFECTS OF THE INVENTION The silicon nitride-silicon carbide composite cutting tool obtained by the present invention has a small variation while maintaining excellent strength and is excellent in fracture toughness. For this reason, it is possible to use not only cast iron but also a wide range of materials as a cutting tool having a longer life than conventional silicon nitride tools.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平均粒径1μm以下の炭化ケイ素粒子が
粒界に分散し、かつ数nmから数百nmの炭化ケイ素粒
子が窒化ケイ素粒子内に分散した微構造を有する窒化ケ
イ素−炭化ケイ素複合焼結体であって、焼結体表面にシ
リカを含む酸化層および/または内部と色相が異なる層
を有していることを特徴とする窒化ケイ素−炭化ケイ素
複合セラミックス切削工具。
1. A silicon nitride-silicon carbide composite having a microstructure in which silicon carbide particles having an average particle diameter of 1 μm or less are dispersed in a grain boundary, and silicon carbide particles having a diameter of several nm to several hundreds nm are dispersed in the silicon nitride particles. A silicon nitride-silicon carbide composite ceramics cutting tool, which is a sintered body and has an oxide layer containing silica and / or a layer having a hue different from that of the inside of the sintered body.
【請求項2】 焼結助剤として、酸化イットリウムが2
重量%以上添加されていることを特徴とする請求項1に
記載の窒化ケイ素−炭化ケイ素複合セラミックス切削工
具。
2. Yttrium oxide is 2 as a sintering aid.
The silicon nitride-silicon carbide composite ceramic cutting tool according to claim 1, wherein the cutting tool is added in an amount of not less than wt%.
【請求項3】 平均粒径1μm以下の炭化ケイ素粒子が
粒界に分散し、かつ数nmから数百nmの炭化ケイ素粒
子が窒化ケイ素粒子内に分散した微構造を有する窒化ケ
イ素−炭化ケイ素複合焼結体を、酸化雰囲気中、1300〜
1600℃で熱処理し、しかる後表面を 5-2000 μm除去す
ることを特徴とする窒化ケイ素−炭化ケイ素複合セラミ
ックス切削工具の製造法。
3. A silicon nitride-silicon carbide composite having a fine structure in which silicon carbide particles having an average particle diameter of 1 μm or less are dispersed in a grain boundary, and silicon carbide particles having a diameter of several nm to several hundreds nm are dispersed in the silicon nitride particles. Sinter the sintered body in an oxidizing atmosphere at 1300 ~
A method for manufacturing a silicon nitride-silicon carbide composite ceramic cutting tool, which comprises heat-treating at 1600 ° C. and then removing the surface by 5-2000 μm.
JP5135818A 1993-06-07 1993-06-07 Cutting tool made of composite ceramic and its manufacture Pending JPH06344203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5135818A JPH06344203A (en) 1993-06-07 1993-06-07 Cutting tool made of composite ceramic and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5135818A JPH06344203A (en) 1993-06-07 1993-06-07 Cutting tool made of composite ceramic and its manufacture

Publications (1)

Publication Number Publication Date
JPH06344203A true JPH06344203A (en) 1994-12-20

Family

ID=15160528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5135818A Pending JPH06344203A (en) 1993-06-07 1993-06-07 Cutting tool made of composite ceramic and its manufacture

Country Status (1)

Country Link
JP (1) JPH06344203A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1116704A1 (en) * 2000-01-11 2001-07-18 Metalloceramica Vanzetti S.p.A. Nanocomposite dense sintered silicon carbonitride ceramic cutting tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1116704A1 (en) * 2000-01-11 2001-07-18 Metalloceramica Vanzetti S.p.A. Nanocomposite dense sintered silicon carbonitride ceramic cutting tool

Similar Documents

Publication Publication Date Title
KR0138018B1 (en) Manufacture of silicon nitride system ceramics part
US6824727B2 (en) Method for preparing SiAlON ceramic material
US5030597A (en) Process for producing ceramic composites
JP2005154258A (en) Ceramic composite material and method for producing same
US5411923A (en) Silicon nitride base sintered body
KR0177893B1 (en) Sintered silicon nitride-based body and process for producing the same
US4889835A (en) SiC-Al2 O3 composite sintered bodies and method of producing the same
EP0311289B1 (en) Sic-al2o3 composite sintered bodies and method of producing the same
JPH06344203A (en) Cutting tool made of composite ceramic and its manufacture
JPH10259058A (en) Sialon complex and its production
KR20010095175A (en) Silicon nitride member, method for manufacturing the same, and cutting tool
JPH06344204A (en) Cutting tool made of composite ceramics and its manufacture
JP2005298239A (en) Tool made from coated silicon nitride based sintered compact
KR970005888B1 (en) Process for the preparation of sintered body of silicon nitride
JP3890915B2 (en) Free-cutting ceramics and manufacturing method thereof
JPH06116072A (en) Heat treatment of silicon nitride-silicon carbide composite sintered compact
JP2650049B2 (en) Ceramic cutting tool and its manufacturing method
JPS63100055A (en) Alumina base ceramic for cutting tool and manufacture
JPH01153575A (en) Sialon-based sintered ceramic
JPH08112705A (en) Cutting tool made of silicon nitride substance sintered body and its manufacture
JPH06666B2 (en) Ceramic material with excellent precision workability
JPH11240765A (en) Silicon nitride sintered product and its production
JPS62235260A (en) Si3n4 base composite material
JPH01215754A (en) Sintered material based on aluminum oxide and its production
JP4798821B2 (en) Cutting tool and manufacturing method thereof