JPH08164891A - Unmanned automatic water quality measuring device - Google Patents

Unmanned automatic water quality measuring device

Info

Publication number
JPH08164891A
JPH08164891A JP33295294A JP33295294A JPH08164891A JP H08164891 A JPH08164891 A JP H08164891A JP 33295294 A JP33295294 A JP 33295294A JP 33295294 A JP33295294 A JP 33295294A JP H08164891 A JPH08164891 A JP H08164891A
Authority
JP
Japan
Prior art keywords
water quality
floating body
quality measuring
measuring device
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33295294A
Other languages
Japanese (ja)
Other versions
JP3354733B2 (en
Inventor
Hidekazu Kobayashi
英一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP33295294A priority Critical patent/JP3354733B2/en
Publication of JPH08164891A publication Critical patent/JPH08164891A/en
Application granted granted Critical
Publication of JP3354733B2 publication Critical patent/JP3354733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a worker saving, labour saving, structurally simple and economic unmanned automatic water quality measuring device which can be speedily moved to a desired measuring position without requiring a boat and a navigator and without a measuring position limited. CONSTITUTION: This device is furnished with a longitudinal and lateral direction propeller attached on a lower part of an unmanned floating body floating on a water surface, a radio position measuring device 10 to measure a position of the floating body attached on the floating body, a suspension wind-up device 7 to suspend a water quality measuring sonde 2 at target depth free to elevate through a cable attached on the floating body and an arithmetic and control unit 6 to output a command signal to move the floating body to a target position by way of computing a position of the floating body by receiving an electric wave from a ground station and a command signal to elevate the water quality measuring zonde. The propeller 9 and the water quality measuring zonde 2 are controlled by an output signal of the arithmetic and control unit 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、無人自動水質計測装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an unmanned automatic water quality measuring device.

【0002】[0002]

【従来の技術】例えば、内湾,湖沼池などでの水質計測
手段としては、従来、図5正面図及び斜視図に示すよう
な可搬型水質計測器,図6側面図に示すような係留式ブ
イ型水質計測装置などが知られている。
2. Description of the Related Art For example, as a water quality measuring means in an inner bay, lake pond, etc., conventionally, a portable water quality measuring instrument as shown in a front view and a perspective view of FIG. 5 and a mooring type buoy as shown in a side view of FIG. A known water quality measuring device is known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、まず、
可搬型水質計測装置において、内湾や湖沼にて水質計測
を行う場合、岸壁,桟橋等での計測を行うか、ボート等
に乗船し水面を移動しながらの計測となる。前者の場合
は、簡便に計測が行える反面、計測位置が限定されると
いう欠点があり、後者の場合は、計測用のボート及び操
船者が必要となり、少なからざる費用を要し、さらに計
測点の正確な位置の把握のためにさらに人手を要すると
いう問題がある。次に、係留式ブイ型水質計測装置の場
合は任意の場所への移動が不可能である。
However, first of all,
In the portable water quality measuring device, when water quality is measured in an inner bay or lake, it is measured at the quay, pier, etc., or while moving on the water surface by boarding a boat. In the case of the former, there is a drawback that the measurement position is limited while the measurement can be performed easily, and in the case of the latter, a boat for measurement and a ship operator are required, which requires a considerable amount of cost and further the measurement point. There is a problem that more manpower is required to accurately grasp the position. Next, in the case of the mooring type buoy type water quality measuring device, it cannot be moved to any place.

【0004】本発明はこのような事情に鑑みて提案され
たもので、計測位置が限定されることなく、ボート及び
操船者を必要とすることなく、所望の計測位置へ迅速に
移動することができる省人省力的で構造簡単かつ経済的
な無人自動水質計測装置を提供することを目的とする。
The present invention has been proposed in view of such circumstances, and the measurement position is not limited, and it is possible to quickly move to a desired measurement position without requiring a boat and a ship operator. It is an object of the present invention to provide an unmanned automatic water quality measuring device that is labor-saving, labor-saving, simple in structure, and economical.

【0005】[0005]

【課題を解決するための手段】そのために本発明は、水
面に浮上する無人の浮体の下部に付設された前後左右方
向推進機と、同浮体に付設され同浮体の位置を計測する
電波式位置計測装置と、同浮体に付設されケーブルを介
して目標深度に水質計測ゾンデを昇降可能に懸吊する懸
吊巻き取り装置と、地上局からの電波を受信して同浮体
の位置を演算し目標位置へ移動する指令信号及び同水質
計測ゾンデを昇降させる指令信号を出力する演算制御装
置とを具え、同推進機及び水質計測ゾンデを同演算制御
装置の出力信号により制御するようにしたことを特徴と
する。
To this end, the present invention is directed to a forward / backward / left / right direction propulsion unit attached to the lower portion of an unmanned floating body that floats on the water surface, and a radio wave position attached to the floating body to measure the position of the floating body. A measuring device, a suspension winding device that is attached to the floating body to suspend the water quality measuring sonde to the target depth via a cable, and a radio wave from the ground station to calculate the position of the floating body and target it. It has a calculation control device that outputs a command signal to move to a position and a command signal to move the water quality measurement sonde up and down, and the propulsion machine and the water quality measurement sonde are controlled by the output signal of the calculation control device. And

【0006】[0006]

【作用】このような構成によれば、水質計測を行う水面
上の位置までの移動は、電波式位置計測装置で得られた
浮体位置と目的位置の差がなくなるよう推進器を作動さ
せ、浮体を移動することにより行う。その際、電波式位
置計測装置からの電気的位置信号を入力とし、これと操
作パネルなどにより入力指示された目的位置信号とを演
算処理装置により演算処理し、浮体の推進器への指令電
気信号を出力する。また、浮体に内蔵された水質計測装
置によって計測位置及び計測深度で計測された水質デー
タは、そのアンテナを介して発信される電波により地上
局にて受信される。
With this structure, when moving to the position on the water surface where water quality is measured, the propulsion device is operated so that the difference between the floating body position obtained by the radio wave position measuring device and the target position is eliminated, and the floating body is moved. By moving. At that time, the electric position signal from the radio wave type position measuring device is input, and this and the target position signal input and instructed by the operation panel are arithmetically processed by the arithmetic processing device, and the command electric signal to the propulsion device of the floating body is inputted. Is output. Further, the water quality data measured at the measurement position and the measurement depth by the water quality measuring device built in the floating body is received by the ground station by the radio wave transmitted through the antenna.

【0007】[0007]

【実施例】本発明の一実施例を図面について説明する
と、図1はその全体側面図、図2は図1の正面図、図3
は図1の制御装置の内部構成を示すブロック図、図4は
図3の水質データ計測装置の内部構成を示すブロック図
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an overall side view thereof, FIG. 2 is a front view of FIG.
Is a block diagram showing the internal configuration of the control device of FIG. 1, and FIG. 4 is a block diagram showing the internal configuration of the water quality data measuring device of FIG.

【0008】まず、図1〜図2において、1は水質計測
ゾンデであり、水質計測ゾンデ1は水中に浸漬されてい
る左右対称の1対の前後方向に延びるロワーハル2の前
後端部の上面に立設され同径等長の4本のコラム3の水
面上方に突出する上端に水平に支持されたプラットフォ
ーム4に付設されたケーブル巻き取り装置7により、水
中に昇降可能に懸吊されている。ここで、ロワーハル2
にはそれぞれその前後端に前後進及び左右方向移動のた
めの首振り式インペラー9を有するスラスター8が付設
されている。6はプラットフォーム4上に付設された制
御装置であって、水質計測ゾンデ1の出力をフラットフ
ォーム上に突設された図示省略のアンテナを経て地上局
に送信するとともに、後記する要領で地上局と送信して
本発明装置を計測位置に誘導するとともに、ケーブル巻
き取り装置7を制御し、水質計測ゾンデ1を目的深度に
昇降する作用を行う。以上述べた各部材及び機器が協働
して電波式水質計測浮体(以下本発明浮体という)を構
成する。
1 and 2, reference numeral 1 is a water quality measuring sonde, and the water quality measuring sonde 1 is on the upper surface of the front and rear end portions of a pair of symmetrical lower halves 2 which are immersed in water and extend in the front-rear direction. A cable winding device 7 attached to a platform 4 horizontally supported on the upper ends of four columns 3 having the same diameter and the same length and projecting above the water surface is suspended in the water so as to be able to move up and down. Where lower hull 2
A thruster 8 having a swing-type impeller 9 for forward and backward movement and lateral movement is attached to each of the front and rear ends thereof. Reference numeral 6 denotes a control device attached to the platform 4, which transmits the output of the water quality measuring sonde 1 to the ground station via an antenna (not shown) projecting on the flat form, and is also connected to the ground station as described later. While transmitting and guiding the device of the present invention to the measurement position, it controls the cable winding device 7 to raise and lower the water quality measuring sonde 1 to the target depth. The above-described members and devices cooperate to form a radio wave type water quality measuring floating body (hereinafter referred to as a floating body of the present invention).

【0009】次に、図2の制御装置6の内部構成を説明
すると、図3において本発明計測浮体10はアンテナ1
3を介して受信された電波信号を処理して本発明計測浮
体10の現在の位置情報21を出力する。12は現在位
置情報21と水質計測目標位置とから本発明計測浮体1
0の移動目標航路22を設定する目標位置方位設定装
置、14は本発明計測浮体の方位角23を出力するジャ
イロである。演算部11は目標計測位置に到達するまで
は、本発明計測浮体10から得られる本発明計測浮体の
現在位置情報21と、ジャイロ14から出力される方位
角23と、目標位置方位設定位置12から得られる移動
目標航路22に基づいて、本発明計測浮体のスラスター
8a,8b,8c,8dの首振り角指令信号32a,3
2b,32c,32dをそれぞれのスラスター首振り角
制御用モーター33a,33b,33c,33dに伝達
する。またインペラー回転数指令信号34a,34b,
34c,34dはインペラー駆動用モーター35a,3
5b,35c,35dに伝達される。次に、本発明計測
浮体が目標位置に到達した後は、その位置保持を行うた
め首振り角制御用信号32a,32b,32c,32
d,インペラー回転数指令信号34a,34b,34
c,34dが同様に出力され、さらに自動昇降装置用駆
動制御装置40に水深指令信号41を伝達し、その後水
質データ計測装置50にデータ集録指令信号51を出力
する。このようにして、その水深に対するデータ集録が
終了すると、次には第2番目の計測点に対する水深指令
信号41を自動昇降装置用制御装置40に出力し、同様
に水質データ計測装置50にデータ集録指令信号51を
出力する。これを計測位置の必要な水深ごとに、この作
業を繰り返す。上述の手順を繰り返し行って、目標位置
方位設定装置12から得られる移動目標航路22に基づ
いて、本発明計測浮体のスラスター8a,8b,8c,
8dの首振り角指令信号32a,32b,32c,32
dが出力され、次の計測位置まで本発明計測装置が移動
する。なお、この演算部11の記憶装置11aには、図
示省略の制御用コンピューターにて計測開始前に必要な
演算処理プログラムをダウンロードする。ダウンロード
後はこのプログラムに従い自動的に計測位置の移動を行
いながら計測を続行する。また計測順序を変更したい場
合や、計測を中止して原点復帰を指令したい場合は、制
御部用のアンテナ13,15を介して、無線にて割り込
み信号を受信し、陸上より遠隔操作にて計測モードを変
更又は指示することもできる。
Next, the internal structure of the control device 6 of FIG. 2 will be described. In FIG.
The radio wave signal received via 3 is processed and the present position information 21 of the measurement floating body 10 of the present invention is output. 12 is the present invention measurement floating body 1 from the current position information 21 and the water quality measurement target position.
A target position / azimuth setting device that sets the moving target route 22 of 0, and 14 is a gyro that outputs the azimuth angle 23 of the measurement floating body of the present invention. Until the calculation unit 11 reaches the target measurement position, the present position information 21 of the measurement float of the present invention obtained from the measurement float 10 of the present invention, the azimuth 23 output from the gyro 14, and the target position azimuth set position 12 Based on the obtained moving target route 22, the swing angle command signals 32a, 3 of the thrusters 8a, 8b, 8c, 8d of the measurement floating body of the present invention.
2b, 32c and 32d are transmitted to the respective thruster swing angle control motors 33a, 33b, 33c and 33d. Further, the impeller rotation speed command signals 34a, 34b,
34c and 34d are impeller driving motors 35a and 3d.
5b, 35c, 35d. Next, after the measurement floating body of the present invention reaches the target position, the swing angle control signals 32a, 32b, 32c, 32 for holding the position are maintained.
d, impeller rotation speed command signals 34a, 34b, 34
Similarly, c and 34d are output, the water depth command signal 41 is further transmitted to the drive control device 40 for the automatic lifting device, and then the data acquisition command signal 51 is output to the water quality data measurement device 50. When the data acquisition for the water depth is completed in this way, the water depth command signal 41 for the second measurement point is then output to the automatic lifting device control device 40, and similarly, the water quality data measurement device 50 acquires the data. The command signal 51 is output. This operation is repeated for each required water depth at the measurement position. By repeating the above procedure, the thrusters 8a, 8b, 8c, 8c of the measurement floating body of the present invention are based on the moving target route 22 obtained from the target position / azimuth setting device 12.
8d swing angle command signals 32a, 32b, 32c, 32
d is output, and the measuring device of the present invention moves to the next measuring position. In addition, in the storage device 11a of the calculation unit 11, a calculation computer (not shown) downloads a calculation processing program required before the start of measurement. After downloading, continue the measurement while automatically moving the measurement position according to this program. Also, if you want to change the measurement order, or if you want to stop the measurement and issue a command to return to the home position, you can receive an interrupt signal wirelessly via the antennas 13 and 15 for the control unit and measure it remotely from land. It is also possible to change or instruct the mode.

【0010】図4は図3の水質データ計測装置50の内
部構成を示すブロック図であり、演算部11から送られ
てきたデータ集録指令信号51によって溶存酸素センサ
ー60a,塩分濃度センサー61a,水深センサー62
a,流向センサー63a,流速センサー64aから取得
された溶存酸素データ60b,塩分濃度データ61b,
水深データ62b,流向データ63b,流速データ64
bを記憶装置65に逐次記録する。
FIG. 4 is a block diagram showing the internal structure of the water quality data measuring device 50 of FIG. 3, in which the dissolved oxygen sensor 60a, the salt concentration sensor 61a, and the water depth sensor are generated by the data acquisition command signal 51 sent from the arithmetic unit 11. 62
a, dissolved oxygen data 60b, salinity concentration data 61b acquired from the flow direction sensor 63a and the flow velocity sensor 64a,
Water depth data 62b, flow direction data 63b, flow velocity data 64
b is sequentially recorded in the storage device 65.

【0011】[0011]

【発明の効果】このような本発明水質計測装置によれ
ば、従来、多大の時間を要していた内湾や湖沼における
水質計測を、電波式の位置計測装置と、小型推進器を組
み合わせて自動的に効率良く短時間に行うことができ
る。
According to the water quality measuring device of the present invention as described above, water quality measurement in an inner bay or lake which has required a lot of time in the past is automatically performed by combining a radio wave position measuring device and a small propulsion device. Can be efficiently performed in a short time.

【0014】要するに本発明によれば、水面に浮上する
無人の浮体の下部に付設された前後左右方向推進機と、
同浮体に付設され同浮体の位置を計測する電波式位置計
測装置と、同浮体に付設されケーブルを介して目標深度
に水質計測ゾンデを昇降可能に懸吊する懸吊巻き取り装
置と、地上局からの電波を受信して同浮体の位置を演算
し目標位置へ移動する指令信号及び同水質計測ゾンデを
昇降させる指令信号を出力する演算制御装置とを具え、
同推進機及び水質計測ゾンデを同演算制御装置の出力信
号により制御するようにしたことにより、計測位置が限
定されることなく、またボート及び操船者を必要とする
ことなく所望の計測位置へ迅速に移動することができる
省人省力的で構造簡単かつ経済的な無人自動水質計測装
置を得るから、本発明は産業上極めて有益なものであ
る。
In short, according to the present invention, the front-rear, left-right direction propulsion unit attached to the lower portion of the unmanned floating body which floats on the water surface,
An electric wave type position measuring device attached to the floating body to measure the position of the floating body, a suspension winding device attached to the floating body to suspend the water quality measuring sonde to a target depth via a cable, and a ground station And a calculation control device that outputs a command signal for calculating the position of the floating body by receiving radio waves from and moving it to a target position and a command signal for moving up and down the water quality measuring probe,
By controlling the propulsion unit and the water quality measuring sonde by the output signal of the arithmetic and control unit, the measurement position is not limited, and the boat and the operator are not required to quickly move to the desired measurement position. INDUSTRIAL APPLICABILITY The present invention is extremely useful industrially because it provides an unmanned automatic water quality measuring device that can be moved to a labor-saving labor-saving, simple structure and economical.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の水質計測装置を示す全体側
面図である。
FIG. 1 is an overall side view showing a water quality measuring device according to an embodiment of the present invention.

【図2】図1の正面図であるFIG. 2 is a front view of FIG.

【図3】図1の水質計測装置の制御部の内部構造を示す
ブロック図である。
FIG. 3 is a block diagram showing an internal structure of a control unit of the water quality measuring device of FIG.

【図4】図3の水質データ計測装置の内部構成を示すブ
ロック図である。
FIG. 4 is a block diagram showing an internal configuration of the water quality data measuring device of FIG.

【図5】従来の可搬式水質計測装置を示す斜視図及び正
面図である。
FIG. 5 is a perspective view and a front view showing a conventional portable water quality measuring device.

【図6】従来の係留式ブイ型水質計測装置を示す側面図
である。
FIG. 6 is a side view showing a conventional mooring buoy type water quality measuring device.

【符号の説明】[Explanation of symbols]

1 水質計測ゾンデ 2 ロワーハル 3 コラム 4 プラットフォーム 5 ケーブル 6 制御装置 7 ケーブル巻き取り装置 8,8a,8b,8c,8d スラスター 9 インペラー 10 電波式水質計測浮体(本発明計測浮体) 11 演算部 11a 記憶装置 12 目標位置方位設定装置 13 アンテナ(浮体位置制御用) 14 ジャイロ 15 アンテナ(浮体深度制御用) 21 位置情報 22 移動目標航路 23 方位角 32a,32b,32c,32d 首振り指令信号 33a,33b,33c,33d 首振り角制御用モー
ター 34a,34b,34c,34d インペラー回転数指
令信号 40 自動昇降装置用駆動制御装置(自動昇降装置) 50 水質データ計測装置 51 データ集録指令信号 60a 溶存酸素センサー 61a 塩分濃度センサー 62a 水深センサー 63a 流向センサー 64a 流速センサー 60b 溶存酸素データ 61b 塩分濃度データ 62b 水深データ 63b 流向データ 64b 流速データ 65 記憶装置
1 Water Quality Measuring Sonde 2 Lower Hull 3 Column 4 Platform 5 Cable 6 Control Device 7 Cable Winding Device 8, 8a, 8b, 8c, 8d Thruster 9 Impeller 10 Radio Wave Water Quality Floating Body (Measuring Floating Body of the Present Invention) 11 Computing Unit 11a Storage Device 12 Target Position / Orientation Setting Device 13 Antenna (For Floating Body Position Control) 14 Gyro 15 Antenna (For Floating Body Depth Control) 21 Position Information 22 Moving Target Route 23 Azimuth Angles 32a, 32b, 32c, 32d Swing Command Signals 33a, 33b, 33c , 33d Swing angle control motors 34a, 34b, 34c, 34d Impeller rotation speed command signal 40 Automatic lift device drive control device (automatic lift device) 50 Water quality data measurement device 51 Data acquisition command signal 60a Dissolved oxygen sensor 61a Salt concentration Sensor 62 Depth sensor 63a current direction sensor 64a flow rate sensor 60b dissolved oxygen data 61b salinity data 62b depth data 63b current direction data 64b velocity data 65 storage device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水面に浮上する無人の浮体の下部に付設
された前後左右方向推進機と、同浮体に付設され同浮体
の位置を計測する電波式位置計測装置と、同浮体に付設
されケーブルを介して目標深度に水質計測ゾンデを昇降
可能に懸吊する懸吊巻き取り装置と、地上局からの電波
を受信して同浮体の位置を演算し目標位置へ移動する指
令信号及び同水質計測ゾンデを昇降させる指令信号を出
力する演算制御装置とを具え、同推進機及び水質計測ゾ
ンデを同演算制御装置の出力信号により制御するように
したことを特徴とする無人自動水質計測装置。
1. A front-rear, left-right propulsion unit attached to the bottom of an unmanned floating body that floats on the surface of the water, a radio wave position measuring device attached to the floating unit to measure the position of the floating body, and a cable attached to the floating body. Water quality measurement to the target depth via the suspension winder that suspends the sonde so that it can be moved up and down, and the command signal and the same water quality measurement that receive the radio waves from the ground station to calculate the position of the floating body and move to the target position. An unmanned automatic water quality measuring device, comprising an arithmetic and control unit for outputting a command signal for raising and lowering a sonde, and controlling the propulsion unit and the water quality measuring sonde by an output signal of the arithmetic and control unit.
JP33295294A 1994-12-14 1994-12-14 Unmanned automatic water quality measurement device Expired - Fee Related JP3354733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33295294A JP3354733B2 (en) 1994-12-14 1994-12-14 Unmanned automatic water quality measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33295294A JP3354733B2 (en) 1994-12-14 1994-12-14 Unmanned automatic water quality measurement device

Publications (2)

Publication Number Publication Date
JPH08164891A true JPH08164891A (en) 1996-06-25
JP3354733B2 JP3354733B2 (en) 2002-12-09

Family

ID=18260651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33295294A Expired - Fee Related JP3354733B2 (en) 1994-12-14 1994-12-14 Unmanned automatic water quality measurement device

Country Status (1)

Country Link
JP (1) JP3354733B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19626262A1 (en) * 1996-06-29 1998-01-02 Btu Cottbus Measurement and sampling station MPG-1 'KAMA' for water
CN102001428A (en) * 2010-11-12 2011-04-06 武汉理工大学 Fin lifting system of comprehensive marine science research ship
CN102288967A (en) * 2011-06-17 2011-12-21 江西海豹高科技有限公司 Underwater ultrasonic ranging sub system and intelligentized monitoring system and control method for intelligentized monitoring system under turbid water area
JP2012171532A (en) * 2011-02-23 2012-09-10 Hitachi Plant Technologies Ltd Floating body, and operation method thereof
CN103389363A (en) * 2013-08-26 2013-11-13 武汉大学 Shipborne underway water environment parameter measurement system and method
CN105691557A (en) * 2016-03-21 2016-06-22 舟山巨洋技术开发有限公司 Unmanned exploration ship
CN108871425A (en) * 2018-05-03 2018-11-23 湖南碧霄环境科技有限公司 Comprehensive river water source monitors system
CN109211321A (en) * 2018-09-21 2019-01-15 商丘师范学院 A kind of sewage automatic detection device
CN109774868A (en) * 2019-02-28 2019-05-21 广州市曦庭景观设计工程有限公司 A kind for the treatment of landscape water body monitoring floating bed that can remotely monitor
CN110057991A (en) * 2019-04-18 2019-07-26 中国水产科学研究院渔业机械仪器研究所 A kind of water environment real-time monitoring system and method based on enclosure culture, net enclosure culture
CN110596334A (en) * 2019-09-10 2019-12-20 苏州金螳螂园林绿化景观有限公司 Monitoring system for be used for river course water quality testing
CN111498025A (en) * 2020-06-17 2020-08-07 山东省地质矿产勘查开发局第四地质大队(山东省第四地质矿产勘查院) Water surveying and mapping device for surveying and mapping ocean engineering
CN111948364A (en) * 2020-06-18 2020-11-17 安徽机电职业技术学院 Water environment monitoring equipment
CN113148027A (en) * 2021-04-22 2021-07-23 广州小鲇智能科技有限公司 Unmanned ship with monitoring function
CN114291215A (en) * 2021-12-31 2022-04-08 南通理工学院 Water quality supervision unmanned ship for complex water area
CN114348189A (en) * 2021-12-16 2022-04-15 山东省海洋资源与环境研究院(山东省海洋环境监测中心、山东省水产品质量检验中心) Multifunctional marine ranching platform
WO2023130527A1 (en) * 2022-01-10 2023-07-13 江苏大学 Suspended self-balancing and self-cruising water quality online monitoring apparatus, and monitoring and evaluation methods
CN116729547A (en) * 2023-06-12 2023-09-12 江苏省环保集团宿迁有限公司 Method and system for controlling and treating pollution of black and odorous river water
GB2616486A (en) * 2022-01-10 2023-09-13 Univ Jiangsu Suspended self-balancing and self-cruising water quality online monitoring apparatus, and monitoring and evaluation methods

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101698431B (en) * 2009-10-28 2012-01-04 中国海洋大学 Vertical shaft working platform device for shipborne oceanographic instrument
CN109187905B (en) * 2018-10-08 2020-12-25 杭州诺普泰克仪器仪表有限公司 River course quality of water risk on-line monitoring device
CN109001411B (en) * 2018-10-08 2020-12-11 山东中衡环境检测有限公司 Accurate river water quality underwater monitoring device
CN109001412B (en) * 2018-10-08 2021-01-05 山东久力工贸集团有限公司 River course quality of water is monitoring devices under water
CN109001413B (en) * 2018-10-08 2020-12-18 赵春华 River water quality underwater on-line monitoring device
CN109342677B (en) * 2018-10-08 2021-01-26 南京师范大学 Accurate river course water quality monitoring equipment

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19626262A1 (en) * 1996-06-29 1998-01-02 Btu Cottbus Measurement and sampling station MPG-1 'KAMA' for water
CN102001428A (en) * 2010-11-12 2011-04-06 武汉理工大学 Fin lifting system of comprehensive marine science research ship
JP2012171532A (en) * 2011-02-23 2012-09-10 Hitachi Plant Technologies Ltd Floating body, and operation method thereof
CN102288967A (en) * 2011-06-17 2011-12-21 江西海豹高科技有限公司 Underwater ultrasonic ranging sub system and intelligentized monitoring system and control method for intelligentized monitoring system under turbid water area
CN103389363A (en) * 2013-08-26 2013-11-13 武汉大学 Shipborne underway water environment parameter measurement system and method
CN105691557A (en) * 2016-03-21 2016-06-22 舟山巨洋技术开发有限公司 Unmanned exploration ship
CN108871425A (en) * 2018-05-03 2018-11-23 湖南碧霄环境科技有限公司 Comprehensive river water source monitors system
CN109211321A (en) * 2018-09-21 2019-01-15 商丘师范学院 A kind of sewage automatic detection device
CN109774868B (en) * 2019-02-28 2020-11-10 广州市曦庭景观设计工程有限公司 But remote monitoring's landscape water administers monitoring floating bed
CN109774868A (en) * 2019-02-28 2019-05-21 广州市曦庭景观设计工程有限公司 A kind for the treatment of landscape water body monitoring floating bed that can remotely monitor
CN110057991A (en) * 2019-04-18 2019-07-26 中国水产科学研究院渔业机械仪器研究所 A kind of water environment real-time monitoring system and method based on enclosure culture, net enclosure culture
CN110596334A (en) * 2019-09-10 2019-12-20 苏州金螳螂园林绿化景观有限公司 Monitoring system for be used for river course water quality testing
CN111498025A (en) * 2020-06-17 2020-08-07 山东省地质矿产勘查开发局第四地质大队(山东省第四地质矿产勘查院) Water surveying and mapping device for surveying and mapping ocean engineering
CN111948364A (en) * 2020-06-18 2020-11-17 安徽机电职业技术学院 Water environment monitoring equipment
CN113148027A (en) * 2021-04-22 2021-07-23 广州小鲇智能科技有限公司 Unmanned ship with monitoring function
CN114348189A (en) * 2021-12-16 2022-04-15 山东省海洋资源与环境研究院(山东省海洋环境监测中心、山东省水产品质量检验中心) Multifunctional marine ranching platform
CN114291215A (en) * 2021-12-31 2022-04-08 南通理工学院 Water quality supervision unmanned ship for complex water area
WO2023130527A1 (en) * 2022-01-10 2023-07-13 江苏大学 Suspended self-balancing and self-cruising water quality online monitoring apparatus, and monitoring and evaluation methods
GB2616486A (en) * 2022-01-10 2023-09-13 Univ Jiangsu Suspended self-balancing and self-cruising water quality online monitoring apparatus, and monitoring and evaluation methods
CN116729547A (en) * 2023-06-12 2023-09-12 江苏省环保集团宿迁有限公司 Method and system for controlling and treating pollution of black and odorous river water
CN116729547B (en) * 2023-06-12 2024-02-06 江苏省环保集团宿迁有限公司 Method and system for controlling and treating pollution of black and odorous river water

Also Published As

Publication number Publication date
JP3354733B2 (en) 2002-12-09

Similar Documents

Publication Publication Date Title
JPH08164891A (en) Unmanned automatic water quality measuring device
US6678589B2 (en) Boat positioning and anchoring system
EP3214522B1 (en) Vessel maneuvering method and system
US8265809B2 (en) Autonomous underwater vehicle with current monitoring
KR101409627B1 (en) Improvements relating to control of marine vessels
JP3939710B2 (en) Remotely controlled unmanned boat
JP5010332B2 (en) Underwater vehicle motion control device and underwater vehicle
JP2017105306A (en) Route setting method of underwater sailing body, optimum control method of underwater sailing body using the same, underwater sailing body, and route setting method of moving body
KR20180094608A (en) Underwater robot system based surface craft
KR20100061367A (en) Unmanned boat automatic survey system and unmanned boat automatic survey method
JP3949932B2 (en) Autonomous underwater vehicle navigation control system
JP2008525251A (en) Apparatus and method for submarine tracking
KR20150140172A (en) Dron flight and sea floor scanning exploration system using the same
CN116443217B (en) Piling ship parking control method and device, piling ship and storage medium
JP2007160972A (en) Control method for course of underwater navigating body
EP3696078B1 (en) A method and system for piloting an unmanned surface vessel
CN108762289B (en) Attitude control method for underwater seismic wave detection flight node
CN113655802A (en) Unmanned ship motion control system and method based on differential double-paddle driving
JP2001247085A (en) Depth measuring method by diving machine
JPH10181691A (en) Fixed point holding control device
JPH0457559B2 (en)
KR101173076B1 (en) Unmanned underwater exploration apparatus
JP2022145659A (en) Coupling system between water surface relay machine and underwater vehicle, and operation method for the same
Szymak et al. Research on Subsystem of Obstacles Detection Based on Physical Model of Biomimetic Underwater Vehicle
CN112361123A (en) Control system for pipeline detection robot

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020821

LAPS Cancellation because of no payment of annual fees