JPH08162643A - Structure of thin-film transistor and its manufacture - Google Patents

Structure of thin-film transistor and its manufacture

Info

Publication number
JPH08162643A
JPH08162643A JP32978794A JP32978794A JPH08162643A JP H08162643 A JPH08162643 A JP H08162643A JP 32978794 A JP32978794 A JP 32978794A JP 32978794 A JP32978794 A JP 32978794A JP H08162643 A JPH08162643 A JP H08162643A
Authority
JP
Japan
Prior art keywords
gate electrode
semiconductor layer
film transistor
thin film
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32978794A
Other languages
Japanese (ja)
Inventor
Jong Moon Choi
ゾン・ムン・チョイ
Gan Kim Zon
ゾン・ガン・キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
LG Semicon Co Ltd
Goldstar Electron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Semicon Co Ltd, Goldstar Electron Co Ltd filed Critical LG Semicon Co Ltd
Priority to JP32978794A priority Critical patent/JPH08162643A/en
Publication of JPH08162643A publication Critical patent/JPH08162643A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78642Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE: To decrease the number of times of processes, and to increase the yield rare and to improve the characteristic of a thin-film transistor by forming a first-conductivity type second impurity region of LDD construction, in a semiconductor layer on an insulating substrate other than a gate electrode part. CONSTITUTION: A gate electrode 2 is formed on an insulating substrate 1, and a gate insulating film 3 such as an oxide film, etc., is formed on the gate electrode 2 and the substrate 1, and a semiconductor layer 4 is formed on the gate insulating film 3. Besides, the channel region 11 of a transistor is formed in a part along both side surfaces of the gate electrode 2 of the semiconductor layer 4, and a high-concentration p-type first impurity region 9 is formed in the upper of the gate electrode 2. Furthermore, p-type second impurity regions 10a, 10b of LDD construction are formed in the semiconductor layer 4 on the substrate 1 excluding the part of the gate electrode 2. Consequently, it becomes possible to form a drain region of LDD construction by self aligning without a masking process, so it becomes possible to obtain a constant characteristic irrespective of a process change, and to increase the yield rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体素子の薄膜トラン
ジスタに係り、特にSRAMのメモリセルに適する薄膜
トランジスタの構造及びその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film transistor of a semiconductor device, and more particularly to a structure of a thin film transistor suitable for a memory cell of SRAM and a manufacturing method thereof.

【0002】[0002]

【従来の技術】一般に、p型薄膜トランジスタは1M級
以上のSRAM素子において負荷抵抗器の代わりに用い
られ、N型薄膜トランジスタは液晶表示素子において各
画素領域の画像データ信号をスイッチングするスイッチ
ング素子として広く用いられている。
2. Description of the Related Art Generally, a p-type thin film transistor is used in place of a load resistor in an SRAM element of 1M class or higher, and an N-type thin film transistor is widely used as a switching element for switching an image data signal of each pixel region in a liquid crystal display element. Has been.

【0003】高品質のSRAMを作るためには、p型薄
膜トランジスタのオフ電流を減少させ且つオン電流を増
加させなければならず、これにより、SRAMセルの消
費電力を減少させることができ、記憶特性を向上させる
ことができる。
In order to manufacture a high quality SRAM, the off current and the on current of the p-type thin film transistor must be reduced, which can reduce the power consumption of the SRAM cell and the storage characteristics. Can be improved.

【0004】最近、前記の原理によってオン/オフ電流
比を向上させるための研究が活発に行われている。この
ようにオン/オフ電流比を向上させるための従来の薄膜
トランジスタの製造方法を図面とともに説明する。
Recently, studies have been actively conducted to improve the on / off current ratio based on the above-mentioned principle. A conventional method of manufacturing a thin film transistor for improving the on / off current ratio will be described with reference to the drawings.

【0005】図1は、従来の薄膜トランジスタの工程断
面図である。従来の薄膜トランジスタの製造方法は、図
1(a)のように絶縁基板1上にゲート電極2を形成
し、全面にゲート絶縁膜3を形成する。図1(b)のよ
うにその上にポリシリコン等の真性半導体層4を蒸着す
る。図1(c)のように前記真性半導体層4にチャンネ
ルイオン(n型イオン)を注入する。図1(d)のよう
に全面にわたって第1酸化膜5を蒸着し、ホトエッチン
グ工程によりゲート電極2の上側のチャンネル領域にの
み残るように第1酸化膜5をパターニングした後、前記
パターニングされた第1酸化膜5をマスクとして前記真
性半導体層4に低濃度のソース/ドレーンイオン(p
- )を注入して低濃度のソース/ドレーン不純物領域6
を形成する。図1(e)のように、全面にわたって第2
酸化膜を厚く蒸着し、前記第2酸化膜を異方性エッチン
グして第2酸化膜の側壁7を形成した後、前記第1酸化
膜5と第2酸化膜の側壁7をマスクに用いて高濃度のソ
ース/ドレーンイオン(p+ )を注入する。図1(f)
のように、前記第1酸化膜5と第2酸化膜の側壁7を除
去して、LDD構造の薄膜トランジスタを完成する。
FIG. 1 is a process sectional view of a conventional thin film transistor. In the conventional method of manufacturing a thin film transistor, a gate electrode 2 is formed on an insulating substrate 1 and a gate insulating film 3 is formed on the entire surface as shown in FIG. As shown in FIG. 1B, an intrinsic semiconductor layer 4 such as polysilicon is vapor-deposited thereon. As shown in FIG. 1C, channel ions (n-type ions) are implanted into the intrinsic semiconductor layer 4. As shown in FIG. 1D, a first oxide film 5 is deposited on the entire surface, and the first oxide film 5 is patterned by a photo-etching process so that it remains only in a channel region above the gate electrode 2. Then, the patterning is performed. Using the first oxide film 5 as a mask, the intrinsic semiconductor layer 4 has a low concentration of source / drain ions (p
- ) Is implanted to form a low concentration source / drain impurity region 6
To form. As shown in FIG. 1 (e), the second
After thickly depositing an oxide film and anisotropically etching the second oxide film to form a sidewall 7 of the second oxide film, the sidewalls 7 of the first oxide film 5 and the second oxide film are used as a mask. Implant a high concentration of source / drain ions (p + ). Figure 1 (f)
As described above, the sidewalls 7 of the first oxide film 5 and the second oxide film are removed to complete a thin film transistor having an LDD structure.

【0006】[0006]

【発明が解決しようとする課題】しかし、このような従
来の薄膜トランジスタには次のような問題点がある。即
ち、LDD構造のソース/ドレーン領域を形成するため
には別途のマスク工程と、前記マスクを除去する工程と
が必要であるから、工程が複雑であり、さらに、工程の
回数が増加して歩留まりが低下し、薄膜トランジスタの
特性が低下するという問題点がある。
However, such a conventional thin film transistor has the following problems. That is, since a separate mask process and a process for removing the mask are required to form the source / drain regions of the LDD structure, the process is complicated, and the number of processes is increased and the yield is increased. And the characteristics of the thin film transistor are degraded.

【0007】本発明は、上記問題点を解決するためのも
のであり、工程の回数を減少させて歩留まり及び薄膜ト
ランジスタの特性を向上させることにその目的がある。
The present invention is intended to solve the above problems, and its object is to reduce the number of steps and improve the yield and characteristics of thin film transistors.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明の薄膜トランジスタの構造は、絶縁基板と、
前記絶縁基板上に形成されるゲート電極と、前記ゲート
電極と絶縁基板とに形成されたゲート絶縁膜と、前記ゲ
ート絶縁膜上に形成される半導体層と、前記半導体層の
前記ゲート電極の両側面に沿う部分に形成されるチャン
ネル領域と、前記ゲート電極の上側の半導体層に形成さ
れる高濃度の第1導電型第1不純物領域と、前記ゲート
電極の部分以外の絶縁基板上の半導体層に形成されるL
DD構造の第1導電型第2不純物領域とを有する。本発
明の薄膜トランジスタの製造方法は、絶縁基板上にゲー
ト電極を形成し、全面にわたってゲート絶縁膜を形成す
る工程と、前記ゲート絶縁膜上に半導体層を形成する工
程と、前記半導体層に垂直に低濃度のソース/ドレーン
不純物イオンを注入する工程と、前記ゲート電極の両側
の半導体層の側壁に絶縁膜の側壁を形成する工程と、前
記絶縁膜の側壁をマスクとして用いて半導体層に高濃度
のソース/ドレーンイオンを注入する工程とを含んでな
ることを特徴とする。
In order to achieve the above object, the structure of a thin film transistor of the present invention comprises an insulating substrate,
A gate electrode formed on the insulating substrate, a gate insulating film formed on the gate electrode and the insulating substrate, a semiconductor layer formed on the gate insulating film, and both sides of the gate electrode of the semiconductor layer. A channel region formed in a portion along the surface, a high-concentration first conductivity type first impurity region formed in the semiconductor layer above the gate electrode, and a semiconductor layer on the insulating substrate other than the gate electrode portion L formed on
And a first conductivity type second impurity region having a DD structure. A method of manufacturing a thin film transistor of the present invention comprises a step of forming a gate electrode on an insulating substrate and forming a gate insulating film over the entire surface, a step of forming a semiconductor layer on the gate insulating film, and a step perpendicular to the semiconductor layer. Implanting low concentration source / drain impurity ions, forming sidewalls of an insulating film on sidewalls of the semiconductor layer on both sides of the gate electrode, and using high concentration on the semiconductor layer using the sidewalls of the insulating film as a mask And the step of implanting source / drain ions of.

【0009】[0009]

【実施例】前記本発明の薄膜トランジスタの構造及びそ
の製造方法を図面とともに説明する。図2は本発明の薄
膜トランジスタの構造斜視図であり、図3は本発明の薄
膜トランジスタの工程断面図である。本発明の薄膜トラ
ンジスタの構造は、図2のように絶縁基板1上にゲート
電極2が形成され、前記ゲート電極2と基板とに酸化膜
などのゲート絶縁膜3が形成され、前記ゲート絶縁膜3
上に半導体層4が形成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the thin film transistor of the present invention and the manufacturing method thereof will be described with reference to the drawings. 2 is a structural perspective view of the thin film transistor of the present invention, and FIG. 3 is a process sectional view of the thin film transistor of the present invention. In the structure of the thin film transistor of the present invention, as shown in FIG. 2, the gate electrode 2 is formed on the insulating substrate 1, and the gate insulating film 3 such as an oxide film is formed on the gate electrode 2 and the substrate.
The semiconductor layer 4 is formed thereon.

【0010】そして、半導体層4の前記ゲート電極の両
側面に沿う部分にはトランジスタのチャンネル領域が形
成され、前記ゲート電極2の上側の部分には高濃度p型
第1不純物領域9が形成される。さらに前記ゲート電極
2の部分を除いた基板上の半導体層4にはLDD構造の
p型第2不純物領域10a,10bが形成される。
A channel region of the transistor is formed in a portion of the semiconductor layer 4 along both side surfaces of the gate electrode, and a high concentration p-type first impurity region 9 is formed in an upper portion of the gate electrode 2. It Further, p-type second impurity regions 10a and 10b having an LDD structure are formed in the semiconductor layer 4 on the substrate except the gate electrode 2.

【0011】前記構造を有する本発明の薄膜トランジス
タの製造方法を説明すると、次の通りである。図3
(a)のように絶縁基板1上にゲート電極2を形成し、
全面にわたってゲート絶縁膜3を形成する。この際、ゲ
ート電極2の厚さ(高さ)がチャンネル領域の長さを決
めるので、所望のチャンネル長さを考慮してゲート電極
2の厚さを調節する。
The method of manufacturing the thin film transistor of the present invention having the above structure will be described as follows. FIG.
As shown in (a), the gate electrode 2 is formed on the insulating substrate 1,
A gate insulating film 3 is formed on the entire surface. At this time, since the thickness (height) of the gate electrode 2 determines the length of the channel region, the thickness of the gate electrode 2 is adjusted in consideration of the desired channel length.

【0012】図3(b)のように全面にわたってポリシ
リコン等の半導体層4を蒸着する。図3(c)のように
前記半導体層4に低濃度のソース/ドレーン不純物イオ
ン(p-)を注入する。ここで、低濃度のソース/ドレ
ーン不純物イオン(p-)としてBF2 イオンを使用す
る場合、5〜50KeVエネルギーにより濃度1×10
10〜1×1012程度のイオンを注入する。これにより、
ゲート電極2の上側、及びゲート電極2が形成されてい
ない絶縁基板1の上側の半導体層4にのみ低濃度のソー
ス/ドレーン不純物イオンが注入され、ゲート電極2の
両側に沿う半導体層4には低濃度のソース/ドレーン不
純物イオンが注入されない。
As shown in FIG. 3B, a semiconductor layer 4 such as polysilicon is vapor-deposited on the entire surface. As shown in FIG. 3C, low concentration source / drain impurity ions (p ) are implanted into the semiconductor layer 4. Here, when BF 2 ions are used as the low concentration source / drain impurity ions (p ), the concentration is 1 × 10 5 by 5 to 50 KeV energy.
Ions of about 10 to 1 × 10 12 are implanted. This allows
Low concentration source / drain impurity ions are implanted only into the semiconductor layer 4 above the gate electrode 2 and above the insulating substrate 1 where the gate electrode 2 is not formed, and the semiconductor layer 4 along both sides of the gate electrode 2 is implanted. Low concentration source / drain impurity ions are not implanted.

【0013】図3(d)のように、酸化膜などの絶縁膜
を厚く蒸着し、それを異方性エッチングして絶縁膜の側
壁7を形成した後、前記絶縁膜の側壁7をマスクとして
高濃度のソース/ドレーンイオン(p+) を注入する。
それによってゲート電極2の両側に沿う半導体層4にチ
ャンネル領域11が形成され、ゲート電極2の上部と側
壁7の両外側の絶縁基板1上の半導体層4に高濃度のp
型第1・第2不純物領域9,10a,10bが形成さ
れ、半導体層4の側壁7の下側の部分に低濃度領域(p
-) が形成された薄膜トランジスタを完成する。ここ
で、高濃度のソース/ドレーン不純物イオンとしてBF
2 を使用する場合、5〜50KeVのエネルギーにより
濃度1×1013以上(1×1013〜1×1016)のイオ
ンを注入する。そして、前記工程によって不純物領域を
形成すると、ドレーン領域はゲート電極2とオフセット
になりながらLDD構造を有することになる。
As shown in FIG. 3D, an insulating film such as an oxide film is vapor-deposited thickly and anisotropically etched to form a sidewall 7 of the insulating film, and then the sidewall 7 of the insulating film is used as a mask. Implant a high concentration of source / drain ions (p + ).
As a result, the channel region 11 is formed in the semiconductor layer 4 along both sides of the gate electrode 2, and the semiconductor layer 4 on the insulating substrate 1 on both sides of the upper portion of the gate electrode 2 and the side wall 7 has a high concentration of p.
The first and second type impurity regions 9, 10a and 10b are formed, and the low concentration region (p
- ) Is completed to complete the thin film transistor. Here, BF is used as high-concentration source / drain impurity ions.
When 2 is used, ions with a concentration of 1 × 10 13 or more (1 × 10 13 to 1 × 10 16 ) are implanted with an energy of 5 to 50 KeV. When the impurity region is formed by the above process, the drain region has an LDD structure while being offset from the gate electrode 2.

【0014】[0014]

【発明の効果】以上説明したように、本発明の薄膜トラ
ンジスタの構造及びその製造方法には、下記の効果があ
る。 一.マスク工程無しに自己整合によってLDD構造のド
レーン領域を形成することができるので、工程の変化に
関係なく薄膜トランジスタの一定の特性を得ることがで
きる。 二.マスク工程が不必要であり、それによる除去工程も
不必要であるので、工程が簡単で歩留まりが増加する。 三.チャンネルが垂直形に形成されるのでデザインルー
ルが縮小しても、一定長さのチャンネルを有する薄膜ト
ランジスタを確保することができる。
As described above, the structure of the thin film transistor and the manufacturing method thereof according to the present invention have the following effects. one. Since the drain region having the LDD structure can be formed by self-alignment without a mask process, certain characteristics of the thin film transistor can be obtained regardless of changes in the process. two. Since the mask process is unnecessary and the removal process by it is also unnecessary, the process is simple and the yield is increased. three. Since the channel is formed in a vertical shape, a thin film transistor having a channel of a certain length can be secured even if the design rule is reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 従来の薄膜トランジスタの工程断面図であ
る。
FIG. 1 is a process sectional view of a conventional thin film transistor.

【図2】 本発明の薄膜トランジスタの構造斜視図であ
る。
FIG. 2 is a structural perspective view of a thin film transistor of the present invention.

【図3】 本発明の薄膜トランジスタの工程断面図であ
る。
3A to 3D are process cross-sectional views of a thin film transistor of the invention.

【符号の説明】[Explanation of symbols]

1…絶縁基板、2…ゲート電極、3…ゲート絶縁膜、4
…半導体層、7…側壁、9,10a,10b…不純物領
域、11…チャンネル領域。
1 ... Insulating substrate, 2 ... Gate electrode, 3 ... Gate insulating film, 4
... semiconductor layer, 7 ... sidewall, 9, 10a, 10b ... impurity region, 11 ... channel region.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基板と、 前記絶縁基板上に形成されるゲート電極と、 前記ゲート電極と絶縁基板とに形成されるゲート絶縁膜
と、 前記ゲート絶縁膜上に形成される半導体層と、 前記半導体層の前記ゲート電極の両側面に沿う部分に形
成されるチャンネル領域と、 前記ゲート電極上側の半導体層に形成される高濃度の第
1導電型第1不純物領域と、 前記ゲート電極部分以外の絶縁基板上の半導体層に形成
されるLDD構造の第1導電型第2不純物領域と、を有
することを特徴とする薄膜トランジスタの構造。
1. An insulating substrate, a gate electrode formed on the insulating substrate, a gate insulating film formed on the gate electrode and the insulating substrate, and a semiconductor layer formed on the gate insulating film. A channel region formed in a portion of the semiconductor layer along both side surfaces of the gate electrode, a high-concentration first conductivity type first impurity region formed in the semiconductor layer above the gate electrode, other than the gate electrode portion And a second impurity region of the first conductivity type having an LDD structure formed in the semiconductor layer on the insulating substrate.
【請求項2】 第2不純物領域は、ゲート電極とオフセ
ットになることを特徴とする請求項1記載の薄膜トラン
ジスタの構造。
2. The structure of the thin film transistor according to claim 1, wherein the second impurity region is offset from the gate electrode.
【請求項3】 絶縁基板上にゲート電極を形成し、全面
にわたってゲート絶縁膜を形成する工程と、 前記ゲート絶縁膜上に半導体層を形成する工程と、 前記半導体層に垂直に低濃度のソース/ドレーン不純物
イオンを注入する工程と、 前記ゲート電極の両側の半導体層の側壁に絶縁膜の側壁
を形成する工程と、 前記絶縁膜の側壁をマスクとして用いて半導体層に高濃
度のソース/ドレーンイオンを注入する工程と、 を含んでなることを特徴とする薄膜トランジスタの製造
方法。
3. A step of forming a gate electrode on an insulating substrate and forming a gate insulating film over the entire surface, a step of forming a semiconductor layer on the gate insulating film, and a low-concentration source perpendicular to the semiconductor layer. / Drain Impurity ion implantation, forming sidewalls of insulating film on sidewalls of the semiconductor layer on both sides of the gate electrode, and using high-concentration source / drain on the semiconductor layer using the sidewalls of the insulating film as a mask A method of manufacturing a thin film transistor, comprising: a step of implanting ions.
【請求項4】 ゲート電極の厚さは、所望のチャンネル
長さに比例することを特徴とする請求項3記載の薄膜ト
ランジスタの製造方法。
4. The method of manufacturing a thin film transistor according to claim 3, wherein the thickness of the gate electrode is proportional to a desired channel length.
【請求項5】 低濃度のソース/ドレーン不純物イオン
注入は、ドーパントとしてBF2 イオンを使用する場
合、5〜50KeVエネルギーにより濃度1×1010
1×1012位のイオンを注入することを特徴とする請求
項3記載の薄膜トランジスタの製造方法。
5. A low concentration source / drain impurity ion implantation is performed at a concentration of 1 × 10 10 to 5 to 50 KeV energy when BF 2 ions are used as a dopant.
The method of manufacturing a thin film transistor according to claim 3, wherein ions at 1 × 10 12 positions are implanted.
【請求項6】 高濃度のソース/ドレーン不純物イオン
注入は、ドーパントとしてBF2 を使用する場合、5〜
50KeVのエネルギーにより濃度1×1013以上のイ
オンを注入することを特徴とする請求項3記載の薄膜ト
ランジスタの製造方法。
6. High-concentration source / drain impurity ion implantation is performed when BF 2 is used as a dopant.
4. The method of manufacturing a thin film transistor according to claim 3, wherein ions having a concentration of 1 × 10 13 or more are implanted with an energy of 50 KeV.
【請求項7】 半導体層は、ポリシリコンを使用するこ
とを特徴とする請求項3記載の薄膜トランジスタの製造
方法。
7. The method of manufacturing a thin film transistor according to claim 3, wherein the semiconductor layer is made of polysilicon.
【請求項8】 絶縁膜の側壁は、酸化膜で形成すること
を特徴とする請求項3記載の薄膜トランジスタの製造方
法。
8. The method of manufacturing a thin film transistor according to claim 3, wherein the sidewall of the insulating film is formed of an oxide film.
JP32978794A 1994-12-06 1994-12-06 Structure of thin-film transistor and its manufacture Pending JPH08162643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32978794A JPH08162643A (en) 1994-12-06 1994-12-06 Structure of thin-film transistor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32978794A JPH08162643A (en) 1994-12-06 1994-12-06 Structure of thin-film transistor and its manufacture

Publications (1)

Publication Number Publication Date
JPH08162643A true JPH08162643A (en) 1996-06-21

Family

ID=18225262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32978794A Pending JPH08162643A (en) 1994-12-06 1994-12-06 Structure of thin-film transistor and its manufacture

Country Status (1)

Country Link
JP (1) JPH08162643A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511091A (en) * 2002-12-19 2006-03-30 インターナショナル・ビジネス・マシーンズ・コーポレーション FinFET SRAM Cell Using Inverted FinFET Thin Film Transistor
WO2015134083A1 (en) * 2014-03-06 2015-09-11 Eastman Kodak Company Vtfts including offset electrodes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511091A (en) * 2002-12-19 2006-03-30 インターナショナル・ビジネス・マシーンズ・コーポレーション FinFET SRAM Cell Using Inverted FinFET Thin Film Transistor
WO2015134083A1 (en) * 2014-03-06 2015-09-11 Eastman Kodak Company Vtfts including offset electrodes

Similar Documents

Publication Publication Date Title
JP2582347B2 (en) Structure of thin film transistor and method of manufacturing the same
JP2791760B2 (en) Thin film transistor and method of manufacturing the same
JP2739642B2 (en) Thin film transistor and method of manufacturing the same
US6458633B1 (en) Thin film transistor and method for fabricating the same
JP2612825B2 (en) Thin film transistor and method of manufacturing the same
US5723879A (en) Thin film transistor with vertical channel adjacent sidewall of gate electrode and method of making
US5607865A (en) Structure and fabrication method for a thin film transistor
US6184070B1 (en) Thin film transistor and method of manufacturing the same
JPH098321A (en) Transistor structure of semiconductor element and its manufacture
EP0704910B1 (en) A thin-film transistor and method for forming the same
JP2896365B2 (en) Thin film transistor and method of manufacturing the same
JPH08162643A (en) Structure of thin-film transistor and its manufacture
JPH06349856A (en) Thin-film transistor and its manufacture
JP2633104B2 (en) Method for manufacturing semiconductor device
KR0151194B1 (en) Thin film transistor
JPH09116150A (en) Semiconductor device with gold structure and its manufacture
JPH11220128A (en) Mosfet and manufacture thereof
JP2000332255A (en) Thin-film transistor and manufacture thereof
JP2754184B2 (en) Thin film transistor and method of manufacturing the same
JPH033274A (en) Manufacture of semiconductor device
KR100425164B1 (en) thin film transistor and method for manufacturing the same
JP2004247749A (en) Method for manufacturing semiconductor device
KR100252754B1 (en) Thin film transistor and the manufacturing method thereof
KR100198629B1 (en) Structure of thin film transistor and manufacturing method thereof
KR100198630B1 (en) Structure of thin film transistor and making method of the same