JPH08160324A - Polarization state varying device and instrument for measuring dependency on polarization using the same - Google Patents

Polarization state varying device and instrument for measuring dependency on polarization using the same

Info

Publication number
JPH08160324A
JPH08160324A JP29954894A JP29954894A JPH08160324A JP H08160324 A JPH08160324 A JP H08160324A JP 29954894 A JP29954894 A JP 29954894A JP 29954894 A JP29954894 A JP 29954894A JP H08160324 A JPH08160324 A JP H08160324A
Authority
JP
Japan
Prior art keywords
crystal plate
birefringent crystal
wedge
optical
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29954894A
Other languages
Japanese (ja)
Inventor
Norihisa Naganuma
典久 長沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP29954894A priority Critical patent/JPH08160324A/en
Publication of JPH08160324A publication Critical patent/JPH08160324A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

PURPOSE: To provide a polarization state varying device which easily varies a polarization state to the entire state and an instrument for measuring dependency on polarization which is capable of quantitatively measuring the dependency on polarization or the characteristics of an optical device. CONSTITUTION: This polarization state varying device has a first wedge type double refractive crystal plate 25 arranged in such a manner that its optical axis intersects orthogonally with the optical axis of an incident side optical transmission line 11 and that its one plane intersecting orthogonally with the optical axis faces the exit face of this incident side optical transmission line 11, a second wedge type double refractive crystal plate 26 arranged in such a manner that its slope parallels in proximity to the slope of the first wedge type double refractive crystal plate 25 and that its optical axis intersects orthogonally with the optical axis of the first wedge type double refractive crystal plate 25 and the optical axis of the incident side optical transmission line 11, an exit side optical transmission line 15 which transmits the exit light of the second wedge type double refractive crystal plate 26 and a driving means which moves either one of the first and second wedge type double refractive crystal plates back and forth in a direction where the optical path length changes.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、偏光状態可変器及びそ
れを用いた偏光依存性測定装置に関する。近年は、長さ
が数メートル乃至数百メートルの1.55μm 近傍の波長の
光信号を伝送する希土類元素添加光ファイバに、励起光
源から1.48μm 程度の波長の励起光を投入し合波させ
て、希土類元素添加光ファイバの誘導放出により光信号
を増幅する光増幅器を用いた、光通信システムが提供さ
れつつある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarization state variator and a polarization dependence measuring device using the same. In recent years, a rare earth element-doped optical fiber that transmits an optical signal with a wavelength in the vicinity of 1.55 μm with a length of several meters to several hundred meters is injected with pumping light with a wavelength of about 1.48 μm from a pumping light source and then combined. An optical communication system using an optical amplifier that amplifies an optical signal by stimulated emission of a rare earth element-doped optical fiber is being provided.

【0002】以下、図10を参照しながら光増幅器につ
いて説明する。図10において、1はエルビウム等の希
土類元素をドープした数メートル乃至数百メートルと長
い希土類元素添加光ファイバである。
An optical amplifier will be described below with reference to FIG. In FIG. 10, reference numeral 1 denotes an optical fiber doped with a rare earth element such as erbium and having a long length of several meters to several hundred meters.

【0003】1-1 は、希土類元素添加光ファイバ1の出
射端末に装着された入射側ファイバ・レンズアセンブリ
である。3-1 は、励起光源3の励起光を希土類元素添加
光ファイバ1に投入する励起側ファイバ・レンズアセン
ブリであり、2-1 は出力光ファイバ2の入射端末に装着
された出射側ファイバ・レンズアセンブリである。
Reference numeral 1-1 is an incident side fiber / lens assembly mounted on the exit end of the rare earth element-doped optical fiber 1. Reference numeral 3-1 is an excitation side fiber lens assembly for introducing the excitation light of the excitation light source 3 into the rare earth element-doped optical fiber 1, and 2-1 is an emission side fiber lens attached to the incident end of the output optical fiber 2. It is an assembly.

【0004】4-1は、選択した側壁4A、側壁4Aに直交す
る第1の隣接側壁4B、第1の隣接側壁4Bに直交する対向
側壁4C、対向側壁4Cに直交する第2の隣接側壁4Dの4側
壁を備えた4角形状の筐体である。
4-1 is a selected side wall 4A, a first adjacent side wall 4B orthogonal to the side wall 4A, an opposite side wall 4C orthogonal to the first adjacent side wall 4B, and a second adjacent side wall 4D orthogonal to the opposite side wall 4C. It is a quadrangular casing having four side walls.

【0005】5は、励起光源3の出射光のなかの励起光
(波長は1.48μm 前後)を透過し、希土類元素添加光フ
ァイバ1の出射光(波長は1.55μm )は反射する波長分
割光学膜である。
Reference numeral 5 is a wavelength division optical film which transmits the excitation light (wavelength is about 1.48 μm) among the light emitted from the excitation light source 3 and reflects the light emitted from the rare earth element-doped optical fiber 1 (wavelength is 1.55 μm). Is.

【0006】6は、波長分割光学膜5と出射側ファイバ
・レンズアセンブリ2-1 との間に挿入される光アイソレ
ータである。入射側ファイバ・レンズアセンブリ1-1
は、筐体4-1 の選択した側壁4Aを垂直に貫通して筐体4-
1 に装着されている。励起側ファイバ・レンズアセンブ
リ3-1は、光軸が入射側ファイバ・レンズアセンブリ1-1
の光軸に一致するよう、対向する側壁4Cを垂直に貫通
して筐体4-1 に装着されている。
An optical isolator 6 is inserted between the wavelength division optical film 5 and the output side fiber / lens assembly 2-1. Incident fiber / lens assembly 1-1
Vertically penetrates the selected side wall 4A of the housing 4-1.
Installed in 1. The excitation side fiber lens assembly 3-1 has an optical axis on the incident side fiber lens assembly 1-1.
It is attached to the housing 4-1 by vertically penetrating the opposing side wall 4C so as to coincide with the optical axis of.

【0007】波長分割光学膜5は入射側ファイバ・レン
ズアセンブリ1-1 の光軸に対して45度傾斜して、入射側
ファイバ・レンズアセンブリ1-1 と励起側ファイバ・レ
ンズアセンブリ3-1 とのほぼ中間位置で筐体4-1 内に装
着されている。
The wavelength division optical film 5 is tilted by 45 degrees with respect to the optical axis of the incident side fiber lens assembly 1-1 to form an incident side fiber lens assembly 1-1 and an excitation side fiber lens assembly 3-1. It is mounted in the case 4-1 at a position approximately midway between.

【0008】一方、出力光ファイバ2は波長分割光学膜
5の反射光が光アイソレータ6を経て入射するように、
隣接する側壁4Dを垂直に貫通して、筐体4-1 に装着され
ている。
On the other hand, in the output optical fiber 2, the reflected light of the wavelength division optical film 5 enters through the optical isolator 6,
It is attached to the housing 4-1 by vertically penetrating the adjacent side wall 4D.

【0009】上述のように構成されているので、励起光
源3の励起光が希土類元素添加光ファイバ1に入射し
て、希土類元素添加光ファイバ1に伝送されきた信号光
を増幅する。
With the above configuration, the pumping light from the pumping light source 3 is incident on the rare earth element-doped optical fiber 1 and amplifies the signal light transmitted to the rare earth element-doped optical fiber 1.

【0010】そして増幅された信号光は、入射側ファイ
バ・レンズアセンブリ1-1 から出射して波長分割光学膜
5に投射され、波長分割光学膜5で90度の方向に反射
し、光アイソレータ6を経て出射側ファイバ・レンズア
センブリ2-1に入射し出力光ファイバ2に伝送される。
The amplified signal light is emitted from the incident side fiber / lens assembly 1-1, projected on the wavelength division optical film 5, reflected by the wavelength division optical film 5 in the direction of 90 degrees, and then reflected by the optical isolator 6. Then, the light enters the output side fiber / lens assembly 2-1 and is transmitted to the output optical fiber 2.

【0011】上述のように光増幅技術を応用した光通信
システムでは、シングルモード光ファイバを伝送する偏
光状態が、光ファイバに加えられる応力,張力,温度等
の外乱により時々刻々変化するため、受光感度もそれに
応じて変動し、符号誤りが発生する。
As described above, in the optical communication system to which the optical amplification technology is applied, the polarization state transmitted through the single mode optical fiber changes momentarily due to disturbances such as stress, tension and temperature applied to the optical fiber. The sensitivity also fluctuates accordingly, and a code error occurs.

【0012】即ち、光増幅器には偏光依存性がある。し
たがって、数十段乃至百段に増幅中継してゆく光通信シ
ステムでは、偏光依存性が大きいと、累積されて数dB乃
至数十dBのレベル変動となる。
That is, the optical amplifier has polarization dependency. Therefore, in an optical communication system in which amplification and relay are performed in tens to hundreds of stages, if the polarization dependency is large, the accumulated level changes by several dB to several tens of dB.

【0013】よって光増幅器には、入射する光のいかな
る偏光状態においても、安定な増幅特性が要求される。
上述のように、光増幅器には偏光依存性があるので、光
増幅器の性能試験の実施に際しては、入射光の偏光状態
(直線偏光,円偏光,楕円率が異なる楕円偏光等をい
う)を変えて実施する必要がある。
Therefore, the optical amplifier is required to have stable amplification characteristics in any polarization state of incident light.
As described above, since the optical amplifier has polarization dependence, when performing the performance test of the optical amplifier, the polarization state of the incident light (linear polarization, circular polarization, elliptically polarized light with different ellipticity, etc.) is changed. Need to be implemented.

【0014】[0014]

【従来の技術】従来は、LD,端面発光高出力LED等
の光源と、光増幅器の希土類元素添加光ファイバとの間
を、シングルモード光ファイバで接続する。
2. Description of the Related Art Conventionally, a single mode optical fiber is used to connect a light source such as an LD or an edge emitting high output LED to a rare earth element-doped optical fiber of an optical amplifier.

【0015】そして、シングルモード光ファイバを捩じ
って応力を付与したり、シングルモード光ファイバを円
形に曲げて応力を付与することで、光増幅器に入射する
光の偏光状態を変えていた。
Then, the polarization state of the light incident on the optical amplifier is changed by twisting the single mode optical fiber to give stress or bending the single mode optical fiber in a circular shape to give stress.

【0016】[0016]

【発明が解決しようとする課題】上述のように、光ファ
イバを捩じったり円形に曲げたりして、応力を付与する
ことで、偏光状態を変える従来の手段は、異なる多数の
偏光状態に変えるのに多大の時間を要するばかりでな
く、偏光状態を全状態(直線偏光,円偏光,楕円率が異
なる楕円偏光の総ての偏光状態)に変えた否かを確認す
ることができなかった。
As described above, the conventional means for changing the polarization state by twisting or bending the optical fiber into a circular shape and applying a stress to the optical fiber has a plurality of different polarization states. Not only did it take a lot of time to change, but it was not possible to confirm whether the polarization state was changed to all states (linear polarization, circular polarization, or all polarization states of elliptical polarization with different ellipticities). .

【0017】本発明はこのような点に鑑みて創作された
もので、偏光状態を全状態に変えることが容易な偏光状
態可変器を提供することを目的としている。また、他の
目的は、偏光依存性ある光学装置の特性を、定量的に計
測し得る偏光依存性測定装置を提供することにある。
The present invention has been made in view of the above points, and an object thereof is to provide a polarization state variable device in which the polarization state can be easily changed to all states. Another object of the present invention is to provide a polarization dependence measuring device capable of quantitatively measuring the characteristics of the polarization dependent optical device.

【0018】[0018]

【課題を解決するための手段】上記の目的を達成するた
めに本発明は、図1に図示したように、平行光束を出射
する入射側光伝送路11と、光学軸が入射側光伝送路11の
光軸に直交し、且つ、互いに直交する一方の面が入射側
光伝送路11の出射面に対向するよう配置する第1のくさ
び型複屈折結晶板25とを備える。
In order to achieve the above object, the present invention, as shown in FIG. 1, includes an incident side optical transmission line 11 for emitting a parallel light beam and an incident side optical transmission line having an optical axis. The first wedge-shaped birefringent crystal plate 25 is arranged so that one surface thereof, which is orthogonal to the optical axis of 11 and is orthogonal to each other, faces the exit surface of the incident-side optical transmission path 11.

【0019】また、傾斜角が第1のくさび型複屈折結晶
板25の傾斜角に等しい傾斜面を有するくさび形で、傾斜
面が第1のくさび型複屈折結晶板25の傾斜面に近接して
平行し、且つ光学軸が第1のくさび型複屈折結晶板25の
光学軸及び入射側光伝送路11の光軸に直交するよう配置
された第2のくさび型複屈折結晶板26を備える。
Further, it has a wedge shape having an inclined surface whose inclination angle is equal to the inclination angle of the first wedge-shaped birefringent crystal plate 25, and the inclined surface is close to the inclined surface of the first wedge-shaped birefringent crystal plate 25. A second wedge-shaped birefringent crystal plate 26 arranged parallel to each other and having an optical axis orthogonal to the optical axis of the first wedge-shaped birefringent crystal plate 25 and the optical axis of the incident side optical transmission line 11. .

【0020】さらに、第2のくさび型複屈折結晶板26を
透過した光を受光し伝送する出射側光伝送路15と、第
1,第2の何れか一方のくさび型複屈折結晶板を、進行
する光の光路長が変化する方向に往復運動させる駆動手
段とを、備えた構成とする。
Further, the output side optical transmission line 15 for receiving and transmitting the light transmitted through the second wedge-shaped birefringent crystal plate 26, and either the first or the second wedge-shaped birefringent crystal plate, And a driving unit that reciprocates in a direction in which the optical path length of traveling light changes.

【0021】図2に図示したように、第1のくさび型複
屈折結晶板25と第2のくさび型複屈折結晶板27とが、光
学軸が平行するよう配置された構成とする。図3に例示
したように、第1,第2のくさび型複屈折結晶板25,27
が、傾斜面が背向するよう組み合わせられた構成とす
る。
As shown in FIG. 2, the first wedge-shaped birefringent crystal plate 25 and the second wedge-shaped birefringent crystal plate 27 are arranged so that their optical axes are parallel to each other. As illustrated in FIG. 3, the first and second wedge-shaped birefringent crystal plates 25, 27
However, the configuration is such that the inclined surfaces are combined so as to face back.

【0022】図4に図示したように、入射側光伝送路11
と第1のくさび型複屈折結晶板25との間に、光学軸が入
射側光伝送路11の光軸及び第1のくさび型複屈折結晶板
25の光学軸に直交する、平板型複屈折結晶板24が配置さ
れた構成とする。
As shown in FIG. 4, the incident side optical transmission line 11
Between the first wedge type birefringent crystal plate 25 and the first wedge type birefringent crystal plate whose optical axis is the optical axis of the incident side optical transmission line 11.
A flat plate type birefringent crystal plate 24 is arranged so as to be orthogonal to the optical axis of 25.

【0023】図5に例示したように、第1又は第2のく
さび型複屈折結晶板の何れか一方を、光路長が変化する
方向に往復運動させる駆動手段が、入射側光伝送路11の
光軸に直交するガイド溝34を有する基台31と、ガイド溝
34に摺動移動自在に装着され移動すべきくさび型複屈折
結晶板を上部に搭載するスライダー32と、スライダー32
の軸心を貫通することでスライダー32に固着されてなる
棒状の永久磁石33と、電磁石のそれぞれのヨーク36-1,3
6-2 が、永久磁石33のN極端面又はS極端面に所定の間
隙を隔てて対向するよう、スライダー32を挟んで対向配
置されてなる一対の電磁石35-1,35-2 とからなるものと
する。
As illustrated in FIG. 5, the driving means for reciprocating either one of the first and second wedge-shaped birefringent crystal plates in the direction in which the optical path length changes is the incident side optical transmission path 11. A base 31 having a guide groove 34 orthogonal to the optical axis, and a guide groove
A slider 32 that is slidably mounted on the slider 34 and has a wedge-shaped birefringent crystal plate to be moved on top, and a slider 32.
The rod-shaped permanent magnet 33 fixed to the slider 32 by penetrating the shaft center of the
6-2 is composed of a pair of electromagnets 35-1 and 35-2 which are arranged so as to face the N extreme surface or the S extreme surface of the permanent magnet 33 with a predetermined gap therebetween so as to face each other. I shall.

【0024】そして、一対の電磁石35-1,35-2 は、交互
に通電されることで、スライダー32を交互に吸引する構
成とする。図6に例示したように、入射側光伝送路が入
射側偏波面保存光ファイバ11-1であり、その入射側偏波
面保存光ファイバ11-1の偏光軸が、光源10が出射する光
の偏光面に一致している構成とする。
The pair of electromagnets 35-1, 35-2 are alternately energized to alternately attract the slider 32. As illustrated in FIG. 6, the incident-side optical transmission line is the incident-side polarization-maintaining single-mode fiber 11-1, and the polarization axis of the incident-side polarization-maintaining single-mode fiber 11-1 is the same as that of the light emitted from the light source 10. The configuration is such that it matches the plane of polarization.

【0025】図7に図示したように、平板型複屈折結晶
板24と入射側光伝送路11との間に、光学軸が入射側光伝
送路11の光軸に直交する面内で回転可能のように、偏光
子22を装着した構成とする。
As shown in FIG. 7, between the flat plate type birefringent crystal plate 24 and the incident side optical transmission line 11, the optical axis can be rotated in a plane orthogonal to the optical axis of the incident side optical transmission line 11. As described above, the polarizer 22 is attached.

【0026】また、回転可能な偏光子22に代えて1/2
波長板23を、平板型複屈折結晶板24と入射側光伝送路11
との間に装着した構成とする。図8に例示したように、
平行光束を出射する入射側光伝送路11と、光学軸方向の
長さが異なる複数の複屈折結晶薄板50-1,50-2・・・・50-n
が段差を有するよう重層されてなり、光学軸が入射側光
伝送路11の光軸に直交するよう配置される複合複屈折結
晶板50と、複合複屈折結晶板50の出射光を伝送する出射
側光伝送路15と、光路長が変化する方向に複合複屈折結
晶板50を往復運動させる駆動手段とを、備えた構成とす
る。
Further, the rotatable polarizer 22 is replaced by 1/2
The wave plate 23 is connected to the flat birefringent crystal plate 24 and the incident side optical transmission line 11
It will be installed between and. As illustrated in FIG.
Incident-side optical transmission line 11 that emits a parallel light flux, and a plurality of birefringent crystal thin plates 50-1, 50-2, ... 50-n having different lengths in the optical axis direction
Are laminated so as to have a step, and the optical axis of the composite birefringent crystal plate 50 is arranged so as to be orthogonal to the optical axis of the incident-side optical transmission path 11, and the output that transmits the output light of the composite birefringent crystal plate 50. The side light transmission path 15 and a driving means for reciprocating the complex birefringent crystal plate 50 in the direction in which the optical path length changes are provided.

【0027】図10に例示したように、光源10-1と測定
すべき偏光依存性ある光学装置200との間に挿入された
前記各種の偏光状態可変器100 と、光学装置200 の出射
光レベルをモニターするモニタ電流、及び光学装置200
の光出力Pを入力する演算用コンピュータ300 とを備え
る。
As shown in FIG. 10, the above-mentioned various polarization state changers 100 inserted between the light source 10-1 and the polarization-dependent optical device 200 to be measured, and the output light level of the optical device 200. Monitor current and optical device 200
Computer 300 for inputting the optical output P of

【0028】光源10-1が出射する光を偏光状態可変器10
0 で全偏光状態に変えて、光学装置に200 投入し、光学
装置の出力電流I及び光出力Pをコンピュータ300 で読
み取り、出力電流I/光出力Pをコンピュータで演算
し、さらに直流成分と交流成分とに分解し、それぞれの
成分値を表示盤310 にデジタル又はアナログ表示する構
成とする。
The light emitted from the light source 10-1 is changed in polarization state changer 10
At 0, change to the full polarization state, put 200 into the optical device, read the output current I and the optical output P of the optical device with the computer 300, calculate the output current I / optical output P with the computer, and further calculate the DC component and the AC component. It is configured such that it is decomposed into components and each component value is digitally or analogically displayed on the display panel 310.

【0029】偏光状態可変器100 は、光源10-1が出射す
る光を全偏光状態に変えて、光学装置200 に入力するも
のである。コンピュータ300 は、光学装置200 の出力電
流I及び光出力Pを読み取り、出力電流I/光出力Pを
演算し、さらに直流成分と交流成分とに分解し、それぞ
れの成分値を表示盤310 にデジタル又はアナログ表示す
るものである。
The polarization state changer 100 changes the light emitted from the light source 10-1 into all polarization states and inputs the light into the optical device 200. The computer 300 reads the output current I and the optical output P of the optical device 200, calculates the output current I / optical output P, further decomposes them into a DC component and an AC component, and digitally displays the respective component values on the display panel 310. Or, it is an analog display.

【0030】[0030]

【作用】請求項1〜3の発明によれば、第1のくさび型
複屈折結晶板と第2のくさび型複屈折結晶板とを備え、
進行する光の光路長が変化する方向に、第1,第2の何
れか一方のくさび型複屈折結晶板が往復運動するので、
くさび型複屈折結晶板に入射した光は常光と異常光とに
分かれて進行し、その位相差が0から2πの間で繰り返
し変化する。
According to the inventions of claims 1 to 3, a first wedge type birefringent crystal plate and a second wedge type birefringent crystal plate are provided.
Since the wedge-shaped birefringent crystal plate of either the first or the second reciprocates in the direction in which the optical path length of the traveling light changes,
The light incident on the wedge-shaped birefringent crystal plate advances into ordinary light and extraordinary light, and the phase difference thereof repeatedly changes between 0 and 2π.

【0031】したがって、直線偏光−楕円偏光−円偏光
−楕円偏光−直線偏光を繰り返す偏光が第2のくさび型
複屈折結晶板から出射する。よって、全偏光状態が短時
間に確実に得られる また、請求項2の発明において、第1のくさび型複屈折
結晶板と第2のくさび型複屈折結晶板とを双方の傾斜面
が近接するように配置することで、第2のくさび型複屈
折結晶板の出射光の光軸が入射側光伝送路の光軸に一致
する。
Therefore, polarized light which repeats linearly polarized light-elliptically polarized light-circularly polarized light-elliptically polarized light-linearly polarized light is emitted from the second wedge-shaped birefringent crystal plate. Therefore, the entire polarization state can be reliably obtained in a short time. Further, in the invention of claim 2, both the inclined surfaces of the first wedge-shaped birefringent crystal plate and the second wedge-shaped birefringent crystal plate are close to each other. With this arrangement, the optical axis of the light emitted from the second wedge-shaped birefringent crystal plate coincides with the optical axis of the incident-side optical transmission line.

【0032】また、請求項3の発明によれば、第2のく
さび型複屈折結晶板の出射光の光軸が入射側光伝送路11
の光軸に平行になる。請求項4の発明において、平板型
複屈折結晶板の厚さを選択することで、進行する平行光
束の中心部と外側部を進行する光成分の位相差を零にす
ることができるので、入射側光伝送路の出射光のビーム
径が大きい場合に適用して、良特性の偏光状態可変器が
得られる。
According to the invention of claim 3, the optical axis of the light emitted from the second wedge-shaped birefringent crystal plate is the incident side optical transmission line 11.
It becomes parallel to the optical axis of. In the invention of claim 4, by selecting the thickness of the flat plate type birefringent crystal plate, the phase difference between the light components traveling in the central portion and the outer portion of the traveling parallel light flux can be made zero. A polarization state variator with good characteristics can be obtained by applying it when the beam diameter of the outgoing light from the side optical transmission line is large.

【0033】請求項5の発明によれば、第1又は第2の
くさび型複屈折結晶板の何れか一方を往復運動させる駆
動手段の構造が簡単である。請求項6の発明のように、
入射側光伝送路を偏波面保存光ファイバとし、且つ入射
側偏波面保存光ファイバの偏光軸を、光源が出射する偏
光の偏光面に一致させることにより、直線偏光を第1の
くさび型複屈折結晶板又は平板型複屈折結晶板に入射す
る。したがって、第1のくさび型複屈折結晶板と第2の
くさび型複屈折結晶板の光路長が等しい位置に、往復移
動の始点を調整しておくことにより、偏光状態可変器の
出射光の可変の起点を直線偏光とすることができる。
According to the invention of claim 5, the structure of the driving means for reciprocating one of the first and second wedge-shaped birefringent crystal plates is simple. According to the invention of claim 6,
The incident side optical transmission line is a polarization-maintaining optical fiber, and the polarization axis of the incident-side polarization-maintaining optical fiber is made to coincide with the polarization plane of the polarized light emitted from the light source, so that the linearly polarized light becomes the first wedge-shaped birefringence It is incident on a crystal plate or a flat plate type birefringent crystal plate. Therefore, by adjusting the starting point of the reciprocating movement to a position where the optical path lengths of the first wedge-shaped birefringent crystal plate and the second wedge-shaped birefringent crystal plate are equal, the output light of the polarization state changer can be changed. The origin can be linearly polarized light.

【0034】請求項7の発明によれば、平板型複屈折結
晶板と入射側光伝送路との間に、入射側光伝送路の光軸
に直交する面内で回転可能に偏光子を装着してあるの
で、偏光子を回転調整することで、入射する偏光状態に
関係なく直線偏光を第1のくさび型複屈折結晶板又は平
板型複屈折結晶板に入射することができるので、入射側
偏波面保存光ファイバを用いることなく、請求項6とほ
ぼ同様に、偏光状態可変器の出射光の可変の起点を直線
偏光とすることができる。
According to the invention of claim 7, a polarizer is mounted between the flat plate type birefringent crystal plate and the incident side optical transmission line so as to be rotatable in a plane orthogonal to the optical axis of the incident side optical transmission line. Therefore, by adjusting the rotation of the polarizer, linearly polarized light can be incident on the first wedge-shaped birefringent crystal plate or flat plate-shaped birefringent crystal plate regardless of the incident polarization state. In the same manner as in the sixth aspect, it is possible to make the variable starting point of the emitted light of the polarization state variator be linearly polarized light without using a polarization-maintaining optical fiber.

【0035】請求項8の発明は、回転可能な偏光子に代
えて1/2波長板を装着した構成である。1/2波長板
を用いたことにより、請求項7の偏光子を回転調整させ
たとほぼ同様の効果を有する。
According to an eighth aspect of the invention, a ½ wavelength plate is mounted instead of the rotatable polarizer. The use of the half-wave plate has substantially the same effect as the rotation adjustment of the polarizer of claim 7.

【0036】請求項9の発明は、光学軸が入射側光伝送
路の光軸に直交するよう、光軸方向の長さが異なる複数
の複屈折結晶薄板を段差を有するよう重層した複合複屈
折結晶板を、進行する光の光路長が変化する方向に往復
運動させる構成である。
According to a ninth aspect of the present invention, a plurality of birefringent crystal thin plates having different lengths in the optical axis direction are laminated so as to have an optical axis orthogonal to the optical axis of the incident side optical transmission line so as to have a step. The crystal plate is reciprocated in the direction in which the optical path length of the traveling light changes.

【0037】したがって、複合複屈折結晶板に入射した
光の異常光と常光の位相差が0から2πの間で段階状に
変化するので、複合複屈折結晶板からの出射光は、偏光
状態が階段状に変化する。
Therefore, the phase difference between the extraordinary ray of the light incident on the compound birefringent crystal plate and the ordinary ray changes stepwise between 0 and 2π, so that the light emitted from the compound birefringent crystal plate has a polarization state. It changes in steps.

【0038】請求項10の発明によれば、偏光状態可変
器で光源が出射する光を全偏光状態に変えて、偏光依存
性ある光学装置に投入し、出力電流I及び光出力Pをコ
ンピュータで読み取り、出力電流I/光出力Pをコンピ
ュータで演算し、さらに直流成分と交流成分とに分解
し、それぞれの成分値を表示盤にデジタル表示またはア
ナログ表示させているので、偏光依存性ある光学装置の
特性を定量的に計測し得る。
According to the tenth aspect of the present invention, the light emitted from the light source is changed to the total polarization state by the polarization state variable device, and is input to the polarization-dependent optical device, and the output current I and the optical output P are calculated by the computer. Reading, output current I / optical output P is calculated by a computer, further decomposed into a direct current component and an alternating current component, and the respective component values are displayed digitally or in analog form on a display panel, so an optical device having polarization dependence Can be quantitatively measured.

【0039】[0039]

【実施例】以下図を参照しながら、本発明を具体的に説
明する。なお、全図を通じて同一符号は同一対象物を示
す。
The present invention will be described in detail with reference to the drawings. The same reference numerals indicate the same objects throughout the drawings.

【0040】図1は請求項1の発明の構成図、図2は請
求項2の発明の構成図、図3は請求項3の発明の実施例
の図であり、図4は請求項4の発明の構成図である。図
5は請求項5の発明の実施例の斜視図、図6は請求項6
の発明の実施例の構成図、図7は請求項7,8の発明の
実施例の構成図、図8は請求項9の発明の実施例の構成
図であり、図9は請求項10の発明のブロック図であ
る。
FIG. 1 is a block diagram of the invention of claim 1, FIG. 2 is a block diagram of the invention of claim 2, FIG. 3 is a diagram of an embodiment of the invention of claim 3, and FIG. It is a block diagram of an invention. 5 is a perspective view of an embodiment of the invention of claim 5, and FIG.
FIG. 7 is a block diagram of an embodiment of the invention of claims 7 and 8, FIG. 8 is a block diagram of an embodiment of the invention of claim 9, and FIG. FIG. 3 is a block diagram of the invention.

【0041】図において、11は、光源の出射光を入射
し、平行光束を出射する、光ファイバ, 光導波路等のよ
うな入射側光伝送路である。なお、図示した入射側光伝
送路11は、入射側及び出射側に光ファイバ・レンズアセ
ンブリを装着した光ファイバである。
In the figure, reference numeral 11 denotes an incident-side optical transmission line such as an optical fiber or an optical waveguide that receives the light emitted from the light source and emits a parallel light flux. The illustrated incident side optical transmission line 11 is an optical fiber having an optical fiber lens assembly mounted on the incident side and the emitting side.

【0042】25は、光学軸が入射側光伝送路11の光軸に
直交し、且つ直交する一方の面が入射側光伝送路11の出
射面に対向するよう配置される、平面視をくさび状にし
た第1のくさび型複屈折結晶板である。
Reference numeral 25 denotes a wedge in plan view, which is arranged such that its optical axis is orthogonal to the optical axis of the incident-side optical transmission path 11 and one surface orthogonal thereto is opposed to the exit surface of the incident-side optical transmission path 11. It is the 1st wedge-shaped birefringent crystal plate formed in a shape.

【0043】図1に図示した第1のくさび型複屈折結晶
板25の光学軸の方向は、紙面に平行する方向である。26
は、第1のくさび型複屈折結晶板25の傾斜面の傾斜角に
等しい傾斜角の傾斜面を有する第2のくさび型複屈折結
晶板である。
The direction of the optical axis of the first wedge-shaped birefringent crystal plate 25 shown in FIG. 1 is parallel to the paper surface. 26
Is a second wedge-shaped birefringent crystal plate having an inclined surface with an inclination angle equal to the inclination angle of the inclined surface of the first wedge-shaped birefringent crystal plate 25.

【0044】第2のくさび型複屈折結晶板26は、傾斜面
が第1のくさび型複屈折結晶板25の傾斜面に近接して平
行し、且つ光学軸が第1のくさび型複屈折結晶板25の光
学軸及び入射側光伝送路11の光軸に直交するよう配置さ
れている。
The second wedge-shaped birefringent crystal plate 26 has an inclined surface close to and parallel to the inclined surface of the first wedge-shaped birefringent crystal plate 25, and has an optical axis of the first wedge-shaped birefringent crystal plate. It is arranged so as to be orthogonal to the optical axis of the plate 25 and the optical axis of the incident side optical transmission line 11.

【0045】したがって、図1に図示した第2のくさび
型複屈折結晶板26の光学軸の方向は、紙面に直交する方
向である。15は、第2のくさび型複屈折結晶板26からの
出射光を受光し伝送する、光ファイバ, 光導波路等の出
射側光伝送路である。
Therefore, the direction of the optical axis of the second wedge-shaped birefringent crystal plate 26 shown in FIG. 1 is the direction orthogonal to the paper surface. Reference numeral 15 is an outgoing side optical transmission line such as an optical fiber or an optical waveguide that receives and transmits outgoing light from the second wedge-shaped birefringent crystal plate 26.

【0046】なお、図示した出射側光伝送路15は、入射
側に光ファイバ・レンズアセンブリを装着した光ファイ
バである。さらに、進行する光の光路長が変化する方向
に、第1,第2の何れか一方のくさび型複屈折結晶板、
図では第2のくさび型複屈折結晶板26を、往復運動させ
る図示省略した駆動手段を備えている。
The output side optical transmission line 15 shown in the figure is an optical fiber having an optical fiber lens assembly mounted on the incident side. Further, in the direction in which the optical path length of the traveling light changes, one of the first and second wedge-shaped birefringent crystal plates,
In the figure, a driving means (not shown) for reciprocating the second wedge-shaped birefringent crystal plate 26 is provided.

【0047】この駆動手段は、電磁石と圧縮コイルばね
の組み合わせたもの、エァシリンダ, ステップモータ等
が考えられるが、後述する一対の電磁石と永久磁石とを
組み合わせたものが、構造が簡単で、且つ往復速度が速
い等の理由から好ましい。
The driving means may be a combination of an electromagnet and a compression coil spring, an air cylinder, a step motor, or the like. However, a combination of a pair of electromagnets and permanent magnets, which will be described later, has a simple structure and reciprocates. It is preferable because of its high speed.

【0048】また、進行する光の光路長が変化する方向
とは、くさび型複屈折結晶板の傾斜面に方向する方向即
ち実線で示す矢印A方向と、入射側光伝送路11の光軸に
直交する方向即ち点線で示す矢印B方向とがある。
The direction in which the optical path length of the traveling light changes is the direction toward the inclined surface of the wedge-shaped birefringent crystal plate, that is, the arrow A direction shown by the solid line, and the optical axis of the incident side optical transmission path 11. There is an orthogonal direction, that is, an arrow B direction indicated by a dotted line.

【0049】点線で示す矢印B方向は、駆動手段の装置
の配置が簡単になる利点がある半面、第2のくさび型複
屈折結晶板26からの出射光の光軸と入射側光伝送路11の
光軸とが角度ずれするという欠点がある。
The direction of the arrow B shown by the dotted line has the advantage that the arrangement of the drive means can be simplified, while the optical axis of the light emitted from the second wedge-shaped birefringent crystal plate 26 and the incident side optical transmission line 11 are provided. However, there is a drawback that the optical axis of the optical axis is misaligned.

【0050】実線で示す矢印A方向は、双方の傾斜面を
近接して配置すると、第2のくさび型複屈折結晶板26か
らの出射光の光軸と入射側光伝送路11の光軸とが一致す
るという利点がある。
In the direction of arrow A shown by the solid line, when both inclined surfaces are arranged close to each other, the optical axis of the light emitted from the second wedge-shaped birefringent crystal plate 26 and the optical axis of the incident-side optical transmission line 11 are defined. Has the advantage that they match.

【0051】図1のように構成された偏光状態可変器の
第1のくさび型複屈折結晶板25に、入射側光伝送路11か
ら出射した平行光束が入射すると光は、常光と異常光と
に分かれて第1のくさび型複屈折結晶板25を進行する。
When the parallel light flux emitted from the incident side optical transmission line 11 is incident on the first wedge-shaped birefringent crystal plate 25 of the polarization state variable device constructed as shown in FIG. 1, the light is an ordinary ray and an extraordinary ray. Then, the first wedge-type birefringent crystal plate 25 is advanced.

【0052】そして、常光は異常光として第2のくさび
型複屈折結晶板26に入射して進行する。また、異常光は
常光として第2のくさび型複屈折結晶板26に入射して進
行する。 ここで、 n1 ・・・ 常光の屈折率、 n2 ・・・ 異常光の屈折率、 a ・・・ 進行する光の第1のくさび型複屈折結晶板の光
軸上の機械的長さ b1 ・・・ 移動前の進行する光の第2のくさび型複屈折結
晶板の光軸上の機械的長さ、 b2 ・・・ 移動後の進行する光の第2のくさび型複屈折結
晶板の光軸上の機械的長さ、 とすると、第2のくさび型複屈折結晶板26を移動する前
の光路差は、 (an1 +b1 2 )−(an2 +b1 1 )=a(n
1 −n2 )+b1 (n2 −n1 ) 第2のくさび型複屈折結晶板26を移動後の光路差は、 (an1 +b2 2 )−(an2 +b2 1 )=a(n
1 −n2 )+b2 (n2 −n1 ) となる。
Then, the ordinary light enters the second wedge-shaped birefringent crystal plate 26 as extraordinary light and advances. Also, the extraordinary light enters the second wedge-shaped birefringent crystal plate 26 as ordinary light and advances. Here, n 1 ... Refractive index of ordinary light, n 2 ... Refractive index of extraordinary light, a ... Mechanical length of traveling light on the optical axis of the first wedge-shaped birefringent crystal plate b 1 ... Mechanical length on optical axis of second wedge-shaped birefringent crystal plate of traveling light before movement, b 2 ... Second wedge-shaped birefringence of traveling light after movement The mechanical length of the crystal plate on the optical axis is, and the optical path difference before moving the second wedge-shaped birefringent crystal plate 26 is (an 1 + b 1 n 2 ) − (an 2 + b 1 n 1 ) = A (n
1 -n 2) + b 1 ( n 2 -n 1) optical path difference after moving the second wedge type birefringent crystal plate 26, (an 1 + b 2 n 2) - (an 2 + b 2 n 1) = a (n
1 -n 2) + b 2 ( n 2 -n 1) it becomes.

【0053】即ち第2のくさび型複屈折結晶板26を移動
することで光路長が変化するので、第2のくさび型複屈
折結晶板26を平行光束の直径以上大きい距離だけ往復移
動させると、位相差が0から2πの間で繰り返し変化す
る。
That is, since the optical path length is changed by moving the second wedge-shaped birefringent crystal plate 26, when the second wedge-shaped birefringent crystal plate 26 is reciprocated by a distance larger than the diameter of the parallel light flux, The phase difference repeatedly changes between 0 and 2π.

【0054】よって、直線偏光−楕円偏光−円偏光−楕
円偏光−直線偏光を繰り返す偏光が第2のくさび型複屈
折結晶板26から出射する。図2において、27は、傾斜面
が第1のくさび型複屈折結晶板25の傾斜面に近接して平
行し、且つ光学軸が第1のくさび型複屈折結晶板25の光
学軸に平行で、且つ入射側光伝送路11の光軸に直交する
よう配置される、第1のくさび型複屈折結晶板25の傾斜
面の傾斜角度に等しい傾斜角度の傾斜面を有する第2の
くさび型複屈折結晶板である。
Therefore, polarized light that repeats linearly polarized light-elliptically polarized light-circularly polarized light-elliptically polarized light-linearly polarized light is emitted from the second wedge-shaped birefringent crystal plate 26. In FIG. 2, reference numeral 27 indicates that the inclined surface is close to and parallel to the inclined surface of the first wedge-shaped birefringent crystal plate 25, and the optical axis is parallel to the optical axis of the first wedge-shaped birefringent crystal plate 25. A second wedge-shaped compound having an inclined surface having an inclination angle equal to the inclination angle of the inclined surface of the first wedge-shaped birefringent crystal plate 25, which is arranged so as to be orthogonal to the optical axis of the incident side optical transmission line 11. It is a refraction crystal plate.

【0055】したがって、図2に図示した第2のくさび
型複屈折結晶板27の光学軸の方向は、紙面に平行する方
向である。図2のように構成された偏光状態可変器の第
1のくさび型複屈折結晶板25に、入射側光伝送路11から
出射した平行光束が入射すると光は、常光と異常光とに
分かれて第1のくさび型複屈折結晶板25を進行する。
Therefore, the direction of the optical axis of the second wedge-shaped birefringent crystal plate 27 shown in FIG. 2 is parallel to the paper surface. When the parallel light flux emitted from the incident side optical transmission line 11 enters the first wedge-shaped birefringent crystal plate 25 of the polarization state variable device configured as shown in FIG. 2, the light is divided into ordinary light and extraordinary light. Proceed through the first wedge-shaped birefringent crystal plate 25.

【0056】そして、常光は常光として第2のくさび型
複屈折結晶板27に入射して進行し、異常光は異常光とし
て第2のくさび型複屈折結晶板27に入射して進行する。
ここで、 n1 ・・・ 常光の屈折率、 n2 ・・・ 異常光の屈折率、 a ・・・ 進行する光の第1のくさび型複屈折結晶板の光
軸上の機械的長さ b1 ・・・ 移動前の進行する光の第2のくさび型複屈折結
晶板の光軸上の機械的長さ、 b2 ・・・ 移動後の進行する光の第2のくさび型複屈折結
晶板の光軸上の機械的長さ、 とすると、第2のくさび型複屈折結晶板27を移動する前
の光路差は、 (an1 +b1 1 )−(an2 +b1 2 )=a(n
1 −n2 )+b1 (n1 −n2 ) 第2のくさび型複屈折結晶板26を移動後の光路差は、 (an1 +b2 1 )−(an2 +b2 2 )=a(n
1 −n2 )+b2 (n1 −n2 ) となる。
The ordinary light enters the second wedge-shaped birefringent crystal plate 27 as ordinary light and advances, and the extraordinary light enters the second wedge-shaped birefringent crystal plate 27 as extraordinary light and advances.
Here, n 1 ... Refractive index of ordinary light, n 2 ... Refractive index of extraordinary light, a ... Mechanical length of traveling light on the optical axis of the first wedge-shaped birefringent crystal plate b 1 ... Mechanical length on optical axis of second wedge-shaped birefringent crystal plate of traveling light before movement, b 2 ... Second wedge-shaped birefringence of traveling light after movement mechanical length on the optical axis of the crystal plate, and when the optical path difference before moving the second wedge type birefringent crystal plate 2 7, (an 1 + b 1 n 1) - (an 2 + b 1 n 2 ) = a (n
1 -n 2) + b 1 ( n 1 -n 2) optical path difference after moving the second wedge type birefringent crystal plate 26, (an 1 + b 2 n 1) - (an 2 + b 2 n 2) = a (n
1 -n 2) + b 2 a (n 1 -n 2).

【0057】即ち第2のくさび型複屈折結晶板27を移動
することで光路長が変化するので、第2のくさび型複屈
折結晶板27を平行光束の直径以上大きい距離だけ往復移
動させると、位相差が0から2πの間で繰り返し変化す
る。
That is, since the optical path length is changed by moving the second wedge-shaped birefringent crystal plate 27, when the second wedge-shaped birefringent crystal plate 27 is reciprocated by a distance larger than the diameter of the parallel light flux, The phase difference repeatedly changes between 0 and 2π.

【0058】なお、第1のくさび型複屈折結晶板25と第
2のくさび型複屈折結晶板27とを双方の傾斜面が近接す
るように配置することで、第2のくさび型複屈折結晶板
27の出射光の光軸が入射側光伝送路11の光軸に一致す
る。よって、入射側光伝送路11と出射側光伝送路15とを
同一直線上に配置できるので、配置精度が高く容易にな
るという効果がある。
By disposing the first wedge-shaped birefringent crystal plate 25 and the second wedge-shaped birefringent crystal plate 27 so that their inclined surfaces are close to each other, the second wedge-shaped birefringent crystal plate is formed. Board
The optical axis of the outgoing light of 27 coincides with the optical axis of the incident side optical transmission line 11. Therefore, the incident-side optical transmission line 11 and the outgoing-side optical transmission line 15 can be arranged on the same straight line, which has the effect of facilitating the arrangement accuracy and ease.

【0059】図3に図示した偏光状態可変器は、第1の
くさび型複屈折結晶板25と第2のくさび型複屈折結晶板
27とを、傾斜面が背向し、高いに直交する一方の面が近
接するように配置したものである。
The polarization state variator shown in FIG. 3 comprises a first wedge-shaped birefringent crystal plate 25 and a second wedge-shaped birefringent crystal plate.
27 and 27 are arranged so that the inclined surface faces the back and one surface orthogonal to the high side approaches.

【0060】このように配置したものは、駆動手段の装
置の配置が簡単になるという利点がある。また、第2の
くさび型複屈折結晶板27の出射光の光軸が入射側光伝送
路11の光軸に平行になるので、入射側光伝送路11と出射
側光伝送路15とを同一直線上に配置しても、第2のくさ
び型複屈折結晶板27の出射光が出射側光伝送路15に効率
よく入射し伝送されていくという効果がある。
The arrangement described above has the advantage that the arrangement of the drive means device can be simplified. Further, since the optical axis of the light emitted from the second wedge-shaped birefringent crystal plate 27 is parallel to the optical axis of the incident side optical transmission line 11, the incident side optical transmission line 11 and the emission side optical transmission line 15 are the same. Even if they are arranged on a straight line, there is an effect that the light emitted from the second wedge-shaped birefringent crystal plate 27 is efficiently incident on and transmitted to the light transmission path 15 on the emission side.

【0061】なお、図3には、第1のくさび型複屈折結
晶板25と第2のくさび型複屈折結晶板27の光学軸の方向
を平行にしているが、第1のくさび型複屈折結晶板25と
第2のくさび型複屈折結晶板の光学軸とを直交するよう
に配置しても良い。
In FIG. 3, the optical axes of the first wedge-shaped birefringent crystal plate 25 and the second wedge-shaped birefringent crystal plate 27 are parallel to each other. The crystal plate 25 and the second wedge-shaped birefringent crystal plate may be arranged so as to be orthogonal to each other.

【0062】図4に図示した偏光状態可変器は、入射側
光伝送路11と第1のくさび型複屈折結晶板25との間に、
光学軸が入射側光伝送路11の光軸に直交し、且つ第1の
くさび型複屈折結晶板25の光学軸に直交するように、平
板型複屈折結晶板24を配置したものである。
The polarization state variator shown in FIG. 4 has the following structure between the incident side optical transmission line 11 and the first wedge-shaped birefringent crystal plate 25.
The flat plate type birefringent crystal plate 24 is arranged so that its optical axis is orthogonal to the optical axis of the incident side optical transmission line 11 and is orthogonal to the optical axis of the first wedge type birefringent crystal plate 25.

【0063】平板型複屈折結晶板24の厚さを選択する、
例えば始点位置で第1のくさび型複屈折結晶板25と第2
のくさび型複屈折結晶板27を組み合わせた板厚に、平板
型複屈折結晶板24の板厚を等しくすることで、進行する
平行光束の中心部と外側部を進行する光成分の位相差が
零となる。
Select the thickness of the flat plate type birefringent crystal plate 24,
For example, at the starting point, the first wedge-shaped birefringent crystal plate 25
By making the plate thickness of the flat plate-type birefringent crystal plate 24 equal to the combined thickness of the wedge-shaped birefringent crystal plate 27, the phase difference between the light components traveling in the central portion and the outer portion of the parallel light flux that progresses It becomes zero.

【0064】したがって、入射側光伝送路の出射光のビ
ーム径が大きい場合に適用して、良特性の偏光状態可変
器が得られる。また、平板型複屈折結晶板24の板厚を上
述のように選択することで、往復運動の始点では、入射
側光伝送路11が出射する偏光の偏光状態と出射側光伝送
路15に入射する偏光の偏光状態が一致する。
Therefore, when the beam diameter of the outgoing light from the incident side optical transmission line is large, a polarization state variable device with good characteristics can be obtained. Further, by selecting the plate thickness of the flat plate type birefringent crystal plate 24 as described above, at the starting point of the reciprocating motion, the polarization state of the polarized light emitted from the incident side optical transmission line 11 and the incident side optical transmission line 15 are incident. The polarization state of the polarized light is the same.

【0065】図5において、30は例えばステンレス鋼等
のような非磁性材料よりなる、平板状のベースである。
38は、ベース30の一方の側縁部に搭載されたV溝ブロッ
クである。39は、ベース30の他方の側縁部に、V溝ブロ
ック38に対向して搭載された他のV溝ブロックである。
V溝ブロック38と39とは、それぞれのV溝の軸心が、同
一直線上になるようにベース30上に搭載されている。
In FIG. 5, reference numeral 30 is a flat base made of a non-magnetic material such as stainless steel.
Reference numeral 38 is a V-groove block mounted on one side edge of the base 30. Reference numeral 39 denotes another V-groove block mounted on the other side edge of the base 30 so as to face the V-groove block 38.
The V-groove blocks 38 and 39 are mounted on the base 30 such that the respective V-grooves have their axes aligned on the same straight line.

【0066】V溝ブロック38のV溝に、出射端面がベー
ス30の中心側になるように、光ファイバ・レンズアセン
ブリ11A のフェルール部分を載置して、入射側光伝送路
11をV溝ブロック38に固着している。
The ferrule portion of the optical fiber lens assembly 11A is placed in the V groove of the V groove block 38 so that the emitting end face is on the center side of the base 30 and the incident side optical transmission line is formed.
11 is fixed to the V groove block 38.

【0067】一方、V溝ブロック39のV溝に、入射端面
がベース30の中心側になるように、光ファイバ・レンズ
アセンブリ11B のフェルール部分を載置して、出射側光
伝送路15をV溝ブロック39に固着している。
On the other hand, the ferrule portion of the optical fiber lens assembly 11B is placed in the V groove of the V groove block 39 so that the incident end face is on the center side of the base 30, and the output side optical transmission line 15 is connected to the V groove. It is fixed to the groove block 39.

【0068】31は、例えばステンレス鋼等のような非磁
性材料よりなる角板状の基台であって、一対の対向する
V溝ブロック38と39の間のベース30上に搭載されてい
る。基台31には、出射側光伝送路が搭載されるV溝ブロ
ック39よりの個所に、入射側光伝送路11の光軸に直交す
る角形のガイド溝34を設けてある。
Reference numeral 31 is a rectangular plate-shaped base made of a non-magnetic material such as stainless steel, and is mounted on the base 30 between a pair of opposed V groove blocks 38 and 39. The base 31 is provided with a rectangular guide groove 34 orthogonal to the optical axis of the incident side optical transmission line 11 at a position from the V groove block 39 on which the emission side optical transmission line is mounted.

【0069】なお、ガイド溝34は、入射側光伝送路11の
光軸に直交することなく、後述する第2のくさび型複屈
折結晶板27の傾斜面の傾斜角度に等しい角度だけ、入射
側光伝送路11の光軸に傾いていることが望ましい。
The guide groove 34 is not orthogonal to the optical axis of the incident side optical transmission line 11, and is formed on the incident side by an angle equal to the inclination angle of the inclined surface of the second wedge-shaped birefringent crystal plate 27 described later. It is desirable that the optical transmission line 11 is inclined to the optical axis.

【0070】32は、基台31のガイド溝34内を摺動移動自
在に装着される高さがガイド溝34の深さに等しい、例え
ば銅系合金のような非磁性体よりなる角筒形のスライダ
ーである。
The reference numeral 32 designates a rectangular cylindrical shape made of a non-magnetic material such as a copper alloy, the height of which is slidably mounted in the guide groove 34 of the base 31 is equal to the depth of the guide groove 34. Is the slider.

【0071】33は、ガイド溝34の軸心孔に挿入・固着さ
れた棒状の永久磁石であって、永久磁石33の両端部のN
極端面及びS極端面はスライダー32の端面に一致してい
るかそれよりもわずかに突出している。
Reference numeral 33 denotes a rod-shaped permanent magnet inserted and fixed in the shaft center hole of the guide groove 34, and N at both ends of the permanent magnet 33.
The extreme surface and the S extreme surface coincide with the end surface of the slider 32 or slightly project therefrom.

【0072】第2のくさび型複屈折結晶板27は、光学軸
が入射側光伝送路11の光軸に直交し、且つ直交する一方
の面(光学軸に平行する面) がスライダー32の長手方向
の側面に平行し、傾斜面が入射側光伝送路11側になるよ
うに、スライダー32の上面に固着されている。
In the second wedge-shaped birefringent crystal plate 27, the optical axis is orthogonal to the optical axis of the incident side optical transmission line 11, and one surface (the surface parallel to the optical axis) orthogonal to the optical axis is the longitudinal direction of the slider 32. It is fixed to the upper surface of the slider 32 so that the inclined surface is parallel to the side surface in the direction and the inclined surface is on the incident side optical transmission line 11 side.

【0073】第1のくさび型複屈折結晶板25は、傾斜面
が第2のくさび型複屈折結晶板27の傾斜面に近接して平
行し、且つ光学軸が第2のくさび型複屈折結晶板27の光
学軸に平行するように、基台31の上面に固着されてい
る。
In the first wedge-shaped birefringent crystal plate 25, the inclined surface is close to and parallel to the inclined surface of the second wedge-shaped birefringent crystal plate 27, and the optical axis is the second wedge-shaped birefringent crystal plate. It is fixed to the upper surface of the base 31 so as to be parallel to the optical axis of the plate 27.

【0074】平板型複屈折結晶板24は、光学軸が入射側
光伝送路11の光軸に直交し、且つ第1のくさび型複屈折
結晶板25の光学軸に直交するように、基台31上に固着さ
れている。
The flat plate type birefringent crystal plate 24 is so constructed that its optical axis is orthogonal to the optical axis of the incident side optical transmission line 11 and is orthogonal to the optical axis of the first wedge type birefringent crystal plate 25. 31 is stuck on.

【0075】35-1は、コイルの軸心部に棒状のヨーク36
-1を有する電磁石であり、そのヨーク36-1の一方の端部
はコイルより突出している。また、35-2は、コイルの軸
心部に棒状のヨーク36-2を有する、前述の電磁石35-1と
は左右対称構造の電磁石である。
35-1 is a rod-shaped yoke 36 at the axial center of the coil.
-1 is an electromagnet, and one end of the yoke 36-1 thereof is projected from the coil. Further, 35-2 is an electromagnet having a rod-shaped yoke 36-2 at the axial center of the coil and having a bilaterally symmetrical structure with respect to the aforementioned electromagnet 35-1.

【0076】一方の電磁石35-1は、ヨーク36-1の端面が
永久磁石33のN極端面に対向するように、ベース30上に
搭載されている。他方の電磁石35-2は、ヨーク36-2の端
面が永久磁石33のS極端面に対向するよう、スライダー
32を挟んで電磁石35-1に対向してベース30上に搭載され
ている。
One electromagnet 35-1 is mounted on the base 30 so that the end surface of the yoke 36-1 faces the N extreme surface of the permanent magnet 33. The other electromagnet 35-2 is a slider so that the end surface of the yoke 36-2 faces the S extreme surface of the permanent magnet 33.
It is mounted on the base 30 so as to face the electromagnet 35-1 with 32 interposed therebetween.

【0077】そして電磁石35-1に通電すると、ヨーク36
-1の端部がS極となり永久磁石33即ちスライダー32がそ
の電磁石35-1側に吸引され、永久磁石33のN極端面がヨ
ーク36-1の端面に当接した状態で停止する。
When the electromagnet 35-1 is energized, the yoke 36
The end portion of -1 becomes the S pole, the permanent magnet 33, that is, the slider 32 is attracted to the electromagnet 35-1 side, and the N extreme surface of the permanent magnet 33 stops in a state of contacting the end surface of the yoke 36-1.

【0078】また、他方の電磁石35-2に通電すると、ヨ
ーク36-2の端部がN極となり永久磁石33即ちスライダー
32がその電磁石35-2側に吸引され、永久磁石33のS極端
面がヨーク36-2の端面に当接した状態で停止する。
When the other electromagnet 35-2 is energized, the end of the yoke 36-2 becomes the N pole and the permanent magnet 33, that is, the slider.
32 is attracted to the electromagnet 35-2 side, and stops with the S extreme surface of the permanent magnet 33 in contact with the end surface of the yoke 36-2.

【0079】したがって、一対の電磁石35-1,35-2 に交
互に通電することで、スライダー32即ち第2のくさび型
複屈折結晶板27が往復運動する。なお、永久磁石33が一
方の電磁石35-1のヨーク36-1に当接した状態で、第1の
くさび型複屈折結晶板25と第2のくさび型複屈折結晶板
27とを組み合わせた板厚が、平板型複屈折結晶板24の板
厚に等しいようにセットしてある。
Therefore, by alternately energizing the pair of electromagnets 35-1 and 35-2, the slider 32, that is, the second wedge-shaped birefringent crystal plate 27 reciprocates. The first wedge-shaped birefringent crystal plate 25 and the second wedge-shaped birefringent crystal plate 25 with the permanent magnet 33 in contact with the yoke 36-1 of the one electromagnet 35-1.
The combined plate thickness of 27 and 27 is set to be equal to the plate thickness of the flat plate type birefringent crystal plate 24.

【0080】また、永久磁石33が他方の電磁石35-2のヨ
ーク36-2に当接した状態で、第1のくさび型複屈折結晶
板25と第2のくさび型複屈折結晶板27とを組み合わせた
板厚が、平板型複屈折結晶板24の板厚よりも使用波長に
おける位相がπの偶数倍かそれ以上になるようにセット
してある。
Further, with the permanent magnet 33 in contact with the yoke 36-2 of the other electromagnet 35-2, the first wedge-shaped birefringent crystal plate 25 and the second wedge-shaped birefringent crystal plate 27 are attached. The combined plate thickness is set so that the phase at the used wavelength is an even multiple of π or more than the plate thickness of the flat plate type birefringent crystal plate 24.

【0081】上述のように、平板型複屈折結晶板24の板
厚及び第2のくさび型複屈折結晶板27の移動量を設定し
たことにより、往復運動の始点では、入射側光伝送路11
が出射する偏光の偏光状態と出射側光伝送路15に入射す
る偏光の偏光状態が一致しており、第2のくさび型複屈
折結晶板27が移動中は、位相差が連続的に変化するの
で、連続的にすべての偏光状態が得られる。
As described above, by setting the plate thickness of the flat plate type birefringent crystal plate 24 and the movement amount of the second wedge type birefringent crystal plate 27, at the starting point of the reciprocating movement, the incident side optical transmission line 11 is formed.
The polarization state of the polarized light emitted by the light source and the polarization state of the polarized light incident on the output side optical transmission line 15 match, and the phase difference continuously changes while the second wedge-shaped birefringent crystal plate 27 is moving. Therefore, all polarization states can be continuously obtained.

【0082】図6において、10は、端面発光高出力LE
Dまたは半導体レーザ等の偏光を出射する光源である。
11-1は、入射側に光ファイバ・レンズアセンブリ11B
を、出射側に光ファイバ・レンズアセンブリ11A を装着
した入射側偏波面保存光ファイバである。
In FIG. 6, reference numeral 10 denotes an edge emitting high output LE.
It is a light source that emits polarized light such as D or a semiconductor laser.
11-1 is an optical fiber lens assembly 11B on the incident side
Is an incident side polarization-maintaining optical fiber in which the optical fiber lens assembly 11A is mounted on the output side.

【0083】15-1は、入射側に光ファイバ・レンズアセ
ンブリ15A を装着した出射側シングルモード光ファイバ
である。光源10,10-1 , 入射側偏波面保存光ファイバ11
-1, 第1のくさび型複屈折結晶板25, 第2のくさび型複
屈折結晶板27, 出射側シングルモード光ファイバ15-1を
この順に配列するとともに、入射側偏波面保存光ファイ
バ11-1の偏光軸(一対の応力付与部を結ぶ方向) を、光
源10が出射する光の偏光面に一致させている。
Reference numeral 15-1 is an exit side single mode optical fiber in which the optical fiber lens assembly 15A is mounted on the entrance side. Light source 10, 10-1, Input side polarization-maintaining optical fiber 11
-1, the first wedge-shaped birefringent crystal plate 25, the second wedge-shaped birefringent crystal plate 27, the exit side single mode optical fiber 15-1 are arranged in this order, and the incident side polarization plane preserving optical fiber 11- The 1 polarization axis (the direction connecting the pair of stress applying portions) is aligned with the polarization plane of the light emitted from the light source 10.

【0084】したがって、光源10が出射した直線偏光
が、第1のくさび型複屈折結晶板25にに入射する。よっ
て、第1のくさび型複屈折結晶板25と第2のくさび型複
屈折結晶板27の光路長が等しい位置に、第1のくさび型
複屈折結晶板25か第2のくさび型複屈折結晶板27かの何
れ一方を往復運動させる始点の位置で、第1のくさび型
複屈折結晶板25と第2のくさび型複屈折結晶板27の光路
長が等しくなるようにセットすることで、偏光状態可変
器の出射光(出射側シングルモード光ファイバ15-1に入
射する偏光)の可変の起点を直線偏光とすることができ
る。
Therefore, the linearly polarized light emitted from the light source 10 enters the first wedge-shaped birefringent crystal plate 25. Therefore, the first wedge-shaped birefringent crystal plate 25 or the second wedge-shaped birefringent crystal plate 25 is located at a position where the optical path lengths of the first wedge-shaped birefringent crystal plate 25 and the second wedge-shaped birefringent crystal plate 27 are equal. By setting the optical path lengths of the first wedge-shaped birefringent crystal plate 25 and the second wedge-shaped birefringent crystal plate 27 to be equal at the position of the starting point for reciprocating one of the plates 27, It is possible to make the variable starting point of the emitted light of the state changer (the polarized light incident on the emitting side single mode optical fiber 15-1) to be the linearly polarized light.

【0085】図7において、入射側光伝送路11,光学軸
が入射側光伝送路11の光軸に直交する面内で回転可能の
偏光子22,平板型複屈折結晶板24,第1のくさび型複屈
折結晶板25,第2のくさび型複屈折結晶板27,出射側光
伝送路15をこの順に配列している。
In FIG. 7, the incident side optical transmission line 11, the polarizer 22 whose optical axis is rotatable in the plane orthogonal to the optical axis of the incident side optical transmission line 11, the flat plate type birefringent crystal plate 24, the first A wedge-shaped birefringent crystal plate 25, a second wedge-shaped birefringent crystal plate 27, and an outgoing side optical transmission line 15 are arranged in this order.

【0086】詳述すると、偏光子22は、光学軸が直径方
向を指向するように設けた円板形である。40は、底面を
基台に密着して固定することで入射側光伝送路11と平板
型複屈折結晶板24との間に設置するガイド体である。
More specifically, the polarizer 22 has a disc shape with its optical axis oriented in the diametrical direction. Reference numeral 40 denotes a guide body which is installed between the incident side optical transmission line 11 and the flat plate type birefringent crystal plate 24 by fixing the bottom surface to the base in close contact.

【0087】ガイド体40の軸心を貫通する円形の段付孔
41を設けて、この段付孔41の大円側に偏光子22を挿入
し、大円側の開口面にリング形押え板42を取付けて、偏
光子22を段付孔41内で回転自在としている。
Circular stepped hole that penetrates the axis of the guide body 40
41 is provided, the polarizer 22 is inserted into the stepped hole 41 on the great circle side, and the ring-shaped pressing plate 42 is attached to the opening surface on the great circle side, so that the polarizer 22 can be freely rotated in the stepped hole 41. I am trying.

【0088】そして、段付孔41の外周部の所望の位置に
止めねじ45を螺着することで、偏光子22を所望の回転し
た位置で固定するようにしている。したがって、偏光子
22を回転調整することで、入射側光伝送路11の出射光の
偏光状態に関係なく直線偏光を平板型複屈折結晶板24に
入射することができる。
Then, the set screw 45 is screwed into a desired position on the outer peripheral portion of the stepped hole 41 so that the polarizer 22 is fixed at a desired rotated position. Therefore, the polarizer
By adjusting the rotation of 22, the linearly polarized light can be incident on the flat plate type birefringent crystal plate 24 regardless of the polarization state of the light emitted from the incident side optical transmission line 11.

【0089】即ち、入射側偏波面保存光ファイバを用い
ることなく、偏光状態可変器の出射光の可変の起点を直
線偏光とすることができる。また、図7には、前述の偏
光子22に代えて1/2波長板23を、入射側光伝送路11と
平板型複屈折結晶板24との間に挿入設置した、偏光状態
可変器を図示してある。なお、1/2波長板23は、回転
する必要がない。
That is, the variable starting point of the outgoing light of the polarization state variable device can be linearly polarized light without using the polarization-maintaining optical fiber on the incident side. Further, FIG. 7 shows a polarization state changer in which a half-wave plate 23 is inserted and installed between the incident side optical transmission line 11 and the flat plate type birefringent crystal plate 24 in place of the above-mentioned polarizer 22. It is shown. The half-wave plate 23 does not need to rotate.

【0090】1/2波長板23は、前述の偏光子22を回転
調整させたとほぼ同様の効果を有する。図8において、
50は、光学軸方向の長さが異なる複数の複屈折結晶薄板
50-1,50-2・・・・50-n が段差を有するように、光学軸方向
を揃えて重層固着した複合複屈折結晶板である。
The half-wave plate 23 has substantially the same effect as the above-described rotation adjustment of the polarizer 22. In FIG.
50 is a plurality of birefringent crystal thin plates having different lengths in the optical axis direction.
It is a composite birefringent crystal plate in which the optical axis directions are aligned and the layers are fixed in layers so that 50-1, 50-2 ...

【0091】平行光束を出射する入射側光伝送路11、光
学軸が入射側光伝送路11の光軸に直交する光軸方複合複
屈折結晶板50、複合複屈折結晶板50の出射光を伝送する
出射側光伝送路15とをこの順に配列し、駆動手段を設け
て、進行する光の光路長が変化する方向に複合複屈折結
晶板50を往復運動させている。
The incident side optical transmission line 11 for emitting a parallel light flux, the optical axis direction composite optical birefringent crystal plate 50 whose optical axis is orthogonal to the optical axis of the incident side optical transmission line 11, and the output light of the composite birefringent crystal plate 50 The outgoing side optical transmission line 15 for transmission is arranged in this order, a driving means is provided, and the composite birefringent crystal plate 50 is reciprocated in the direction in which the optical path length of the traveling light changes.

【0092】このように構成された偏光状態可変器は、
複合複屈折結晶板50を往復移動することで、複合複屈折
結晶板50に入射した光の常光と異常光の位相差が0から
2πの間で段階状に変化する。よって、出射側光伝送路
15に入射する光は偏光状態が階段状に変化する。
The polarization state variator thus constructed is
By moving the composite birefringent crystal plate 50 back and forth, the phase difference between the ordinary light and the extraordinary light of the light incident on the composite birefringent crystal plate 50 changes stepwise between 0 and 2π. Therefore, the output side optical transmission line
The light incident on 15 changes its polarization state stepwise.

【0093】図9において、光源10-1は、端面発光高出
力LEDである。90は、光源10-1が出射する光の波長帯
のうち、所望の波長帯を取り出すバンドパスフィルタで
ある。
In FIG. 9, the light source 10-1 is an edge emitting high output LED. Reference numeral 90 denotes a bandpass filter that extracts a desired wavelength band from the wavelength band of the light emitted from the light source 10-1.

【0094】100は、前述(請求項1乃至9)の偏光状
態可変器であるが、1/2波長板23,平板型複屈折結晶
板24,第1のくさび型複屈折結晶板25,第2のくさび型
複屈折結晶板27を備えた偏光状態可変器が望ましい。
Reference numeral 100 denotes the polarization state variator of the above (claims 1 to 9), which is a half-wave plate 23, a flat plate type birefringent crystal plate 24, a first wedge type birefringent crystal plate 25, A polarization state changer equipped with two wedge-shaped birefringent crystal plates 27 is desirable.

【0095】光源10-1、バンドパスフィルタ90、偏光状
態可変器100 をこの順に配列し、バンドパスフィルタ90
と偏光状態可変器100 との間は、偏光軸を光源10-1が出
射する光の偏光面に一致させた偏波面保存光ファイバで
接続している。
The light source 10-1, the bandpass filter 90, and the polarization state changer 100 are arranged in this order, and the bandpass filter 90
The polarization state changer 100 is connected to a polarization plane maintaining optical fiber whose polarization axis matches the polarization plane of the light emitted from the light source 10-1.

【0096】200 は、例えば光増幅器のような偏光依存
性ある光学装置である。光学装置200 は、入力光ファイ
バと出力光ファイバと、出力光レベルをモニタするモニ
タ用受光素子120 を備えている。
Reference numeral 200 denotes a polarization-dependent optical device such as an optical amplifier. The optical device 200 includes an input optical fiber, an output optical fiber, and a monitor light receiving element 120 for monitoring the output light level.

【0097】偏光状態可変器100 と光学装置200 の間
を、シングルモード光ファイバで接続している。300
は、モニタ用受光素子120 に接続され光学装置200 の出
力電流I、及び出力光ファイバに接続されて光学装置20
0 の光出力Pを入力する、演算用のコンピュータであ
る。上述のような構成とし、偏光状態可変器100 で光源
10-1が出射する光を全偏光状態に変えて、光学装置200
に投入し、光学装置200 の出力電流I及び光出力Pをコ
ンピュータ300 で読み取り、出力電流I/光出力Pを、
コンピュータ300 で演算しさらに、直流成分と交流成分
とに分解し、それぞれの成分値を表示盤310にデジタル
表示又はアナログ表示させている。
The polarization state changer 100 and the optical device 200 are connected by a single mode optical fiber. 300
Is connected to the monitor light receiving element 120 and is connected to the output current I of the optical device 200 and the output optical fiber.
It is a computer for inputting an optical output P of 0. With the configuration described above, the polarization state changer 100
The optical device 200 converts the light emitted by 10-1 into all polarization states.
, The output current I and the optical output P of the optical device 200 are read by the computer 300, and the output current I / optical output P is
It is calculated by the computer 300 and further decomposed into a direct current component and an alternating current component, and the respective component values are digitally or analogically displayed on the display panel 310.

【0098】したがって、偏光依存性ある光学装置200
の偏光依存特性を、定量的に短時間に計測することがで
きる。
Therefore, the polarization-dependent optical device 200
The polarization dependent characteristic of can be quantitatively measured in a short time.

【0099】[0099]

【発明の効果】以上のように構成されているので、本発
明は下記のような効果を有する。請求項1〜3の発明に
よれば、直線偏光−楕円偏光−円偏光−楕円偏光−直線
偏光を繰り返す偏光状態の全状態を、短時間に容易に得
ることができる。
The present invention has the following effects because it is configured as described above. According to the inventions of claims 1 to 3, it is possible to easily obtain all the polarization states in which linearly polarized light-elliptically polarized light-circularly polarized light-elliptically polarized light-linearly polarized light are repeated in a short time.

【0100】さらに、請求項2の発明は、偏光状態可変
器への入射光軸と偏光状態可変器の出射光軸とが一致す
るという効果を有する。さらに、請求項3の発明は、偏
光状態可変器への入射光軸と偏光状態可変器の出射光軸
とが平行するという効果を有する。
Further, the invention of claim 2 has an effect that the incident optical axis to the polarization state variable device and the emission optical axis of the polarization state variable device coincide with each other. Further, the invention of claim 3 has an effect that the incident optical axis to the polarization state variable device and the emission optical axis of the polarization state variable device are parallel to each other.

【0101】請求項4の発明によれば、入射側光伝送路
の出射光のビーム径が大きい場合に適用して、良特性の
偏光状態可変器が得られる。請求項5の発明によれば、
第1又は第2のくさび型複屈折結晶板の何れか一方を往
復運動させる駆動手段の構造が簡単である。
According to the invention of claim 4, when the beam diameter of the outgoing light of the incident side optical transmission line is large, a polarization state variable device having good characteristics can be obtained. According to the invention of claim 5,
The structure of the driving means for reciprocating one of the first and second wedge-shaped birefringent crystal plates is simple.

【0102】請求項6の発明によれば、入射側偏波面保
存光ファイバを用いたことにより、偏光状態可変器の出
射光の可変の起点を直線偏光とすることができる。請求
項7の発明によれば、偏光子を回転調整することで、入
射側偏波面保存光ファイバを用いなくとも、偏光状態可
変器の出射光の可変の起点を直線偏光とすることができ
る。
According to the sixth aspect of the present invention, by using the polarization-maintaining optical fiber on the incident side, it is possible to make the variable starting point of the output light of the polarization state changer linearly polarized. According to the invention of claim 7, by rotating and adjusting the polarizer, it is possible to make the variable starting point of the emitted light of the polarization state changer to be linearly polarized light without using the incident-side polarization-maintaining optical fiber.

【0103】さらに入射偏光主軸と光学軸(結晶軸)方
向を任意に可変できるので、完全な全偏光状態が容易に
得られる。請求項8の発明によれば、請求項7の偏光子
を回転調整させたとほぼ同様の効果を有するので、簡単
な構造であるにもかかわらず、偏光状態可変器の出射光
の可変の起点を直線偏光とすることができる。
Furthermore, since the principal axis of the incident polarized light and the optical axis (crystal axis) direction can be arbitrarily changed, a perfect total polarization state can be easily obtained. According to the invention of claim 8, since it has substantially the same effect as rotating and adjusting the polarizer of claim 7, even though it has a simple structure, the starting point of the variable emitted light of the polarization state variator is changed. It can be linearly polarized light.

【0104】また、入射偏光主軸と光学軸(結晶軸)方
向を任意に可変できるので、完全な全偏光状態が容易に
得られる。請求項9の発明によれば、構成素子数が少な
く、安価な偏光状態可変器を提供することができる。
Further, since the principal axis of incident polarized light and the optical axis (crystal axis) direction can be arbitrarily changed, a perfect total polarization state can be easily obtained. According to the invention of claim 9, it is possible to provide an inexpensive polarization state changer having a small number of constituent elements.

【0105】請求項10の発明によれば、偏光状態可変
器で光源が出射する偏光を全状態に変えて、偏光依存性
ある光学装置に投入し、入力電流I及び光出力Pをコン
ピュータで読み取り、入力電流I/光出力Pをコンピュ
ータで演算し直流成分と交流成分とに分解し、それぞれ
の成分値を表示盤にデジタル表示させているので、偏光
依存性ある光学装置の特性を、定量的に計測し得る。
According to the tenth aspect of the present invention, the polarized light emitted from the light source is changed into all states by the polarization state variable device, and the polarized light is supplied to the polarization-dependent optical device, and the input current I and the optical output P are read by a computer. The input current I / optical output P is calculated by a computer and decomposed into a direct current component and an alternating current component, and the respective component values are digitally displayed on the display panel. Therefore, the characteristics of the polarization-dependent optical device can be quantitatively determined. Can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】 請求項1の発明の構成図である。FIG. 1 is a block diagram of the invention of claim 1;

【図2】 請求項2の発明の構成図である。FIG. 2 is a configuration diagram of the invention of claim 2;

【図3】 請求項3の発明の実施例の図である。FIG. 3 is a diagram of an embodiment of the invention of claim 3;

【図4】 請求項4の発明の構成図である。FIG. 4 is a configuration diagram of the invention of claim 4;

【図5】 請求項5の発明の実施例の斜視図である。FIG. 5 is a perspective view of an embodiment of the invention of claim 5;

【図6】 請求項6の発明の実施例の構成図である。FIG. 6 is a configuration diagram of an embodiment of the invention of claim 6;

【図7】 請求項7,8の発明の実施例の構成図であ
る。
FIG. 7 is a configuration diagram of an embodiment of the invention of claims 7 and 8.

【図8】 請求項9の発明の実施例の構成図である。FIG. 8 is a configuration diagram of an embodiment of the invention of claim 9;

【図9】 請求項10の発明のブロック図である。FIG. 9 is a block diagram of the invention of claim 10;

【図10】 光増幅器の構成図である。FIG. 10 is a configuration diagram of an optical amplifier.

【符号の説明】[Explanation of symbols]

1 希土類元素添加光ファイバ 2 出力光ファイバ 3 励起光源 1-1 入射側ファイバ・レンズアセンブリ 2-1 出射側ファイバ・レンズアセンブリ 3-1 励起側ファイバ・レンズアセンブリ 4-1 筐体 5 波長分割光学膜 6 光アイソレータ 10,10-1 光源 11 入射側光伝送路 11-1 入射側偏波面保存光ファイバ 15 出射側光伝送路 15-1 出射側シングルモード光ファイバ 22 偏光子 23 1/2波長板 24 平板型複屈折結晶板 25 第1のくさび型複屈折結晶板 26,27 第2のくさび型複屈折結晶板 32 スライダー 33 永久磁石 35-1,35-2 電磁石 36-1,36-2 ヨーク 40 ガイド体 41 段付孔 45 止めねじ 50 複合複屈折結晶板 50-1,50-2,50-n 複屈折結晶薄板 90 バンドパスフィルタ 100 偏光状態可変器 120 モニタ用受光素子 200 光学装置 300 コンピュータ 310 表示盤 1 Rare earth element-doped optical fiber 2 Output optical fiber 3 Excitation light source 1-1 Incident side fiber / lens assembly 2-1 Emission side fiber / lens assembly 3-1 Excitation side fiber / lens assembly 4-1 Housing 5 Wavelength division optical film 6 Optical isolator 10,10-1 Light source 11 Optical transmission line on the incident side 11-1 Polarization-maintaining optical fiber on the incident side 15 Optical transmission line on the emitting side 15-1 Single mode optical fiber on the emitting side 22 Polarizer 23 1/2 wave plate 24 Flat plate type birefringent crystal plate 25 First wedge type birefringent crystal plate 26,27 Second wedge type birefringent crystal plate 32 Slider 33 Permanent magnet 35-1,35-2 Electromagnet 36-1,36-2 Yoke 40 Guide body 41 Stepped hole 45 Set screw 50 Composite birefringent crystal plate 50-1,50-2,50-n Thin birefringent crystal plate 90 Bandpass filter 100 Polarization state changer 120 Monitor light receiving element 200 Optical device 300 Computer 310 Display board

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 平行光束を出射する入射側光伝送路と、 光学軸が該入射側光伝送路の光軸に直交し、且つ、互い
に直交する一方の面が該入射側光伝送路の出射面に対向
するよう配置されたする第1のくさび型複屈折結晶板
と、 傾斜角が該第1のくさび型複屈折結晶板の傾斜角に等し
い傾斜面を有するくさび形で、該傾斜面が該第1のくさ
び型複屈折結晶板の傾斜面に近接して平行し、且つ光学
軸が該第1のくさび型複屈折結晶板の光学軸及び該入射
側光伝送路の光軸に直交するよう配置された第2のくさ
び型複屈折結晶板と、 該第2のくさび型複屈折結晶板を透過した光を受光し伝
送する出射側光伝送路と、 該第1,第2の何れか一方のくさび型複屈折結晶板を、
光路長が変化する方向に往復運動させる駆動手段とを、 備えたことを特徴とする偏光状態可変器。
1. An incident-side optical transmission line that emits a parallel light beam, and one surface whose optical axis is orthogonal to the optical axis of the incident-side optical transmission line and is orthogonal to each other, is the emission side of the incident-side optical transmission line. A wedge-shaped birefringent crystal plate disposed so as to face the surface, and a wedge shape having an inclined surface with an inclination angle equal to the inclination angle of the first wedge-shaped birefringent crystal plate, wherein the inclined surface is The first wedge-shaped birefringent crystal plate is close to and parallel to the inclined surface of the first wedge-shaped birefringent crystal plate, and the optical axis is orthogonal to the optical axis of the first wedge-shaped birefringent crystal plate and the optical axis of the incident-side optical transmission line. A second wedge-shaped birefringent crystal plate arranged in such a manner, an emission side optical transmission line for receiving and transmitting light transmitted through the second wedge-shaped birefringent crystal plate, and either the first or the second optical transmission line. One wedge type birefringent crystal plate,
A polarization state changer comprising: a drive unit that reciprocates in a direction in which the optical path length changes.
【請求項2】 前記第1のくさび型複屈折結晶板と前記
第2のくさび型複屈折結晶板とが、光学軸が平行するよ
う配置されたことを特徴とする偏光状態可変器。
2. The polarization state changer, wherein the first wedge-shaped birefringent crystal plate and the second wedge-shaped birefringent crystal plate are arranged so that their optical axes are parallel to each other.
【請求項3】 請求項1又は2記載の第1,第2のくさ
び型複屈折結晶板が、傾斜面が背向するように配置され
たことを特徴とする偏光状態可変器。
3. A polarization state variator, characterized in that the first and second wedge-shaped birefringent crystal plates according to claim 1 or 2 are arranged such that their inclined surfaces face back.
【請求項4】 請求項1,2又は3記載の入射側光伝送
路と第1のくさび型複屈折結晶板との間に、光学軸が該
入射側光伝送路の光軸及び第1のくさび型複屈折結晶板
の光学軸に直交するよう、平板型複屈折結晶板が配置さ
れたことを特徴とする偏光状態可変器。
4. The optical axis between the incident side optical transmission line according to claim 1, 2 and 3 and the first wedge-type birefringent crystal plate is the optical axis of the incident side optical transmission line and the first optical axis. A polarization state variator characterized in that a flat plate type birefringent crystal plate is arranged so as to be orthogonal to the optical axis of the wedge type birefringent crystal plate.
【請求項5】 前記第1又は第2のくさび型複屈折結晶
板の何れか一方を、光路長が変化する方向に往復運動さ
せる駆動手段が、 入射側光伝送路の光軸に直交するガイド溝を有する基台
と、 該ガイド溝に摺動移動自在に装着され、移動すべきくさ
び型複屈折結晶板が上部に搭載されてなるスライダー
と、 該スライダーの軸心を貫通することで、該スライダーに
固着されてなる棒状の永久磁石と、 電磁石のそれぞれのヨークが、該永久磁石のN極端面又
はS極端面に所定の間隙を隔てて対向するよう、該スラ
イダーを挟んで対向配置されてなる一対の電磁石とを備
え、 該一対の電磁石は、交互に通電されることで、該スライ
ダーを交互に吸引するものであることを特徴とする偏光
状態可変器。
5. A drive means for reciprocating one of the first and second wedge-shaped birefringent crystal plates in the direction in which the optical path length changes is a guide orthogonal to the optical axis of the incident side optical transmission path. A base having a groove, a slider, which is slidably mounted in the guide groove, and on which a wedge-shaped birefringent crystal plate to be moved is mounted, and a slider which penetrates the axis of the slider, The rod-shaped permanent magnet fixed to the slider and the respective yokes of the electromagnet are arranged so as to face each other across the slider so as to face the N extreme surface or the S extreme surface of the permanent magnet with a predetermined gap. And a pair of electromagnets, wherein the pair of electromagnets are alternately energized to alternately attract the slider.
【請求項6】 請求項1,2,3,又は4記載の入射側
光伝送路が偏波面保存光ファイバであり、該入射側偏波
面保存光ファイバの偏光軸が、光源が出射する偏光の偏
光面に一致していることを特徴とする偏光状態可変器。
6. The incident-side optical transmission line according to claim 1, 2, 3, or 4, is a polarization-maintaining optical fiber, and the polarization axis of the incident-side polarization-maintaining optical fiber is A polarization state changer characterized by matching the polarization plane.
【請求項7】 請求項4記載の平板型複屈折結晶板と入
射側光伝送路との間に、光学軸が該入射側光伝送路の光
軸に直交する面内で回転可能のように、偏光子が装着さ
れたことを特徴とする偏光状態可変器。
7. The optical axis between the flat birefringent crystal plate according to claim 4 and the incident side optical transmission line is rotatable in a plane orthogonal to the optical axis of the incident side optical transmission line. , A polarization state changer having a polarizer attached.
【請求項8】請求項7記載の回転可能の偏光子に代え
て、1/2波長板が装着されたことを特徴とする偏光状
態可変器。
8. A polarization state variator comprising a half-wave plate mounted in place of the rotatable polarizer according to claim 7.
【請求項9】 平行光束を出射する入射側光伝送路と、 光学軸方向の長さが異なる複数の複屈折結晶薄板が段差
を有するよう重層されてなり、光学軸が該入射側光伝送
路の光軸に直交するよう配置された複合複屈折結晶板
と、 該複合複屈折結晶板からの出射光を受光し伝送する出射
側光伝送路と、 光路長が変化する方向に該複合複屈折結晶板を往復運動
させる駆動手段とを、備えたことを特徴とする偏光状態
可変器。
9. An incident-side optical transmission line that emits a parallel light flux and a plurality of birefringent crystal thin plates having different lengths in the optical axis direction are layered so as to have a step, and the optical axis has the incident-side optical transmission line. Compound birefringent crystal plate arranged so as to be orthogonal to the optical axis of, an output side optical transmission line that receives and transmits the light emitted from the composite birefringent crystal plate, and the compound birefringence in the direction in which the optical path length changes. A polarization state changer, comprising: a drive means for reciprocating a crystal plate.
【請求項10】 光源と測定すべき偏光依存性ある光学
装置との間に挿入された請求項1乃至9記載の偏光状態
可変器と、 該光学装置の出射光レベルをモニターするモニタ電流、
及び該光学装置の光出力Pを入力する演算用コンピュー
タとを備え、 該偏光状態可変器は、光源が出射する光を全偏光状態に
変えて、該光学装置に入力するものであり、 該コンピュータは、該光学装置の出力電流I及び光出力
Pを読み取り、出力電流I/光出力Pを演算し、さらに
直流成分と交流成分とに分解し、それぞれの成分値を表
示盤にデジタル又はアナログ表示するものであること
を、特徴とす偏光依存性測定装置。
10. A polarization state changer according to claim 1, which is inserted between a light source and a polarization-dependent optical device to be measured, and a monitor current for monitoring the output light level of the optical device.
And a computing computer for inputting the optical output P of the optical device, wherein the polarization state changer converts the light emitted from the light source into all polarization states and inputs the light into the optical device. Reads the output current I and the optical output P of the optical device, calculates the output current I / optical output P, further decomposes into a DC component and an AC component, and displays each component value in a digital or analog manner on the display panel. A polarization dependence measuring device characterized in that
JP29954894A 1994-12-02 1994-12-02 Polarization state varying device and instrument for measuring dependency on polarization using the same Withdrawn JPH08160324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29954894A JPH08160324A (en) 1994-12-02 1994-12-02 Polarization state varying device and instrument for measuring dependency on polarization using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29954894A JPH08160324A (en) 1994-12-02 1994-12-02 Polarization state varying device and instrument for measuring dependency on polarization using the same

Publications (1)

Publication Number Publication Date
JPH08160324A true JPH08160324A (en) 1996-06-21

Family

ID=17874050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29954894A Withdrawn JPH08160324A (en) 1994-12-02 1994-12-02 Polarization state varying device and instrument for measuring dependency on polarization using the same

Country Status (1)

Country Link
JP (1) JPH08160324A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267950A (en) * 2001-03-08 2002-09-18 Sumitomo Electric Ind Ltd Optical device
WO2002091534A1 (en) * 2001-05-08 2002-11-14 Mitsubishi Denki Kabushiki Kaisha Wavelength monitoring apparatus
JPWO2008088001A1 (en) * 2007-01-18 2010-05-13 シャープ株式会社 Optical element and image display apparatus using the same
CN106444065A (en) * 2016-10-25 2017-02-22 哈尔滨理工大学 Polarization device with adjustable polarizing angle
CN112255779A (en) * 2020-11-27 2021-01-22 中国科学院微电子研究所 Large-caliber compact type Soire-Babinet compensator device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002267950A (en) * 2001-03-08 2002-09-18 Sumitomo Electric Ind Ltd Optical device
JP4569017B2 (en) * 2001-03-08 2010-10-27 住友電気工業株式会社 Optical device
WO2002091534A1 (en) * 2001-05-08 2002-11-14 Mitsubishi Denki Kabushiki Kaisha Wavelength monitoring apparatus
US7301974B2 (en) 2001-05-08 2007-11-27 Mitsubishi Denki Kabushiki Kaisha Wavelength monitoring apparatus
JPWO2008088001A1 (en) * 2007-01-18 2010-05-13 シャープ株式会社 Optical element and image display apparatus using the same
CN106444065A (en) * 2016-10-25 2017-02-22 哈尔滨理工大学 Polarization device with adjustable polarizing angle
CN112255779A (en) * 2020-11-27 2021-01-22 中国科学院微电子研究所 Large-caliber compact type Soire-Babinet compensator device
CN112255779B (en) * 2020-11-27 2022-05-24 中国科学院微电子研究所 Large-caliber compact type Soire-Babinet compensator device

Similar Documents

Publication Publication Date Title
US7027467B2 (en) Fiber laser
US5917648A (en) Packaged optical amplifier assembly
US5887009A (en) Confocal optical scanning system employing a fiber laser
US5818981A (en) Polarization mode dispersion-free circulator
JPH04166803A (en) Multifiber ribbon tape optical fiber variable attenuator
US20070091412A1 (en) Compact multipass optical isolator
JP2002517771A (en) 1 × N optical switch
JPH08160324A (en) Polarization state varying device and instrument for measuring dependency on polarization using the same
Wynands et al. A compact tunable 60‐dB Faraday optical isolator for the near infrared
JP2002311387A (en) Multistage reflection type faraday rotator
US5760946A (en) Optical isolator, faraday rotator suitable for use in the same, and laser diode module incorporating the same
WO2003032055A1 (en) Reflective variable light attenuator
JP3457711B2 (en) Fiber type optical isolator
JP2004094188A (en) Optical switch
JPH1172635A (en) Optical device and its production
JPH0526172B2 (en)
JPH11264954A (en) Optical circulator and optical switch
US20060139727A1 (en) Hybrid fiber polarization dependent isolator, and laser module incorporating the same
JP3403457B2 (en) Optical prism and its coupling device
US5969849A (en) Optical device of enhanced optical isolation at various wavelengths
JPH0894494A (en) Apparatus for measuring wavelength dependency of optical isolator
JP3003153U (en) Polarization plane switch and optical switch using the same
JP2870667B2 (en) Laser diode module
JPS6221119A (en) Semiconductor laser module with optical isolator
JPH10319346A (en) Optical isolator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020205