JP2004093153A - Optical loss measuring method for optical fiber pigtail with optical isolator - Google Patents

Optical loss measuring method for optical fiber pigtail with optical isolator Download PDF

Info

Publication number
JP2004093153A
JP2004093153A JP2002250791A JP2002250791A JP2004093153A JP 2004093153 A JP2004093153 A JP 2004093153A JP 2002250791 A JP2002250791 A JP 2002250791A JP 2002250791 A JP2002250791 A JP 2002250791A JP 2004093153 A JP2004093153 A JP 2004093153A
Authority
JP
Japan
Prior art keywords
light
optical
magnetic field
optical fiber
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002250791A
Other languages
Japanese (ja)
Inventor
Narimasa Enoeda
榎枝 成正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002250791A priority Critical patent/JP2004093153A/en
Publication of JP2004093153A publication Critical patent/JP2004093153A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem the forward loss measurement of an optical pigtail with an optical isolator, which is performed by making light from the optical isolator 11 side incident on an optical fiber, requires that an the light must be aligned accurately and that the measurement takes much time because the adjustment of the alignment takes a long time. <P>SOLUTION: In this measurement method for the optical fiber pigtail with the optical isolator, the rotation direction of a Faraday rotator 13 is reversed by applying a second magnetic field by a magnet 3. Light is transmitted from a light source 5 to a second polarizer 15a via a first polarizer 15b and the Faraday rotator 13 to measure the forward direction loss of the light. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は光伝送システム等で使用する光アイソレータ付き光ファイバピグテイルの光損失測定方法に関する。
【0002】
【従来の技術】
光伝送システムでは、例えば2つの光ファイバを接続するのにその端面同士を接続するコネクタ接続部に空隙が生じると、ファイバ端面と空気との屈折率が異なることから多重反射が起こることが知られている。このような状態では反射光の一部がレーザーダイオード(以下、LDという)に戻ってLDの活性層内に入射すると、LDの内部雑音が増加したり、発振特性が不安定になるなどの特性劣化を生じる。これを防ぐ有効な素子が光アイソレータであり、この光アイソレータは、光を1方向にしか通さないようにして戻り光をカットする素子である。そして、この光アイソレータ素子を光ファイバ端部に接合したものが光アイソレータ付き光ファイバピグテイルである。
【0003】
図3に光アイソレータ付き光ファイバピグテイルの全体図を、図4に光アイソレータ付き光ファイバピグテイルの要部断面図を示す。
【0004】
ピグテイル4は、光ファイバ16を保持するキャピラリ17を有したフェルール18からなり、また、フェルール18の端面に光アイソレータ11が当接されている。
【0005】
このアイソレータ11は、偏光子2枚、ファラデー回転子1枚のいわゆる1段型の光アイソレータ用素子を搭載したものであり、ある方向の直線偏光のみを取り出す偏光子15a、15bと磁界により偏光状態が回転する特性を持つファラデー回転子13を接着して一体化した光アイソレータ11と、ファラデー回転子13のファラデー効果を制御する磁石14からなる。図4では、磁界方向の右方向の光が通過する順方向となっている。特にフェルール18の端面から偏光子15a、ファラデー回転子13、偏光子15bの順で配列されている。
【0006】
図5に光アイソレータ11の原理を示す。順方向では、まず、入力光は偏光子15aにより直線偏光とされ、ファラデー回転子13には適切な強さの磁界を与えているので、ファラデー回転子13より+45°回転されて+45°傾けた偏光子15bを透過する(図5(a)参照)が光ファイバ端面で反射される反射光のように、逆方向に戻る光については、ファラデー回転子13は−45°回転されて偏光子15aを透過できなくなるというものである(図5(b)参照)。
【0007】
また、図5(a)(b)においてファラデー回転子13に与えている磁界の方向を逆転させると、ファラデー回転子13は偏光された光を図5と反対方向に回転させる特性を持っている為に、光アイソレータ11の順方向と逆方向が逆転する。
【0008】
ここで、光アイソレータ11の重要な特性としては、入射光が順方向で通過させるときの損失である順方向損失、また、入射光が逆方向を通過するときの損失である逆方向損失と順方向損失の比であるアイソレーションがある。従来から光アイソレータの特性のうち、順方向損失が低く、アイソレーションの高いものは、
信号の減衰量が少なく、且つ、反射光の減衰量が大きくなるという理由から特性が良いとされている。ここでアイソレーション比が高いとは、順方向損失が低くて逆方向損失が高くなるものをいう。従って、常に、良品の製品を出す為にも、出荷前に順方向損失及びアイソレーションを測定する必要がある。
【0009】
【発明が解決しようとする課題】
しかしながら、順方向損失は、図3、図6に示すようにアイソレータ11の偏光子15a側から光を入射させた場合、光を光ファイバ16に入射させ、入射側とは反対側のコネクタ12側にセンサ2をおいて、入射する光の出力とセンサ2で受ける光の出力から順方向損失を測定することが考えられるが、光を光ファイバ16の端面に集光させる為の集光レンズ19を必要とし、さらに高精度な調芯を行う必要があり、調芯に時間がかかる為に測定に時間がかかるという問題があった。
【0010】
また、逆方向の損失も、順方向損失を測定したもので測定する場合には、入射するために用いる集光レンズ19側にセンサ2を再度配置せねばならず、光を入射する側にセンサ2を配置するのは困難で装置が複雑化するという問題もあった。
【0011】
【課題を解決するための手段】
本発明は、上記課題を解決する為に、光ファイバと該光ファイバ端部を保持するフェルールから構成されるピグテイルの端面に、該端面から順に第1の偏光子、第1の磁界が印加可能なファラデー回転子及び第2の偏光子がそれぞれ配列されて一体化した光アイソレータを当接してなる光アイソレータ付き光ファイバピグテイルと、前記光アイソレータの周囲に前記第1の磁界とは磁界の方向が逆方向で且つ磁界強度が強い磁界を印加することにより第1の磁界を反転させる磁石と、前記光ファイバの光アイソレータを当接した側とは逆側から測定用の光を光ファイバに入射させる光源とを用意し、前記第2の磁界を印加させることで前記ファラデー回転子の回転方向を逆転させるとともに、前記光源から前記第1の偏光子及びファラデー回転子を介して第2の偏光子に光を通過させることで光の順方向損失を測定することを特徴とする光アイソレータ付光ファイバピグテイルの光損失測定方法を提供する。
【0012】
また、前記第1の磁界のみを印加し、前記第2の偏光子で光源からの光を遮断させることで逆方向損失を測定することを特徴とする光アイソレータ付ファイバピグテイルの光損失測定方法を提供する。
【0013】
さらに、前記磁第2の磁界を印加する磁石が電磁石であることを特徴とする光アイソレータ付光ファイバピグテイルの光損失測定方法を提供する。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図によって説明する。
図1に本発明の光損失の測定を行う測定系を示す一部断面図を示す。なお、従来技術で説明したアイソレータ付光ファイバピグテイルの構造の説明(図3、図4)については、重複するため省略する。
【0015】
本発明の光ファイバピグテイルの光損失の測定に用いる構成について説明する。まず、アイソレータ11の周囲に第2の磁界を発生させる磁石3(第2の磁石)を配置する。この磁石3は、アイソレータ付光ファイバピグテイルの第1の磁界を発生する磁石14(第1の磁石)の磁界方向と逆(図1では左方向)で、磁界強度が磁石14よりも大きいものが用いられる。この磁石3を配置すると、磁石14により第1の磁界が印加されたファラデー回転子に逆方向の磁界が印加されるようになる。
【0016】
ファラデー回転子13は磁界によって光の偏光状態が回転する素子で、上述のようにファラデー回転子13に作用する磁界の向きを反転させると、今までと逆方向に光の偏光状態を回転させるようになる。その為に光アイソレータ11の光が通過、非通過の方向である順方向と逆方向が逆転して、図1では左方向が順方向(光が通過する方向)となるため、測定用の光を入射させる光源5からの光を、ピグテイル4のコネクタ12側から入射させ、センサ2で受光し、光パワーメータ1で測定することにより、簡単に順方向損失を測定することができる測定系となる。
【0017】
この様な測定系にすることにより、従来のように光を光ファイバ16の端面に集光させる為の光学系を必要とせず、高精度な調芯が不要で、逆方向損失の測定系にピグテイル4の周囲に磁石14の磁界方向と逆方向に磁界が発生する磁界の強さの磁石3を配するだけで、順方向損失を簡単に測定でき、従来の測定方法に比べて容易に短時間で順方向損失の測定が可能になるものである。
【0018】
なお、逆方向の損失の測定は、磁石3を取り除くだけで測定できる。即ち、磁石3を取り除くと、光源5からの光が偏光子15b(第1の偏光子)を通過し、ファラデー回転子13に入射するが、磁界は磁石14のみが作用するので、ファラデー回転子の光の偏光状態を回転させる方向がもとにもどり、偏光子15a(第2の偏光子)で遮断される。この時の受光センサ2で受ける光の量により逆方向の損失が決まる。
【0019】
この測定に用いる受光センサ2としては、ピグテイル4から出力される光を100%受光させる為に大口径センサを使用することが望ましい。光源5には、測定精度を良くする為に出力パワーの安定したファベリペローやDFB(Distributed Feedback)のレーザー光等の安定化光源を用いる。磁石3は、円筒形等の形状の磁石で、材質としては例えばサマリュウムコバルト(SmCo)等を用いる。また、磁石3は、ファラデー回転素子に適切に作用する強さの磁界を発生するものとする。
【0020】
また、図2の様にピグテイルの周囲に磁石の代わりに電磁石3を配し、この電磁石3に磁石14の磁界の方向と逆方向(図1では左方向)に磁界が発生するように電流を流し、光アイソレータ11の順方向と逆方向を逆転させる方法もある。この方法で測定すると、電磁石6に流れる電流を制御して電磁石6の磁界を変化させるだけで光アイソレータ11の順方向と逆方向の向きを制御でき、図1と同じ測定が可能となり、従来の測定方法に比べて容易に短時間で順方向損失の測定が可能となった。
【0021】
なお、ピグテイルの周囲に磁界を発生させる手段は、上記で説明した磁石や電磁石以外でも、ファラデー回転子に適切な磁界を与えられるものならば、どのようなものを用いても良く、従来の測定方法に比べて容易に短時間で順方向損失の測定が可能となる。
【0022】
【実施例】
本発明の図2の測定系で順方向損失の測定を行い、従来の調芯する測定方法で順方向の測定時間の比較を行った。受光センサ2としては、ピグテイル4から出力される光を100%受光させて接続損失が発生しないようにする為にφ5の大口径センサを使用した。光源5には光出力のパワーが安定した波長が1.55μmのファベリペロレーザーの安定化光源を使用した。図2において、電磁石6のSWを電流が流れないようにOFFにした状態では、逆方向損失の測定系であるが、電磁石6のSWをONにして電流を流し磁界を発生させた瞬間に、磁界の影響でファラデー回転子13に作用する磁界が変化し、ファラデー回転素子13の偏光光への回転作用の回転方向を逆転することによって光アイソレータの順方向と逆方向の向きが逆転して、順方向損失の測定系となる。
【0023】
図6に従来の測定系を示す。光源5から出力された光を集光レンズ19で集光させてピグテイル4の光ファイバに入射させる。この時、損失が生じないように、X,Y,Zステージ20で調芯させる。そして、ピグテイル4のコネクタ12を光センサ2に接続して出力光を受光させるようになっている。
【0024】
以上の測定系で、各々100個について順方向損失の測定を行って測定にかかる時間を測定した。
図7に実験結果を示す。各々の測定1個当たりの平均測定時間を示しているが、図7より、本発明によって、測定時間が従来の測定方法の1/10以下になり、大幅な測定時間の短縮が実現できたことが分かる。
実施例では、測定時間を少しでも短縮する為に、ピグテイル4の周囲に磁界を発生させる手段として電磁石6を用いたが、ファラデー回転子に対して適切に作用する強さの磁界を発生できるものならば、電磁石以外のものを用いても従来の測定時間に対して大幅な測定時間の短縮が実現できる。
【0025】
【発明の効果】
以上のように本発明によれば、光ファイバと光ファイバを保持するキャピラリ付きフェルールから構成されるピグテイルに、少なくとも1枚の偏光子と少なくとも1枚のファラデー回転子を一体化した光アイソレータ素子を備えた光アイソレータ付き光ファイバピグテイルにおいて、ピグテイルの周囲に例えば磁石や電磁石によって磁界を発生させることにより、簡単な構成で順方向、逆方向のいずれの損失をも簡単に測定することができるとともに測定時間も短縮することが可能となるものである。
【図面の簡単な説明】
【図1】本発明の光損失の測定を行う測定系を示す一部断面図である。
【図2】本発明の光損失の測定を行う測定系の他の実施の形態を説明する一部断面図である。
【図3】光アイソレータ付き光ファイバピグテイルの一部断面図である。
【図4】(a)(b)は光アイソレータ付き光ファイバピグテイルの一部断面図である。
【図5】(a)(b)は光アイソレータの原理を説明する光学系の斜視図である。
【図6】従来の光損失の測定を行う測定系を示す一部断面図である。
【図7】従来の測定時間と本発明の測定時間を比較するための表である。
【符号の説明】
1:光パワーメータ
2:光センサ
3:磁石(第2の磁石)
4:ピグテイル
5:光源
6:電磁石
11:光アイソレータ素子
12:コネクタ
13:ファラデー回転子
14:磁石(第1の磁石)
15a:偏光子(第2の偏光子)
15b:偏光子(第1の偏光子)
16:光ファイバ
17:キャピラリ
18:フェルール
19:集光レンズ
20:X,Y,Zステージ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring light loss of an optical fiber pigtail with an optical isolator used in an optical transmission system or the like.
[0002]
[Prior art]
In an optical transmission system, for example, it is known that when a gap is formed in a connector connecting portion connecting end faces of two optical fibers, multiple reflection occurs due to a difference in refractive index between the fiber end face and air. ing. In such a state, when a part of the reflected light returns to the laser diode (hereinafter referred to as LD) and enters the active layer of the LD, characteristics such as an increase in internal noise of the LD and an unstable oscillation characteristic are obtained. Deterioration occurs. An effective element to prevent this is an optical isolator, which is an element that cuts return light by passing light only in one direction. An optical fiber pigtail with an optical isolator is obtained by joining the optical isolator element to the end of the optical fiber.
[0003]
FIG. 3 is an overall view of an optical fiber pigtail with an optical isolator, and FIG. 4 is a sectional view of a main part of the optical fiber pigtail with an optical isolator.
[0004]
The pigtail 4 includes a ferrule 18 having a capillary 17 for holding an optical fiber 16, and the optical isolator 11 is in contact with an end face of the ferrule 18.
[0005]
This isolator 11 is provided with a so-called one-stage type optical isolator element having two polarizers and one Faraday rotator. The polarizers 15a and 15b for extracting only linearly polarized light in a certain direction and a polarization state by a magnetic field. The optical isolator 11 is formed by bonding a Faraday rotator 13 having the characteristic of rotating the optical isolator 11 and a magnet 14 for controlling the Faraday effect of the Faraday rotator 13. In FIG. 4, it is a forward direction in which light in the right direction of the magnetic field passes. Particularly, the polarizer 15a, the Faraday rotator 13, and the polarizer 15b are arranged in this order from the end face of the ferrule 18.
[0006]
FIG. 5 shows the principle of the optical isolator 11. In the forward direction, first, the input light is linearly polarized by the polarizer 15a, and a magnetic field having an appropriate strength is given to the Faraday rotator 13. Therefore, the input light is rotated + 45 ° and tilted + 45 ° from the Faraday rotator 13. For light that passes through the polarizer 15b (see FIG. 5A) but returns in the opposite direction, such as reflected light reflected at the end face of the optical fiber, the Faraday rotator 13 is rotated by −45 ° and the polarizer 15a is rotated. Cannot be transmitted (see FIG. 5B).
[0007]
5A and 5B, when the direction of the magnetic field applied to the Faraday rotator 13 is reversed, the Faraday rotator 13 has a characteristic of rotating the polarized light in the direction opposite to that in FIG. Therefore, the forward direction and the reverse direction of the optical isolator 11 are reversed.
[0008]
Here, important characteristics of the optical isolator 11 include forward loss, which is loss when incident light passes in the forward direction, and reverse loss, which is loss when incident light passes in the reverse direction. There is isolation, which is the ratio of directional losses. Conventionally, among the characteristics of optical isolators, those with low forward loss and high isolation
It is said that the characteristics are good because the signal attenuation is small and the reflection light attenuation is large. Here, a high isolation ratio means that the forward loss is low and the reverse loss is high. Therefore, it is necessary to measure the forward loss and the isolation before shipping to always obtain a good product.
[0009]
[Problems to be solved by the invention]
However, as shown in FIG. 3 and FIG. 6, when light is incident from the polarizer 15a side of the isolator 11, the light is incident on the optical fiber 16 and the connector 12 side on the opposite side to the incident side. It is conceivable to measure the forward loss from the output of the incident light and the output of the light received by the sensor 2 by placing the sensor 2 in the sensor 2, but a condenser lens 19 for condensing the light on the end face of the optical fiber 16. In addition, it is necessary to perform alignment with high precision, and there is a problem that it takes a long time to perform alignment, and thus it takes a long time to perform measurement.
[0010]
In addition, when the loss in the reverse direction is also measured by measuring the loss in the forward direction, the sensor 2 must be disposed again on the side of the condenser lens 19 used for incidence, and the sensor is located on the side on which light is incident. 2 is difficult to arrange, and there is a problem that the apparatus becomes complicated.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention can apply a first polarizer and a first magnetic field to an end face of a pigtail composed of an optical fiber and a ferrule holding the end of the optical fiber in order from the end face. An optical fiber pigtail with an optical isolator in which an integrated optical Faraday rotator and a second polarizer are arranged and abutted, and the first magnetic field around the optical isolator is the direction of the magnetic field A magnet for reversing the first magnetic field by applying a strong magnetic field in the opposite direction and a strong magnetic field intensity, and light for measurement is incident on the optical fiber from a side opposite to a side of the optical fiber in contact with the optical isolator. A rotation direction of the Faraday rotator is reversed by applying the second magnetic field, and the first light polarizer and the Faraday rotation are transmitted from the light source. Providing optical loss measurement method of the optical isolator with optical fiber pigtail, characterized by measuring the forward loss of the light by passing the light to the second polarizer through the child.
[0012]
A method for measuring an optical loss in a fiber pigtail with an optical isolator, wherein a reverse direction loss is measured by applying only the first magnetic field and blocking light from a light source with the second polarizer. I will provide a.
[0013]
Further, the present invention provides a method for measuring light loss of an optical fiber pigtail with an optical isolator, wherein the magnet for applying the magnetic second magnetic field is an electromagnet.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a partial cross-sectional view showing a measurement system for measuring light loss according to the present invention. The description of the structure of the optical fiber pigtail with isolator described in the prior art (FIGS. 3 and 4) is omitted because it is redundant.
[0015]
The configuration used for measuring the optical loss of the optical fiber pigtail of the present invention will be described. First, a magnet 3 (second magnet) for generating a second magnetic field is arranged around the isolator 11. The magnet 3 has a magnetic field strength larger than that of the magnet 14 which is opposite to the magnetic field direction of the magnet 14 (first magnet) that generates the first magnetic field of the optical fiber pigtail with isolator (left direction in FIG. 1). Is used. When the magnet 3 is arranged, a magnetic field in the opposite direction is applied to the Faraday rotator to which the first magnetic field is applied by the magnet 14.
[0016]
The Faraday rotator 13 is an element in which the polarization state of light is rotated by a magnetic field. When the direction of the magnetic field acting on the Faraday rotator 13 is reversed as described above, the polarization state of light is rotated in the opposite direction as before. become. Therefore, the forward direction, which is the direction in which the light of the optical isolator 11 passes and the direction in which the light does not pass, is reversed, and in FIG. 1, the left direction is the forward direction (the direction in which the light passes). A light from a light source 5 that causes the light to enter the connector 12 from the connector 12 side of the pigtail 4, receives the light by the sensor 2, and measures the light by the optical power meter 1 to measure the forward loss easily. Become.
[0017]
By adopting such a measuring system, an optical system for condensing light on the end face of the optical fiber 16 is not required unlike the related art, and high-precision alignment is not required, and the measuring system for the reverse loss is used. By simply arranging the magnet 3 having a magnetic field strength that generates a magnetic field in the direction opposite to the magnetic field direction of the magnet 14 around the pigtail 4, the forward loss can be easily measured, and the loss can be easily reduced as compared with the conventional measuring method. It is possible to measure the forward loss in time.
[0018]
The loss in the reverse direction can be measured by simply removing the magnet 3. That is, when the magnet 3 is removed, light from the light source 5 passes through the polarizer 15b (first polarizer) and enters the Faraday rotator 13, but the magnetic field acts only on the magnet 14, so the Faraday rotator The direction of rotating the polarization state of the light is returned to the original direction, and is blocked by the polarizer 15a (second polarizer). The loss in the reverse direction is determined by the amount of light received by the light receiving sensor 2 at this time.
[0019]
As the light receiving sensor 2 used for this measurement, it is desirable to use a large-diameter sensor in order to receive 100% of the light output from the pigtail 4. As the light source 5, a stabilized light source such as a laser beam of Fabry-Perot or DFB (Distributed Feedback) having a stable output power is used to improve the measurement accuracy. The magnet 3 is a magnet having a cylindrical shape or the like, and its material is, for example, samarium cobalt (SmCo). The magnet 3 generates a magnetic field having a strength that appropriately acts on the Faraday rotation element.
[0020]
Also, as shown in FIG. 2, an electromagnet 3 is arranged around the pigtail instead of a magnet, and a current is applied to the electromagnet 3 so that a magnetic field is generated in a direction opposite to the direction of the magnetic field of the magnet 14 (to the left in FIG. 1). There is also a method in which the forward and reverse directions of the optical isolator 11 are reversed. When measured by this method, the forward and reverse directions of the optical isolator 11 can be controlled only by changing the magnetic field of the electromagnet 6 by controlling the current flowing through the electromagnet 6, and the same measurement as in FIG. The forward loss can be easily measured in a short time as compared with the measurement method.
[0021]
Means for generating a magnetic field around the pigtail may be any other than the magnets and electromagnets described above as long as an appropriate magnetic field can be applied to the Faraday rotator. The forward loss can be easily measured in a short time as compared with the method.
[0022]
【Example】
The forward loss was measured by the measuring system of FIG. 2 of the present invention, and the forward measuring time was compared by a conventional alignment measuring method. As the light receiving sensor 2, a large-diameter sensor having a diameter of φ5 was used in order to receive 100% of the light output from the pigtail 4 and prevent connection loss. As the light source 5, a stabilized light source of a Fabry-Perot laser having a wavelength of 1.55 μm and a stable optical output power was used. In FIG. 2, in a state where the SW of the electromagnet 6 is turned off so that no current flows, the measurement system of the reverse loss is used. At the moment when the SW of the electromagnet 6 is turned on and the current flows to generate a magnetic field, The magnetic field acting on the Faraday rotator 13 changes due to the influence of the magnetic field, and the forward and reverse directions of the optical isolator are reversed by reversing the rotation direction of the rotating action of the Faraday rotator 13 on the polarized light, A forward loss measurement system.
[0023]
FIG. 6 shows a conventional measurement system. The light output from the light source 5 is condensed by the condenser lens 19 and made incident on the optical fiber of the pigtail 4. At this time, the alignment is performed on the X, Y, and Z stages 20 so that no loss occurs. The connector 12 of the pigtail 4 is connected to the optical sensor 2 to receive output light.
[0024]
In the measurement system described above, the forward loss was measured for 100 pieces, and the time required for the measurement was measured.
FIG. 7 shows the experimental results. The average measurement time for each measurement is shown. From FIG. 7, the measurement time was reduced to 1/10 or less of the conventional measurement method according to the present invention, and the measurement time was significantly reduced. I understand.
In the embodiment, the electromagnet 6 is used as a means for generating a magnetic field around the pigtail 4 in order to shorten the measurement time even slightly, but a magnetic field having a strength which appropriately acts on the Faraday rotator can be generated. Then, even if a device other than the electromagnet is used, the measurement time can be significantly reduced as compared with the conventional measurement time.
[0025]
【The invention's effect】
As described above, according to the present invention, an optical isolator element in which at least one polarizer and at least one Faraday rotator are integrated with a pigtail composed of an optical fiber and a ferrule with a capillary holding the optical fiber is provided. In an optical fiber pigtail with an optical isolator provided, by generating a magnetic field around the pigtail by, for example, a magnet or electromagnet, it is possible to easily measure both forward and reverse losses with a simple configuration The measurement time can be shortened.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing a measurement system for measuring light loss according to the present invention.
FIG. 2 is a partial cross-sectional view illustrating another embodiment of a measurement system for measuring light loss according to the present invention.
FIG. 3 is a partial cross-sectional view of an optical fiber pigtail with an optical isolator.
FIGS. 4A and 4B are partial cross-sectional views of an optical fiber pigtail with an optical isolator.
FIGS. 5A and 5B are perspective views of an optical system for explaining the principle of an optical isolator.
FIG. 6 is a partial cross-sectional view showing a conventional measurement system for measuring optical loss.
FIG. 7 is a table for comparing the conventional measurement time with the measurement time of the present invention.
[Explanation of symbols]
1: optical power meter 2: optical sensor 3: magnet (second magnet)
4: pigtail 5: light source 6: electromagnet 11: optical isolator element 12: connector 13: Faraday rotator 14: magnet (first magnet)
15a: Polarizer (second polarizer)
15b: Polarizer (first polarizer)
16: Optical fiber 17: Capillary 18: Ferrule 19: Condensing lens 20: X, Y, Z stage

Claims (3)

光ファイバと該光ファイバ端部を保持するフェルールから構成されるピグテイルの端面に、該端面から順に第1の偏光子、ファラデー回転子及び第2の偏光子がそれぞれ配列されて一体化した光アイソレータを当接し、前記ファラデー回転子に第1の磁界を印加する第1の磁石を備えてなる光アイソレータ付き光ファイバピグテイルと、前記光アイソレータの周囲に前記第1の磁界とは磁界の方向が逆で且つ磁界強度が強い磁界を印加することにより第1の磁界を反転させる第2の磁石と、前記光ファイバの光アイソレータを当接した側とは逆側から測定用の光を光ファイバに入射させる光源とを用意し、前記第2の磁界を印加させることで前記ファラデー回転子の回転方向を逆転させるとともに、前記光源から前記第1の偏光子及びファラデー回転子を介して第2の偏光子に光を通過させることで光の順方向損失を測定することを特徴とする光アイソレータ付光ファイバピグテイルの光損失測定方法。An optical isolator in which a first polarizer, a Faraday rotator, and a second polarizer are arranged in order from the end face on an end face of a pigtail composed of an optical fiber and a ferrule holding the end of the optical fiber. And a fiber optic pigtail with an optical isolator comprising a first magnet for applying a first magnetic field to the Faraday rotator, and the direction of the magnetic field around the optical isolator is The second magnet, which reverses the first magnetic field by applying a magnetic field having a strong magnetic field strength, and light for measurement to the optical fiber from the side opposite to the side of the optical fiber in contact with the optical isolator. A light source to be incident is prepared, and the direction of rotation of the Faraday rotator is reversed by applying the second magnetic field. Light loss measurement method of optical fiber pigtail with optical isolator and measuring the forward loss of the light by passing the light to the second polarizer via chromatography rotor. 前記第1の磁界のみを印加し、前記第2の偏光子で光源からの光を遮断させることで逆方向損失を測定することを特徴とする請求項1記載の光アイソレータ付ファイバピグテイルの光損失測定方法。The light of the fiber pigtail with an optical isolator according to claim 1, wherein the reverse loss is measured by applying only the first magnetic field and blocking the light from the light source with the second polarizer. Loss measurement method. 前記磁第2の磁界を印加する磁石が電磁石であることを特徴とする請求項1又は2記載の光アイソレータ付光ファイバピグテイルの光損失測定方法。3. The method according to claim 1, wherein the magnet for applying the second magnetic field is an electromagnet.
JP2002250791A 2002-08-29 2002-08-29 Optical loss measuring method for optical fiber pigtail with optical isolator Withdrawn JP2004093153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002250791A JP2004093153A (en) 2002-08-29 2002-08-29 Optical loss measuring method for optical fiber pigtail with optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002250791A JP2004093153A (en) 2002-08-29 2002-08-29 Optical loss measuring method for optical fiber pigtail with optical isolator

Publications (1)

Publication Number Publication Date
JP2004093153A true JP2004093153A (en) 2004-03-25

Family

ID=32057528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002250791A Withdrawn JP2004093153A (en) 2002-08-29 2002-08-29 Optical loss measuring method for optical fiber pigtail with optical isolator

Country Status (1)

Country Link
JP (1) JP2004093153A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013710A (en) * 2011-08-18 2012-01-19 Sumitomo Metal Mining Co Ltd Method of evaluating magneto-optical device
CN107631859A (en) * 2017-09-05 2018-01-26 深圳市翔通光电技术有限公司 A kind of method of testing and test device suitable for optical fiber interface isolator assemblies
CN110927881A (en) * 2018-09-19 2020-03-27 苏州旭创科技有限公司 Optical plug-in with isolator and optical module with optical plug-in
CN113042399A (en) * 2021-03-25 2021-06-29 河南理工大学 Automatic performance detection and automatic sorting system for free space type optical isolator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012013710A (en) * 2011-08-18 2012-01-19 Sumitomo Metal Mining Co Ltd Method of evaluating magneto-optical device
CN107631859A (en) * 2017-09-05 2018-01-26 深圳市翔通光电技术有限公司 A kind of method of testing and test device suitable for optical fiber interface isolator assemblies
CN110927881A (en) * 2018-09-19 2020-03-27 苏州旭创科技有限公司 Optical plug-in with isolator and optical module with optical plug-in
CN110927881B (en) * 2018-09-19 2021-06-18 苏州旭创科技有限公司 Optical plug-in with isolator and optical module with optical plug-in
CN113042399A (en) * 2021-03-25 2021-06-29 河南理工大学 Automatic performance detection and automatic sorting system for free space type optical isolator

Similar Documents

Publication Publication Date Title
US5692082A (en) Laser diode module and depolarizer
US20230296930A1 (en) Single and multi-stage high power optical isolators using a single polarizing element
US11435415B2 (en) Magnetic sensor element and magnetic sensor device
KR0142017B1 (en) Method for assembling optical isolator and method for measuring isolation
JP2004093153A (en) Optical loss measuring method for optical fiber pigtail with optical isolator
US20030138224A1 (en) Method for fabrication of an all fiber polarization retardation device
EP0664472B1 (en) Faraday rotator suitable for use in an optical isolator and laser diode module incorporating the same
JP3865874B2 (en) Optical composite module
US20060139727A1 (en) Hybrid fiber polarization dependent isolator, and laser module incorporating the same
JP4812342B2 (en) Optical connector
JP2011048268A (en) Fiber stub-type optical device
JPH04221922A (en) Polarization independent type optical isolator
JP2008003211A (en) In-line type hybrid optical device
JPH10221014A (en) Optical wave guide path displacement sensor
JP2006276507A (en) Faraday rotation mirror
US20030002128A1 (en) Optical isolator
JP2006276506A (en) Faraday rotation mirror
JP2002169063A (en) Optical isolator-attached optical fiber pigtail and its assembling method
JP6226428B2 (en) A method of manufacturing a polarization maintaining fiber with an optical isolator.
JPS62147423A (en) Optical isolator
JPH07301763A (en) Optocoupler and optical fiber amplifier
JP2003121788A (en) Buried type optical isolator using composite optical element and its manufacturing method
JP2005017701A (en) Optical isolator and optical module using the same
JP2004061996A (en) Polarization-preserving optical fiber pigtail with optical isolator
JPH09257892A (en) Optical magnetic field sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060904

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20070703