JPH08162396A - Lighting device and projection light exposure device equipped therewith - Google Patents

Lighting device and projection light exposure device equipped therewith

Info

Publication number
JPH08162396A
JPH08162396A JP32143794A JP32143794A JPH08162396A JP H08162396 A JPH08162396 A JP H08162396A JP 32143794 A JP32143794 A JP 32143794A JP 32143794 A JP32143794 A JP 32143794A JP H08162396 A JPH08162396 A JP H08162396A
Authority
JP
Japan
Prior art keywords
light source
illuminance
flow rate
power control
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32143794A
Other languages
Japanese (ja)
Other versions
JP3163924B2 (en
Inventor
Takashi Yamazaki
尚 山崎
Kouichi Shimeki
浩一 七五三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP32143794A priority Critical patent/JP3163924B2/en
Publication of JPH08162396A publication Critical patent/JPH08162396A/en
Application granted granted Critical
Publication of JP3163924B2 publication Critical patent/JP3163924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • G03F7/70175Lamphouse reflector arrangements or collector mirrors, i.e. collecting light from solid angle upstream of the light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature

Abstract

PURPOSE: To stably manufacture semiconductor devices high in accuracy and throughput by a method wherein a cooling means which cools down a light source basing on electrical power control signals is so controlled in operation as to restrain the light source from rising in temperature above a previously set value, and an illuminated surface is stably lighted constant in luminous intensity. CONSTITUTION: A reduction projection light exposure device serves to projects a pattern on the surface of a reticule 16 onto a wafer 54 as the pattern is reduced in size. A differential amplifier 56 amplifies signals formed of a difference between a signal sent from an illuminance sensor and an instruction signal outputted from an illuminance instruction section 55 which outputs signals to previously set the illuminated surface in illuminance and outputs them as a power control signal. The power control signal is converted into an electrical power through a lighting device 51, and a light source means 2 is controlled in light emission volume by the size of an electric power. On the other hand, a power control signal from the differential amplifier 56 is inputted into an airflow rate control device 52, whereby air jetted out of a nozzle 4 is controlled in flow rate in accordance with the size of the electric power control signal to forcibly cool down the light source means 2 to prevent it from rising in temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は照明装置及びそれを用い
た投影露光装置に関し、特にIC,LSI、そして液晶
素子等の半導体デバイスの製造装置等において照明装置
に用いる光源手段が発熱し、温度上昇をしたときに生じ
る電極劣化に伴う発光効率の低下を防止し、被照射面上
の照度を良好に維持し、高精度で安定した半導体デバイ
スを製造する際に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an illuminating device and a projection exposure apparatus using the same, and in particular, in a manufacturing device for semiconductor devices such as ICs, LSIs, liquid crystal elements, etc., a light source means used for the illuminating device generates heat and temperature This is suitable for manufacturing a highly accurate and stable semiconductor device by preventing a decrease in luminous efficiency due to electrode deterioration that occurs when the temperature rises, maintaining good illuminance on the surface to be irradiated.

【0002】[0002]

【従来の技術】従来より半導体デバイスの製造装置には
高解像力と共に高スループット化が要望されている。
2. Description of the Related Art Conventionally, a semiconductor device manufacturing apparatus is required to have high resolution and high throughput.

【0003】一般に照明装置からの露光光で照明したレ
チクル面上の回路パターンを投影光学系によりウエハ面
上に投影露光する際に高スループット化を図る為にウエ
ハ面上のレジストを短い露光時間で感光させパターンを
形成するには露光用の光源手段からの光量を増加させる
必要がある。これによれば露光速度を上げて高スループ
ット化が容易に図れる。
Generally, in order to achieve high throughput when projecting and exposing a circuit pattern on a reticle surface illuminated by exposure light from an illuminating device onto a wafer surface by a projection optical system, a resist on the wafer surface is exposed in a short exposure time. In order to form a pattern by exposing it to light, it is necessary to increase the amount of light from the light source means for exposure. This makes it possible to increase the exposure speed and easily achieve high throughput.

【0004】しかしながら光源手段の電力を上げて発光
光量を増加させると光源の発熱による電極劣化が促進
し、光源寿命が低下してしまう。又発熱による装置の熱
バランスも悪化してしまう。そこでこういったことを防
止する為に、例えば特開昭62−36819号公報では
温度センサーにより光源の回りの温度を検出し、その温
度センサーからの信号をコントローラにフィードバック
させ、電気ファンの回転数やノズルへの空気流量を温度
信号により可変化し、これにより光源の発熱を抑制した
構成の半導体焼付露光装置を提案している。
However, when the electric power of the light source means is increased to increase the amount of emitted light, the electrode deterioration due to the heat generation of the light source is promoted and the life of the light source is shortened. In addition, the heat balance of the device due to heat generation is also deteriorated. In order to prevent such a situation, for example, in JP-A-62-36819, the temperature around the light source is detected by a temperature sensor, and the signal from the temperature sensor is fed back to the controller to rotate the electric fan. We have proposed a semiconductor printing exposure apparatus having a structure in which the air flow rate to the nozzles and nozzles is made variable by a temperature signal, thereby suppressing the heat generation of the light source.

【0005】[0005]

【発明が解決しようとする課題】一般に光源手段の発熱
による温度上昇を防止する方法として光源手段の周囲に
設けた温度センサーからの信号に基づいて圧縮空気や冷
却気体等を用いた冷却手段により光源手段を強制冷却す
る方法は高精度の温度管理ができるという特長がある。
Generally, as a method of preventing a temperature rise due to heat generation of the light source means, a light source is provided by a cooling means using compressed air or cooling gas based on a signal from a temperature sensor provided around the light source means. The method of forcibly cooling the means has a feature that the temperature can be controlled with high accuracy.

【0006】しかしながら半導体デバイス製造用の投影
露光装置では一般に光源手段の許容幅が100℃程度と
大きい。この為、必ずしも温度センサーや制御手段を用
いて高精度に温度管理をする必要がない。温度センサー
やそれからの信号を用いて光源手段を冷却する方法は高
精度の温度管理ができるが、どうしても装置全体の構成
が複雑化してくるという問題点がある。
However, in a projection exposure apparatus for manufacturing semiconductor devices, the allowable width of the light source means is generally as large as about 100 ° C. Therefore, it is not always necessary to use the temperature sensor or the control means to manage the temperature with high accuracy. Although the temperature sensor and the method of cooling the light source means using the signal from the temperature sensor can manage the temperature with high accuracy, there is a problem that the configuration of the entire device is inevitably complicated.

【0007】一般に照明装置に用いる光源手段からの発
光量は電力制御信号に基づいて制御している。
Generally, the amount of light emitted from the light source means used in the lighting device is controlled based on the power control signal.

【0008】本発明は、光源手段からの発光量を制御す
る電力制御信号が光源手段の温度と略比例関係にあるこ
とを利用し、該電力制御信号に基づいて光源手段を冷却
する冷却手段の動作を制御し、これにより温度センサー
を用いずに簡素化された制御系によって光源手段が予め
設定した温度以上に上昇しないようにし、被照射面上を
常に安定した照度で照明することにより半導体デバイス
を安定的に高精度でかつ高いスループットで製造するこ
とができる照明装置及びそれを用いた投影露光装置の提
供を目的とする。
The present invention utilizes the fact that the power control signal for controlling the amount of light emitted from the light source means has a substantially proportional relationship with the temperature of the light source means, and the cooling means for cooling the light source means based on the power control signal. By controlling the operation, the temperature of the light source means is prevented from rising above a preset temperature by a simplified control system without using a temperature sensor, and the illuminated surface is always illuminated with stable illuminance. It is an object of the present invention to provide an illumination device and a projection exposure apparatus using the same, which are capable of stably manufacturing with high precision and high throughput.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

(1−1)本発明の照明装置は、電力制御信号で発光量
を制御するようにした光源手段からの光束で照明系を介
して被照射面上を照明する際、該電力制御信号に基づい
て冷却手段で該光源手段を強制冷却していることを特徴
としている。
(1-1) The illumination device of the present invention is based on the power control signal when illuminating the surface to be illuminated through the illumination system with the light flux from the light source means whose light emission amount is controlled by the power control signal. It is characterized in that the light source means is forcibly cooled by the cooling means.

【0010】特に、前記冷却手段は空気の流量を制御す
る流量制御手段と該空気を噴出するノズルとを有し、該
流量制御手段で制御した空気を該ノズルから前記光源手
段に吹き付けて該光源手段を強制冷却していることや、
前記電力制御信号は前記被照射面上の照度を検出する照
度センサーからの信号と該被照射面上の照度を予め設定
する為の照度指令部からの信号とを利用して生成してい
ること等を特徴としている。
In particular, the cooling means has a flow rate control means for controlling the flow rate of air and a nozzle for ejecting the air, and the air controlled by the flow rate control means is blown from the nozzle to the light source means to supply the light source. That the means is forcedly cooled,
The power control signal is generated using a signal from an illuminance sensor that detects the illuminance on the illuminated surface and a signal from an illuminance command unit for presetting the illuminance on the illuminated surface. And so on.

【0011】(1−2)本発明の投影露光装置は、照明
手段からの光束で照明した第1物体面上のパターンを投
影光学系で第2物体面上に投影する際、該照明手段は電
力制御信号で発光量を制御するようにした光源手段から
の光束で照明系を介して該第1物体面上を照明し、該電
力制御信号に基づいて冷却手段で該光源手段を強制冷却
していることを特徴としている。
(1-2) In the projection exposure apparatus of the present invention, when the projection optical system projects the pattern on the first object plane illuminated by the luminous flux from the illumination means onto the second object plane, the illumination means operates. The first object surface is illuminated through the illumination system with the light flux from the light source means whose light emission amount is controlled by the power control signal, and the light source means is forcibly cooled by the cooling means based on the power control signal. It is characterized by

【0012】特に、前記冷却手段は空気の流量を制御す
る流量制御手段と該空気を噴出するノズルとを有し、該
流量制御手段で制御した空気を該ノズルから前記光源手
段に吹き付けて該光源手段を強制冷却していることや、
前記電力制御信号は前記被照射面上の照度を検出する照
度センサーからの信号と該被照射面上の照度を予め設定
する為の照度指令部からの信号とを利用して生成してい
ること等を特徴としている。
In particular, the cooling means has a flow rate control means for controlling the flow rate of air and a nozzle for ejecting the air, and the air controlled by the flow rate control means is blown from the nozzle to the light source means to supply the light source. That the means is forcedly cooled,
The power control signal is generated using a signal from an illuminance sensor that detects the illuminance on the illuminated surface and a signal from an illuminance command unit for presetting the illuminance on the illuminated surface. And so on.

【0013】(1−3)本発明の半導体デバイスの製造
方法は、照明手段からの光束で照明したレチクル面上の
パターンを投影光学系でウエハ面上に投影露光した後、
該ウエハを現像処理工程を介して半導体デバイスを製造
する際、該照明手段は電力制御信号で発光量を制御する
ようにした光源手段からの光束で照明系を介して該レチ
クル面上を照明し、該電力制御信号に基づいて冷却手段
で該光源手段を強制冷却していることを特徴としてい
る。
(1-3) In the method of manufacturing a semiconductor device of the present invention, after the pattern on the reticle surface illuminated by the luminous flux from the illumination means is projected and exposed on the wafer surface by the projection optical system,
When a semiconductor device is manufactured through a development process of the wafer, the illuminating means illuminates the reticle surface through a lighting system with a light flux from a light source means whose light emission amount is controlled by a power control signal. The light source means is forcibly cooled by the cooling means based on the power control signal.

【0014】特に、前記冷却手段は空気の流量を制御す
る流量制御手段と該空気を噴出するノズルとを有し、該
流量制御手段で制御した空気を該ノズルから前記光源手
段に吹き付けて該光源手段を強制冷却していることや、
前記電力制御信号は前記被照射面上の照度を検出する照
度センサーからの信号と該被照射面上の照度を予め設定
する為の照度指令部からの信号とを利用して生成してい
ること等を特徴としている。
In particular, the cooling means has a flow rate control means for controlling the flow rate of air and a nozzle for ejecting the air, and the air controlled by the flow rate control means is blown from the nozzle to the light source means to supply the light source. That the means is forcedly cooled,
The power control signal is generated using a signal from an illuminance sensor that detects the illuminance on the illuminated surface and a signal from an illuminance command unit for presetting the illuminance on the illuminated surface. And so on.

【0015】[0015]

【実施例】図1は本発明の照明装置及びそれを用いた投
影露光装置の実施例1の要部概略図である。
1 is a schematic view of a main part of a first embodiment of an illumination apparatus and a projection exposure apparatus using the same according to the present invention.

【0016】図中、3は楕円鏡である。2は光源手段と
しての発光管であり、水銀ランプ等から成り、紫外線及
び遠紫外線等を放射する高輝度の発光部2aを有してい
る。発光部2aは楕円鏡3の第1焦点近傍に配置してい
る。光源手段2は点灯手段51からの電力、即ち後述す
る電力制御信号に応じた値の発光量で点灯している。4
a,4b(4)は各々ノズルであり、流量制御手段52
によって制御した空気(圧縮空気や冷却空気や冷却気体
等を含む。)を光源手段2に吹き付けて該光源手段2を
強制冷却している。ノズル4と流量制御手段52は冷却
手段の一要素を構成している。5はコールドミラーであ
り、多層膜より成り、大部分の赤外光を透過すると共に
大部分の紫外光を反射させている。楕円鏡3はコールド
ミラー5を介して第2焦点3b近傍に発光部2aの発光
部像(光源像)2bを形成している。
In the figure, 3 is an elliptical mirror. Reference numeral 2 denotes an arc tube as a light source means, which is composed of a mercury lamp or the like, and has a high-luminance light emitting section 2a which radiates ultraviolet rays, far ultraviolet rays and the like. The light emitting portion 2a is arranged near the first focus of the elliptical mirror 3. The light source means 2 is turned on with the electric power from the lighting means 51, that is, the amount of light emission corresponding to a power control signal described later. Four
a and 4b (4) are nozzles, respectively, and flow rate control means 52
Air (including compressed air, cooling air, cooling gas, etc.) controlled by is blown onto the light source means 2 to forcibly cool the light source means 2. The nozzle 4 and the flow rate control means 52 constitute one element of the cooling means. Reference numeral 5 denotes a cold mirror, which is composed of a multilayer film and transmits most of infrared light and reflects most of ultraviolet light. The elliptic mirror 3 forms a light emitting portion image (light source image) 2b of the light emitting portion 2a near the second focal point 3b via the cold mirror 5.

【0017】11はレンズ系であり、コンデンサーレン
ズやズームレンズ等から成り第2焦点3b近傍に形成し
た発光部像2bをミラー6を介してオプティカルインテ
グレータ12の入射面12aに結像させている。オプテ
ィカルインテグレータ12は複数の微小レンズ(ハエの
眼レンズ)12i(i=1〜N)を2次元的に所定のピ
ッチで配列して構成しており、その射出面12b近傍に
2次光源を形成している。12cは絞りであり、オプテ
ィカルインテグレータ12の射出面12b近傍の2次光
源面に位置している。7はミラーである。13は集光レ
ンズである。
Reference numeral 11 denotes a lens system, which is composed of a condenser lens, a zoom lens and the like, and forms a light emitting portion image 2b formed in the vicinity of the second focal point 3b on the entrance surface 12a of the optical integrator 12 via the mirror 6. The optical integrator 12 is configured by arranging a plurality of minute lenses (fly's eye lenses) 12i (i = 1 to N) two-dimensionally at a predetermined pitch, and forms a secondary light source in the vicinity of its exit surface 12b. are doing. A stop 12c is located on the secondary light source surface near the exit surface 12b of the optical integrator 12. 7 is a mirror. Reference numeral 13 is a condenser lens.

【0018】オプティカルインテグレータ12の射出面
12b近傍の2次光源から射出した複数の光束はミラー
7を介して集光レンズ13で集光され、一部がハーフミ
ラー面となっている。ミラー8で反射させて面57に指
向し、面57を均一照明している。14はシャッターで
あり、面57近傍に設けている。15はスリットであ
り、面57に集光した光束の一部を通過させている。
9,10は各々凹面ミラー等から成る集光系であり、ス
リット15の開口を通過した光束で被照射面としてのレ
チクル(フォトマスク7)16を均一照明している。1
は照度センサーであり、ハーフミラー8を通過した光束
を検出して面57、即ち被照射面16上の照度を測定し
ている。53は投影光学系(投影レンズ)であり、レチ
クル16面上の回路パターンをウエハチャックに載置し
たウエハ(基板)54面上に縮小投影している。53a
は投影光学系53の瞳面である。
A plurality of light beams emitted from the secondary light source in the vicinity of the emission surface 12b of the optical integrator 12 are condensed by the condenser lens 13 via the mirror 7, and a part thereof is a half mirror surface. The light is reflected by the mirror 8 and directed to the surface 57 to uniformly illuminate the surface 57. A shutter 14 is provided near the surface 57. Reference numeral 15 is a slit that allows a part of the light flux condensed on the surface 57 to pass through.
Reference numerals 9 and 10 each denote a light condensing system including a concave mirror and the like, and uniformly illuminate a reticle (photomask 7) 16 as an illuminated surface with a light beam that has passed through the opening of the slit 15. 1
Is an illuminance sensor, which detects the luminous flux passing through the half mirror 8 and measures the illuminance on the surface 57, that is, the illuminated surface 16. Reference numeral 53 is a projection optical system (projection lens), which reduces and projects the circuit pattern on the surface of the reticle 16 onto the surface of a wafer (substrate) 54 mounted on a wafer chuck. 53a
Is the pupil plane of the projection optical system 53.

【0019】本実施例においては発光部2aと第2焦点
3bとオプティカルインテグレータ12の入射面12a
が略共役関係となっている。又絞り12cと投影光学系
53の瞳面53aとが略共役関係となっている。
In this embodiment, the light emitting portion 2a, the second focal point 3b, and the incident surface 12a of the optical integrator 12 are used.
Are in a substantially conjugate relationship. Further, the diaphragm 12c and the pupil plane 53a of the projection optical system 53 have a substantially conjugate relationship.

【0020】本実施例では以上のような構成によりレチ
クル16面上のパターンをウエハ54面上に縮小投影露
光している。そして所定の現像処理過程を経て半導体素
子を製造している。
In this embodiment, the pattern on the surface of the reticle 16 is reduced and projected onto the surface of the wafer 54 by the above structure. Then, a semiconductor device is manufactured through a predetermined developing process.

【0021】56は差動増幅器であり、照度センサー1
からの信号と被照射面上の照度を予め設定する信号を出
す照度指令部55からの指令信号との差分から作られる
信号を増幅して、電力制御信号として出力している。
Reference numeral 56 denotes a differential amplifier, which is an illuminance sensor 1
Signal and a command signal from the illuminance command section 55 that outputs a signal for presetting the illuminance on the surface to be illuminated are amplified and output as a power control signal.

【0022】本実施例では差動増幅器56からの電力制
御信号を点灯装置51で電力に変換し、該電力の大きさ
に基づいて光源手段2の点灯(発光量)の強弱を制御し
ている。
In this embodiment, the power control signal from the differential amplifier 56 is converted into power by the lighting device 51, and the intensity of lighting (the amount of light emission) of the light source means 2 is controlled based on the magnitude of the power. .

【0023】一方、差動増幅器56からの電力制御信号
は流量制御装置52に入力している。流量制御装置52
は電力制御信号の大きさに基づいてノズル4から流出す
る空気を制御して光源手段2を強制冷却して温度上昇を
防止している。
On the other hand, the power control signal from the differential amplifier 56 is input to the flow rate control device 52. Flow controller 52
Controls the air flowing out from the nozzle 4 based on the magnitude of the power control signal to forcibly cool the light source means 2 to prevent the temperature rise.

【0024】このように本実施例では光源手段2の点灯
の強弱を制御する電力制御信号を用いて光源手段を強制
冷却し、これにより光源手段の温度を検出する為の温度
センサーを用いずに光源手段の温度を効率的に制御して
いる。
As described above, in the present embodiment, the light source means is forcibly cooled by using the power control signal for controlling the lighting intensity of the light source means 2, thereby eliminating the use of the temperature sensor for detecting the temperature of the light source means. The temperature of the light source means is efficiently controlled.

【0025】図2は図1の光源手段2近傍の拡大説明図
である。ノズル4a,4bの噴出口は水銀ランプ2の電
極部分である口金19a,19b部分を冷却するように
設定している。ノズル4a,4bには水銀ランプ2のプ
ラス極とマイナス極の劣化状況が異なることから任意の
流量が調整できるように絞り弁21a,21bを設けて
いる。流量制御装置52は絞り弁21a,21bに圧縮
空気を流入させている。このとき流量制御装置52は差
動増幅器56からの電力制御信号をサーボ弁駆動用の電
流信号に変換し、該電流信号に比例して図3に示すよう
に絞り弁21への圧縮空気の流量を調整している。
FIG. 2 is an enlarged explanatory view of the vicinity of the light source means 2 of FIG. The outlets of the nozzles 4a and 4b are set so as to cool the bases 19a and 19b, which are the electrode portions of the mercury lamp 2. Since the deterioration conditions of the positive electrode and the negative electrode of the mercury lamp 2 are different, the nozzles 4a and 4b are provided with throttle valves 21a and 21b so that an arbitrary flow rate can be adjusted. The flow rate control device 52 causes compressed air to flow into the throttle valves 21a and 21b. At this time, the flow rate control device 52 converts the power control signal from the differential amplifier 56 into a current signal for driving the servo valve, and the flow rate of the compressed air to the throttle valve 21 is proportional to the current signal as shown in FIG. Is being adjusted.

【0026】図4は本発明の照明装置の実施例2の一部
分の拡大説明図である。
FIG. 4 is an enlarged explanatory view of a part of the second embodiment of the illuminating device of the present invention.

【0027】本実施例では流量制御装置として第1流量
制御ユニット30、第2流量制御ユニット31、そして
第3流量制御ユニット32の3つのを用いている。そし
て第1流量制御ユニット30には圧力センサ28aで圧
力の管理をし、絞り弁27aによりその流量を調節して
いる。又、逆止弁26aにより逆流防止をしている。第
1流量制御ユニット30は水銀ランプ2の点灯又は消灯
にかかわらず、ある一定量の流量で冷却をしている。第
2流量制御ユニット31と第3流量制御ユニット32は
第1流量制御ユニット30に方向切換弁29(29b,
29c)が付加されたものであり、これを制御すること
で冷却を可変化している。
In this embodiment, three flow rate control devices, a first flow rate control unit 30, a second flow rate control unit 31, and a third flow rate control unit 32 are used. The pressure sensor 28a controls the pressure in the first flow rate control unit 30, and the flow rate is adjusted by the throttle valve 27a. The check valve 26a prevents backflow. The first flow rate control unit 30 is cooling at a certain constant flow rate regardless of whether the mercury lamp 2 is turned on or off. The second flow rate control unit 31 and the third flow rate control unit 32 include a directional control valve 29 (29b,
29c) is added, and the cooling is made variable by controlling this.

【0028】具体的には電力制御信号と予め設定してお
いた参照信号とを比較し、その出力信号で方向切換弁2
9b,29cを制御している。冷却方法はある電力値で
第2流量制御ユニット31の方向切換弁29bがON
し、第1流量制御ユニット30と第2流量制御ユニット
31の和の流量で水銀ランプ2を冷却している。更に電
力値が上がるとある電力値で第3流量制御ユニット32
の方向切換弁29cがONし、前の2つのユニット3
0,31に更にたし合わされた流量で水銀ランプ2を冷
却する。
Specifically, the power control signal is compared with a preset reference signal, and the output signal thereof is used for the directional control valve 2
9b and 29c are controlled. As for the cooling method, the direction switching valve 29b of the second flow rate control unit 31 is turned on at a certain electric power value.
Then, the mercury lamp 2 is cooled at the total flow rate of the first flow rate control unit 30 and the second flow rate control unit 31. When the power value further increases, the third flow rate control unit 32 is operated at a certain power value.
Direction switching valve 29c is turned on, and the previous two units 3
The mercury lamp 2 is cooled at a flow rate of 0, 31.

【0029】図5はこのときの電力と空気流量との関係
を示す説明図である。
FIG. 5 is an explanatory diagram showing the relationship between the electric power and the air flow rate at this time.

【0030】図6は本発明の照明装置の実施例3の一部
分の拡大説明図である。
FIG. 6 is an enlarged explanatory view of a part of the third embodiment of the illuminating device of the present invention.

【0031】本実施例は図4の実施例2に比べて第1流
量制御ユニット30に方向切換弁29aを追加した点が
大きく異なっている。
The present embodiment is greatly different from the second embodiment in FIG. 4 in that a direction switching valve 29a is added to the first flow rate control unit 30.

【0032】本実施例ではある電力値で第1流量制御ユ
ニット30の方向切換弁29aがONし、水銀ランプ2
を冷却している。更に電力値が上がり、ある電力値にな
ると第1流量制御ユニット30の方向切換弁29aがO
FFし、第2流量制御ユニット31の方向切換弁29b
がONする。更に電力値が上がると第2流量制御ユニッ
ト31の方向切換弁29bがOFFし、第3流量制御ユ
ニット32の方向切換弁39cがONする。それぞれの
ユニットにある絞り弁27a,27b,27cを調節
し、水銀ランプ2の特性を電力より計算される流量に設
定して、これにより図7に示すような可変冷却を可能と
している。
In this embodiment, the directional control valve 29a of the first flow control unit 30 is turned on at a certain power value, and the mercury lamp 2
Is cooling. When the electric power value further rises and reaches a certain electric power value, the directional control valve 29a of the first flow control unit 30 is turned off.
FF, and the direction switching valve 29b of the second flow rate control unit 31
Turns on. When the power value further increases, the direction switching valve 29b of the second flow rate control unit 31 turns off, and the direction switching valve 39c of the third flow rate control unit 32 turns on. The throttle valves 27a, 27b, 27c in each unit are adjusted to set the characteristic of the mercury lamp 2 to a flow rate calculated from the electric power, thereby enabling variable cooling as shown in FIG.

【0033】図5に対し、図7では冷却空気流量を0と
することができ、更に流量制御ユニットをパラレル動作
できるので図5に対し流量調整が容易になるという長所
がある。
In contrast to FIG. 5, in FIG. 7, the cooling air flow rate can be set to 0, and since the flow rate control units can be operated in parallel, the flow rate adjustment is easier than in FIG.

【0034】次に図1で説明した露光装置を利用したデ
バイスの製造方法の実施例を説明する。
Next, an embodiment of a method of manufacturing a device using the exposure apparatus described in FIG. 1 will be described.

【0035】図8は半導体デバイス(ICやLSI等の
半導体チップ、或は液晶パネルやCCD等)の製造のフ
ローを示す。
FIG. 8 shows a flow of manufacturing a semiconductor device (semiconductor chip such as IC or LSI, or liquid crystal panel, CCD or the like).

【0036】ステップ1(回路設計)では半導体デバイ
スの回路設計を行う。ステップ2(マスク製作)では設
計した回路パターンを形成したマスクを製作する。一
方、ステップ3(ウエハ製造)ではシリコン等の材料を
用いてウエハを製造する。ステップ4(ウエハプロセ
ス)は前工程と呼ばれ、上記用意したマスクとウエハを
用いてリソグラフィ技術によってウエハ上に実際の回路
を形成する。
In step 1 (circuit design), a semiconductor device circuit is designed. In step 2 (mask manufacturing), a mask having the designed circuit pattern is manufactured. On the other hand, in step 3 (wafer manufacturing), a wafer is manufactured using a material such as silicon. Step 4 (wafer process) is called a pre-process, and an actual circuit is formed on the wafer by a lithography technique using the mask and the wafer prepared above.

【0037】次のステップ5(組立)は後工程と呼ば
れ、ステップ4によって作製されたウエハを用いて半導
体チップ化する工程であり、アッセンブリ工程(ダイシ
ング、ボンディング)、パッケージング工程(チップ封
入)等の工程を含む。ステップ6(検査)ではステップ
5で作製された半導体デバイスの動作確認テスト、耐久
性テスト等の検査を行なう。こうした工程を経て半導体
デバイスが完成し、これが出荷(ステップ7)される。
The next step 5 (assembly) is called a post-process, and is a process of forming a semiconductor chip by using the wafer manufactured in step 4, an assembly process (dicing, bonding), a packaging process (chip encapsulation). Etc. are included. In step 6 (inspection), the semiconductor device manufactured in step 5 undergoes inspections such as an operation confirmation test and a durability test. Through these steps, the semiconductor device is completed and shipped (step 7).

【0038】図9は上記ウエハプロセスの詳細なフロー
を示す。
FIG. 9 shows a detailed flow of the wafer process.

【0039】ステップ11(酸化)ではウエハの表面を
酸化させる。ステップ12(CVD)ではウエハ表面に
絶縁膜を形成する。ステップ13(電極形成)ではウエ
ハ上に電極を蒸着によって形成する。ステップ14(イ
オン打込み)ではウエハにイオンを打ち込む。ステップ
15(レジスト処理)ではウエハに感光剤を塗布する。
ステップ16(露光)では上記説明した露光装置によっ
てマスクの回路パターンをウエハに焼付露光する。
In step 11 (oxidation), the surface of the wafer is oxidized. In step 12 (CVD), an insulating film is formed on the wafer surface. In step 13 (electrode formation), electrodes are formed on the wafer by vapor deposition. In step 14 (ion implantation), ions are implanted in the wafer. In step 15 (resist processing), a photosensitive agent is applied to the wafer.
In step 16 (exposure), the circuit pattern of the mask is printed and exposed on the wafer by the exposure apparatus described above.

【0040】ステップ17(現像)では露光したウエハ
を現像する。ステップ18(エッチング)では現像した
レジスト像以外の部分を削り取る。ステップ19(レジ
スト剥離)ではエッチングがすんで不要となったレジス
トを取り除く。これらのステップを繰り返し行なうこと
によってウエハ上に多重に回路パターンが形成される。
In step 17 (development), the exposed wafer is developed. In step 18 (etching), parts other than the developed resist image are removed. In step 19 (resist peeling), the resist that has become unnecessary due to etching is removed. By repeating these steps, multiple circuit patterns are formed on the wafer.

【0041】本実施例の製造方法を用いれば、従来は製
造が難しかった高集積度の半導体デバイスを製造するこ
とができる。
By using the manufacturing method of this embodiment, it is possible to manufacture a highly integrated semiconductor device which has been difficult to manufacture in the past.

【0042】[0042]

【発明の効果】本発明によれば以上のように、光源手段
からの発光量を制御する電力制御信号が光源手段の温度
と略比例関係にあることを利用し、該電力制御信号に基
づいて光源手段を冷却する冷却手段の動作を制御し、こ
れにより温度センサーを用いずに簡素化された制御系に
よって光源手段が予め設定した温度以上に上昇しないよ
うにし、被照射面上を常に安定した照度で照明すること
により半導体デバイスを安定的に高精度でかつ高いスル
ープットで製造することができる照明装置及びそれを用
いた投影露光装置を達成することができる。
As described above, according to the present invention, the fact that the power control signal for controlling the amount of light emitted from the light source means is substantially proportional to the temperature of the light source means is utilized, and based on the power control signal. The operation of the cooling means for cooling the light source means is controlled so that the light source means is prevented from rising above a preset temperature by a simplified control system without using a temperature sensor, and the irradiated surface is always stabilized. It is possible to achieve an illuminating device and a projection exposure apparatus using the illuminating device that can stably manufacture semiconductor devices with high accuracy and high throughput by illuminating with illuminance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の照明装置及びそれを用いた投影露光装
置の実施例1の要部概略図
FIG. 1 is a schematic view of a main part of a first embodiment of an illumination device of the present invention and a projection exposure apparatus using the same.

【図2】図1の一部分の拡大説明図FIG. 2 is an enlarged explanatory view of a part of FIG.

【図3】図1の光源手段における電力と空気流量との関
係を示す説明図
FIG. 3 is an explanatory diagram showing a relationship between electric power and air flow rate in the light source means of FIG.

【図4】本発明の照明装置及びそれを用いた投影露光装
置の実施例2の一部分の拡大説明図
FIG. 4 is an enlarged explanatory view of a part of a second embodiment of the illumination device and the projection exposure apparatus using the same according to the present invention.

【図5】図4の光源手段における電力と空気流量との関
係を示す説明図
5 is an explanatory diagram showing the relationship between electric power and air flow rate in the light source means of FIG.

【図6】本発明の照明装置及びそれを用いた投影露光装
置の実施例3の一部分の拡大説明図
FIG. 6 is an enlarged explanatory view of a part of a third embodiment of the illumination device and the projection exposure apparatus using the same according to the present invention.

【図7】図6の光源手段における電力と空気流量との関
係を示す説明図
7 is an explanatory view showing the relationship between the electric power and the air flow rate in the light source means of FIG.

【図8】本発明の半導体デバイスの製造方法のフローチ
ャート
FIG. 8 is a flowchart of a method for manufacturing a semiconductor device according to the present invention.

【図9】本発明の半導体デバイスの製造方法のフローチ
ャート
FIG. 9 is a flowchart of a method for manufacturing a semiconductor device of the present invention.

【符号の説明】[Explanation of symbols]

1 照度センサー 2 光源手段 3 楕円鏡 4(4a,4b) ノズル 5,6,7,8 ミラー 11 レンズ系 12 オプティカルインテグレータ 13 集光レンズ 16 第1物体面(レチクル) 51 点灯手段 52 流量制御手段 53 投影光学系 54 第2物体面(ウエハ) 55 照度指令部 56 差動増幅器 1 Illuminance sensor 2 Light source means 3 Elliptical mirror 4 (4a, 4b) Nozzle 5, 6, 7, 8 Mirror 11 Lens system 12 Optical integrator 13 Condensing lens 16 First object surface (reticle) 51 Lighting means 52 Lighting control means 53 Projection optical system 54 Second object plane (wafer) 55 Illuminance command unit 56 Differential amplifier

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/30 516 E 516 D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01L 21/30 516 E 516 D

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 電力制御信号で発光量を制御するように
した光源手段からの光束で照明系を介して被照射面上を
照明する際、該電力制御信号に基づいて冷却手段で該光
源手段を強制冷却していることを特徴とする照明装置。
1. When illuminating a surface to be illuminated through a lighting system with a light flux from a light source means whose light emission amount is controlled by a power control signal, the light source means is cooled by a cooling means based on the power control signal. A lighting device characterized by being forcedly cooled.
【請求項2】 前記冷却手段は空気の流量を制御する流
量制御手段と該空気を噴出するノズルとを有し、該流量
制御手段で制御した空気を該ノズルから前記光源手段に
吹き付けて該光源手段を強制冷却していることを特徴と
する請求項1の照明装置。
2. The light source, wherein the cooling means has a flow rate control means for controlling a flow rate of air and a nozzle for ejecting the air, and the air controlled by the flow rate control means is blown from the nozzle to the light source means. The lighting device according to claim 1, wherein the means is forcibly cooled.
【請求項3】 前記電力制御信号は前記被照射面上の照
度を検出する照度センサーからの信号と該被照射面上の
照度を予め設定する為の照度指令部からの信号とを利用
して生成していることを特徴とする請求項1の照明装
置。
3. The power control signal utilizes a signal from an illuminance sensor that detects the illuminance on the illuminated surface and a signal from an illuminance command unit for presetting the illuminance on the illuminated surface. The lighting device according to claim 1, wherein the lighting device is generated.
【請求項4】 照明手段からの光束で照明した第1物体
面上のパターンを投影光学系で第2物体面上に投影する
際、該照明手段は電力制御信号で発光量を制御するよう
にした光源手段からの光束で照明系を介して該第1物体
面上を照明し、該電力制御信号に基づいて冷却手段で該
光源手段を強制冷却していることを特徴とする投影露光
装置。
4. When the pattern on the first object plane illuminated by the luminous flux from the illuminating means is projected onto the second object plane by the projection optical system, the illuminating means controls the light emission amount by the power control signal. The projection exposure apparatus is characterized in that the first object plane is illuminated with a light beam from the light source means through an illumination system, and the light source means is forcibly cooled by a cooling means based on the power control signal.
【請求項5】 前記冷却手段は空気の流量を制御する流
量制御手段と該空気を噴出するノズルとを有し、該流量
制御手段で制御した空気を該ノズルから前記光源手段に
吹き付けて該光源手段を強制冷却していることを特徴と
する請求項4の投影露光装置。
5. The light source, wherein the cooling means has a flow rate control means for controlling a flow rate of air and a nozzle for ejecting the air, and the air controlled by the flow rate control means is blown from the nozzle to the light source means. 5. The projection exposure apparatus according to claim 4, wherein the means is forcibly cooled.
【請求項6】 前記電力制御信号は前記被照射面上の照
度を検出する照度センサーからの信号と該被照射面上の
照度を予め設定する為の照度指令部からの信号とを利用
して生成していることを特徴とする請求項4の投影露光
装置。
6. The power control signal utilizes a signal from an illuminance sensor that detects the illuminance on the illuminated surface and a signal from an illuminance command unit for presetting the illuminance on the illuminated surface. The projection exposure apparatus according to claim 4, wherein the projection exposure apparatus is generated.
【請求項7】 照明手段からの光束で照明したレチクル
面上のパターンを投影光学系でウエハ面上に投影露光し
た後、該ウエハを現像処理工程を介して半導体デバイス
を製造する際、該照明手段は電力制御信号で発光量を制
御するようにした光源手段からの光束で照明系を介して
該レチクル面上を照明し、該電力制御信号に基づいて冷
却手段で該光源手段を強制冷却していることを特徴とす
る半導体デバイスの製造方法。
7. When a semiconductor device is manufactured through a development processing step after projecting and exposing a pattern on a reticle surface illuminated by a light flux from an illuminating means onto a wafer surface by a projection optical system, the illumination The means illuminates the surface of the reticle with a light flux from the light source means whose power control signal controls the amount of light emission, and the cooling means forcibly cools the light source means based on the power control signal. A method for manufacturing a semiconductor device, comprising:
【請求項8】 前記冷却手段は空気の流量を制御する流
量制御手段と該空気を噴出するノズルとを有し、該流量
制御手段で制御した空気を該ノズルから前記光源手段に
吹き付けて該光源手段を強制冷却していることを特徴と
する請求項7の半導体デバイスの製造方法。
8. The light source, wherein the cooling means has a flow rate control means for controlling a flow rate of air and a nozzle for ejecting the air, and the air controlled by the flow rate control means is blown from the nozzle to the light source means. 8. The method for manufacturing a semiconductor device according to claim 7, wherein the means is forcibly cooled.
【請求項9】 前記電力制御信号は前記被照射面上の照
度を検出する照度センサーからの信号と該被照射面上の
照度を予め設定する為の照度指令部からの信号とを利用
して生成していることを特徴とする請求項7の半導体デ
バイスの製造方法。
9. The power control signal uses a signal from an illuminance sensor that detects the illuminance on the illuminated surface and a signal from an illuminance command unit for presetting the illuminance on the illuminated surface. The semiconductor device manufacturing method according to claim 7, wherein the semiconductor device is generated.
JP32143794A 1994-11-30 1994-11-30 Illumination apparatus and projection exposure apparatus using the same Expired - Fee Related JP3163924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32143794A JP3163924B2 (en) 1994-11-30 1994-11-30 Illumination apparatus and projection exposure apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32143794A JP3163924B2 (en) 1994-11-30 1994-11-30 Illumination apparatus and projection exposure apparatus using the same

Publications (2)

Publication Number Publication Date
JPH08162396A true JPH08162396A (en) 1996-06-21
JP3163924B2 JP3163924B2 (en) 2001-05-08

Family

ID=18132553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32143794A Expired - Fee Related JP3163924B2 (en) 1994-11-30 1994-11-30 Illumination apparatus and projection exposure apparatus using the same

Country Status (1)

Country Link
JP (1) JP3163924B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013196800A (en) * 2012-03-15 2013-09-30 Iwasaki Electric Co Ltd Light irradiation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013196800A (en) * 2012-03-15 2013-09-30 Iwasaki Electric Co Ltd Light irradiation device

Also Published As

Publication number Publication date
JP3163924B2 (en) 2001-05-08

Similar Documents

Publication Publication Date Title
JP2862477B2 (en) Exposure apparatus and method for manufacturing device using the exposure apparatus
JP2893778B2 (en) Exposure equipment
JP3472249B2 (en) Illumination device using a plurality of light sources, illumination control device and method, and exposure device
JPH10135123A (en) Projection aligenr and manufacturing semiconductor device, using the same
JP3057998B2 (en) Illumination device and projection exposure apparatus using the same
JP2001284240A (en) Illuminating optical system, projection exposure system equipped therewith, method of manufacturing device by use of projection exposure system
US6285442B1 (en) Exposure apparatus and device manufacturing method using the exposure apparatus
JP3599629B2 (en) Illumination optical system and exposure apparatus using the illumination optical system
JPH11317349A (en) Projection aligner and method for manufacturing device using the same
JP2765422B2 (en) Exposure apparatus and method for manufacturing semiconductor device using the same
JPH0737774A (en) Scanning aligner
JPH11354425A (en) Scanning projection aligner and manufacture of device using the same
US20040256574A1 (en) Exposure apparatus and device fabrication method
JP2001244183A (en) Projection exposure system
JP3008744B2 (en) Projection exposure apparatus and semiconductor device manufacturing method using the same
JP2005302825A (en) Exposure system
JP3163924B2 (en) Illumination apparatus and projection exposure apparatus using the same
JP2000260698A (en) Projection aligner and fabrication of semiconductor device employing the same
JP3571935B2 (en) Projection exposure apparatus and device manufacturing method using the same
JPH11338163A (en) Illuminator, aligner and illuminating method
JPH10294271A (en) Illuminating system, aligner and device manufacture
JPH0729816A (en) Projection aligner and fabrication of semiconductor element employing it
JPS61154128A (en) Exposure unit
JP3167101B2 (en) Exposure apparatus and device manufacturing method using the same
JP3376043B2 (en) Illumination device and projection exposure apparatus using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees