JPH08159605A - Heat-transfer tube for absorber - Google Patents

Heat-transfer tube for absorber

Info

Publication number
JPH08159605A
JPH08159605A JP6306703A JP30670394A JPH08159605A JP H08159605 A JPH08159605 A JP H08159605A JP 6306703 A JP6306703 A JP 6306703A JP 30670394 A JP30670394 A JP 30670394A JP H08159605 A JPH08159605 A JP H08159605A
Authority
JP
Japan
Prior art keywords
tube
pipe
heat transfer
recesses
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6306703A
Other languages
Japanese (ja)
Other versions
JP3231565B2 (en
Inventor
Mamoru Ishikawa
守 石川
Masataka Noguchi
昌孝 野口
Hiroyuki Takahashi
宏行 高橋
Tomio Higo
富夫 肥後
Masashi Ishida
政司 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP30670394A priority Critical patent/JP3231565B2/en
Publication of JPH08159605A publication Critical patent/JPH08159605A/en
Application granted granted Critical
Publication of JP3231565B2 publication Critical patent/JP3231565B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PURPOSE: To provide a weight-reducible heat-transfer tube for an absorber which is excellent in a heat-transfer ability without lowering in an assembling workability to amount the tube to a refrigerator. CONSTITUTION: Absorber heat-transfer tubes 10 which comprise a plurality of horizontally laid out tubes are provided with a plurality of recessed parts 11 which extend in the tube axial direction and laid out intermittently where the center P of the recessed parts 11 between the rows of adjacent tubes in the tube peripheral direction and the center Q of the other rows between the recessed parts 11 are identical to each other about the tube axial direction while the ration Lo /L between the length Lo of the overlapped areas of the recessed parts in the adjacent rows in the tube peripheral direction and the length L of the recessed parts range from 0.2 to 0.8. The ratio between the width in the tube peripheral direction of the recessed parts and the width of recessed parts 12 between the recessed parts ranges from 0.5 to 1.5mm where the length of the recessed parts ranges from 10 to 50mm. An even area 13 having no recessed part which includes both ends in the longitudinal direction is installed to at least two locations. The ratio between a radius of curvature of a circle comprising an envelop which connects the tops of the projected parts between the recessed parts in the cross section which intersects to the tube axis at a right angle and a radius of curvature of the even area is specified to range from 0.97 to 1.03.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、吸収式冷凍機及び吸収
式冷温水機等の吸収式熱交換器の吸収器に使用される吸
収器用伝熱管に関し、更に詳述すれば、伝熱性能及び組
み付け性等が優れた吸収器用伝熱管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer tube for an absorber used in an absorber of an absorption heat exchanger such as an absorption refrigerator and an absorption chiller / heater, and more specifically, a heat transfer performance. Also, the present invention relates to a heat transfer tube for an absorber having excellent assembling property.

【0002】[0002]

【従来の技術】吸収式冷凍機等の吸収式熱交換器では、
器内を真空に保持し、冷媒を低温で蒸発し、その蒸発潜
熱により冷水を取り出しその冷水を空調に使用する。
2. Description of the Related Art In an absorption heat exchanger such as an absorption refrigerator,
The inside of the container is kept vacuum, the refrigerant is evaporated at a low temperature, and cold water is taken out by the latent heat of evaporation and used for air conditioning.

【0003】吸収器と蒸発器は一体の胴内に収められて
おり、蒸発を連続的に得るために、蒸発器にて発生して
きた冷媒蒸気を吸収器の伝熱管表面に散布される吸収液
に吸収させ、胴内を一定の真空度に維持している。従っ
て、熱交換器の冷凍能力を向上させるためには、蒸発器
における冷媒蒸気の発生量を増加させると共に、吸収
量、即ち吸収能力を増加させる必要がある。吸収能力の
増加については、伝熱管の性能向上が最も有効な手段で
あり、種々の形状を有する伝熱管が検討され、提案され
ている。
The absorber and the evaporator are housed in an integral body, and in order to continuously obtain evaporation, the refrigerant vapor generated in the evaporator is dispersed on the surface of the heat transfer tube of the absorber. The inside of the body is maintained at a certain degree of vacuum. Therefore, in order to improve the refrigerating capacity of the heat exchanger, it is necessary to increase the amount of refrigerant vapor generated in the evaporator and increase the amount of absorption, that is, the absorption capacity. Regarding the increase of the absorption capacity, the improvement of the performance of the heat transfer tube is the most effective means, and heat transfer tubes having various shapes have been studied and proposed.

【0004】例えば、実開平2−89270号及び特開
平2−176378号に開示された技術においては、管
軸方向に連続する縦溝を配し、管軸直角方向に形成され
る山部と谷部が所定の関係をなす曲率からなる形状を有
する。
For example, in the technique disclosed in Japanese Utility Model Laid-Open No. 2-89270 and Japanese Patent Application Laid-Open No. 2-176378, vertical grooves which are continuous in the pipe axis direction are arranged and peaks and valleys formed in the direction perpendicular to the pipe axis. The parts have a shape with curvatures that form a predetermined relationship.

【0005】これらは、マランゴニ対流によって生じる
管軸方向の吸収液の揺動を妨げないという特徴を持つも
のであり、更に吸収液が谷部から山部を越える際に一層
の攪乱効果が得られる。
These are characterized in that they do not hinder the swinging of the absorbing liquid in the pipe axis direction caused by Marangoni convection, and a further disturbing effect is obtained when the absorbing liquid crosses the troughs and the ridges. .

【0006】また、断続的な凹凸を形成した技術が、実
公昭46−67080号及び特公平5−22838号に
開示されている。これらは断続的な凹凸により吸収液を
攪乱し、又は滞留時間を長くするという特徴を有するも
のである。
Further, a technique for forming intermittent irregularities is disclosed in Japanese Utility Model Publication No. 46-67080 and Japanese Patent Publication No. 5-22838. These are characterized in that the absorbent is disturbed by intermittent irregularities or the residence time is lengthened.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上述し
た従来技術においては、ある程度の伝熱性能の向上が得
られるものの、下記に述べるように種々の問題点があっ
た。
However, although the above-mentioned conventional technique can improve the heat transfer performance to some extent, it has various problems as described below.

【0008】先ず、実開平2−89270号及び特開平
2−176378号に開示されているような管軸方向に
連続した溝を設けた形状の伝熱管では、管の設置の方向
によっては伝熱性能に差が生じる。
First, in a heat transfer tube having a groove having continuous grooves in the tube axial direction as disclosed in Japanese Utility Model Laid-Open No. 2-89270 and Japanese Patent Application Laid-Open No. 2-176378, heat transfer depends on the installation direction of the tube. There is a difference in performance.

【0009】具体的には、伝熱管を鉛直方向の上方に谷
部が位置するような配置とした場合、谷部に吸収液が溜
まりやすく、吸収液の排出がうまくいかないため、谷部
に吸収能力が低下した吸収液が残留し、伝熱性能の低下
を生じていた。また、吸収液の流量が増加すると、図1
0に示すように、管下部の山部で吸収液1がドロップア
ウトを生じることがあり、この場合にもやはり伝熱性能
の低下を生じていた。これらの弊害を防止するために
は、管群の列を山部が上になるように配置することが有
効であるが、この場合、冷凍機への管の挿入作業におい
て1本1本方向を確認しながら作業を進める必要があ
り、作業者に多大な負担がかかることになる。
Specifically, when the heat transfer tubes are arranged so that the valleys are located above the vertical direction, the absorbing liquid is likely to collect in the valleys and the absorbing liquid cannot be discharged properly. The absorption liquid with reduced temperature remained, resulting in deterioration of heat transfer performance. In addition, when the flow rate of the absorbing liquid increases, as shown in FIG.
As shown in 0, the absorbing liquid 1 may drop out at the mountain portion of the lower part of the tube, and in this case also, the heat transfer performance was deteriorated. In order to prevent these adverse effects, it is effective to arrange the row of tube groups so that the peaks are at the top, but in this case, when inserting the tubes into the refrigerator, It is necessary to proceed with the work while checking, and this puts a great burden on the worker.

【0010】更に、谷部の深さが深くなると吸収液の滞
留量が増加するため、冷凍サイクルを駆動させるための
吸収液の必要循環量が増加し、機器の重量が増加すると
いう欠点を有する。
Further, as the depth of the valley becomes deeper, the amount of retention of the absorption liquid increases, so that the required circulation amount of the absorption liquid for driving the refrigeration cycle increases and the weight of the device increases. .

【0011】次に、実公昭46−67080号に記載の
伝熱管は、断続的な凹部を持つものであるが、図11に
示すように、凹部2が管周方向についてで1列とばしで
隣り合う列の凹部が重なった位置にあり、管軸方向に見
た場合、凹部が全く存在しない帯状の領域が存在する。
このため、冷媒蒸気の吸収に伴って、マランゴニ対流が
生じると、流下する吸収液が筋状に隆起し、且つ管軸方
向に揺動しながら流下するため、場所によっては図11
に示すように凹部に吸収液が流れ込まない箇所が出てく
る。この結果、吸収液の滞留が不十分となり、吸収性能
の向上が望めないという欠点がある。
Next, the heat transfer tube described in Japanese Utility Model Publication No. 46-67080 has intermittent recesses, but as shown in FIG. 11, the recesses 2 are adjacent to each other in a row in the circumferential direction of the tube. When the recesses of the corresponding rows are overlapped with each other, and viewed in the tube axis direction, there is a band-shaped region in which there are no recesses.
For this reason, when Marangoni convection occurs due to the absorption of the refrigerant vapor, the flowing down absorbing liquid rises in a streak shape and flows down while oscillating in the pipe axis direction.
As shown in Fig. 5, there are some places where the absorbent does not flow into the recess. As a result, there is a drawback in that the absorption liquid does not sufficiently stay and improvement in absorption performance cannot be expected.

【0012】特公平5−22838号に記載の伝熱管
は、上記実公昭46−67080号に記載の伝熱管の構
造を改良したものであるが、なお、以下に示す問題点が
ある。即ち、特公平5−22838号の伝熱管は吸収液
を管表面に少しでも長い時間滞留させるべく考えられた
構造であり、断続に設けた突起上を吸収液が乗り越える
ことなく、突起と突起の間の平坦部を吸収液が迂回しつ
つ流下するものである。
The heat transfer tube described in Japanese Examined Patent Publication No. 5-22838 is an improved version of the structure of the heat transfer tube described in Japanese Utility Model Publication No. 46-67080, but it has the following problems. That is, the heat transfer tube of Japanese Examined Patent Publication No. 5-22838 has a structure designed to allow the absorbing liquid to stay on the surface of the pipe for a long time as much as possible. The absorption liquid flows down while bypassing the flat portion between them.

【0013】このような構造により、吸収液の滞留時間
を長くし、且つ吸収液の滞留量を多くすることができる
が、必要以上に管表面に吸収液が滞留するため、前述し
たように吸収液の必要循環量が増加し、機器の重量が増
加する。更に、凹部によって吸収液の流路が決まり、突
起の頂部を乗り越えて吸収液が流下することがないた
め、突起の頂部が吸収液と接触しない。従って、伝熱管
の伝熱面積が有効に確保できず、伝熱性能を向上させる
には限界がある。
With such a structure, the retention time of the absorption liquid can be lengthened and the retention amount of the absorption liquid can be increased, but since the absorption liquid stays on the tube surface more than necessary, the absorption liquid is absorbed as described above. The required circulation amount of the liquid increases, and the weight of the device increases. Further, since the flow path of the absorbing liquid is determined by the concave portion and the absorbing liquid does not flow over the top of the protrusion to flow down, the top of the protrusion does not come into contact with the absorbing liquid. Therefore, the heat transfer area of the heat transfer tube cannot be effectively secured, and there is a limit to improving the heat transfer performance.

【0014】本発明はかかる問題点に鑑みてなされたも
のであって、伝熱性能が優れており、且つ冷凍機への管
の組み付け時の作業性の低下を生じることなく、機器の
重量増加を防止できるという優れた特性を持つ吸収器用
伝熱管を提供することを目的とする。
The present invention has been made in view of the above problems, and has excellent heat transfer performance, and increases the weight of the device without deteriorating the workability when assembling the pipe to the refrigerator. It is an object of the present invention to provide a heat transfer tube for an absorber, which has an excellent characteristic of being able to prevent the above.

【0015】[0015]

【課題を解決するための手段】本発明に係る吸収器用伝
熱管は、複数の管を水平に配置して構成される吸収器に
使用される吸収器用伝熱管において、管軸方向に延びる
複数の凹部を管軸方向に断続的に配列し、管周方向に隣
り合う凹部列において一方の列の凹部の中心と、他方の
列の凹部間の中心とが管軸方向に関して一致し、管周方
向に隣り合う列における凹部の重なり部分の長さL0
凹部の長さLとの比L0/Lが0.2〜0.8であり、
凹部の管周方向の幅W1と凹部間の凸部の管周方向のW2
との比W1/W2が0.5〜2.5であり、凹部の深さh
が0.5〜1.5mmであり、凹部の長さLが10〜5
0mmであることを特徴とする。
A heat transfer tube for an absorber according to the present invention includes a plurality of heat transfer tubes for an absorber used in an absorber configured by horizontally arranging a plurality of tubes horizontally. The recesses are arranged intermittently in the pipe axis direction, and in the recess row adjacent to each other in the pipe circumferential direction, the centers of the recesses in one row and the centers between the recesses in the other row coincide with each other in the pipe axis direction. The ratio L 0 / L of the length L 0 of the overlapping portion of the recesses to the length L of the recesses in the rows adjacent to each other is 0.2 to 0.8,
The tube circumferential direction of the convex portion between the width W 1 and the recess of the tube circumferential direction of the concave portion W 2
And the ratio W 1 / W 2 is 0.5 to 2.5, and the depth h of the recess is
Is 0.5 to 1.5 mm, and the length L of the recess is 10 to 5
It is characterized by being 0 mm.

【0016】この場合に、管長手方向の管両端部を含む
少なくとも2部位以上に凹部を有しない非凹凸領域を設
け、管軸に直交する断面における凹部間の凸部の頂点を
結んだ包絡線からなる円の曲率半径R0と、前記非凹凸
領域の曲率半径Rとの比R0/Rが0.97〜1.03
になるようにすることができる。
In this case, a non-concave region having no recess is provided in at least two sites including both ends of the pipe in the longitudinal direction of the pipe, and an envelope curve connecting the peaks of the protrusions between the recesses in the cross section orthogonal to the pipe axis. The ratio R 0 / R of the radius of curvature R 0 of the circle consisting of and the radius of curvature R of the non-concave region is 0.97 to 1.03.
Can be.

【0017】[0017]

【作用】この構成により本発明に係る吸収器用伝熱管
は、以下の作用を有する。先ず、管軸方向に延びる断続
的な凹部の列を、管周方向に隣り合う列に関して、一方
の列の凹部の長さと、これに隣り合う他方の列の凹部と
の重なり長さの比が所定値になるように、配置してい
る。
With this configuration, the heat transfer tube for an absorber according to the present invention has the following actions. First, regarding the rows of the intermittent recesses extending in the pipe axis direction, the ratio of the length of the recesses in one row to the length of the recesses in the other row adjacent to this is It is arranged so as to have a predetermined value.

【0018】管軸方向に連続した溝をもつ縦溝管では、
前述したように、設置の方向により性能にバラツキが生
じるが、本発明に係る吸収器用伝熱管は断続した凹部を
持つため、方向性がなく管の上面を任意の方向に配置し
ても略一定の伝熱性能を示す。
In a flute having a continuous groove in the pipe axis direction,
As described above, the performance varies depending on the installation direction, but since the heat transfer tube for an absorber according to the present invention has intermittent recesses, it has no directionality and is substantially constant even if the top surface of the tube is arranged in any direction. Shows the heat transfer performance of.

【0019】また、凹部の長さと位置関係によっては実
開昭46−67080号のような問題が生じるが、本発
明ではこれらを適当な範囲に設定しているので、流下す
る吸収液が確実に凹部に流れ込み、吸収液が確実に凹部
に捕捉されると共に、吸収液が凹部内に適当量滞留す
る。また、本発明においては、特公平5−22838号
のように吸収液の決まった流路が形成されることはな
く、管壁を万遍なく濡らしながら吸収液が流下するた
め、高い吸収性能が得られる。
Further, depending on the length and the positional relationship of the concave portion, there arises a problem as in Japanese Utility Model Laid-Open No. 46-67080, but in the present invention, since these are set in an appropriate range, the absorbing liquid flowing down is surely. The absorbent flows into the recesses, the absorption liquid is reliably captured in the recesses, and the absorption liquid stays in the recesses in an appropriate amount. Further, in the present invention, unlike in Japanese Patent Publication No. 5-22838, a fixed flow path for the absorbing liquid is not formed, and since the absorbing liquid flows down while uniformly wetting the pipe wall, high absorption performance is obtained. can get.

【0020】[0020]

【実施例】以下、本発明について、更に説明する。図1
は本発明の実施例に係る吸収器用伝熱管10を示す正面
図、図2はその管軸に直交する断面図である。本発明の
伝熱管10においては、その周面に、管軸方向に延びる
凹部11が管軸方向に断続的に形成されており、この凹
部11は管軸方向に列をなして配列されている。このよ
うな凹部列が周方向に複数列設けられている。凹部11
間の領域は凸部12となる。また、管端部又は管軸方向
の適宜領域には、このような凹凸を有しない非凹凸領域
(以下、平坦部13という)が設けられている。
The present invention will be further described below. FIG.
Is a front view showing a heat transfer tube 10 for an absorber according to an embodiment of the present invention, and FIG. 2 is a sectional view orthogonal to the tube axis. In the heat transfer tube 10 of the present invention, recesses 11 extending in the tube axis direction are intermittently formed in the tube axis direction on the peripheral surface thereof, and the recesses 11 are arranged in rows in the tube axis direction. . A plurality of such recess rows are provided in the circumferential direction. Recess 11
The area between them becomes the convex portion 12. Further, a non-concavo-convex region (hereinafter referred to as a flat portion 13) having no such concavity and convexity is provided in the pipe end portion or an appropriate region in the pipe axial direction.

【0021】凹部11は、その中心位置Pが、隣の列の
凹部11と凹部11との間の中心位置Qと、管軸方向に
関して一致するように、配列されている。この凹部11
の中心位置Pと、隣の列の凹部11と凹部11との間の
中心位置Qとが管軸方向に関して一致するとは、位置P
における管軸に直交する断面内に、位置Qが位置すると
いうことを意味している。また、このように位置Pと位
置Qとが管軸方向に一致するとは、厳密に一致する必要
はなく、実質的に一致していればよい。
The recesses 11 are arranged so that the center position P thereof coincides with the center position Q between the recesses 11 of the adjacent rows in the tube axis direction. This recess 11
It is said that the center position P of the position P and the center position Q between the recesses 11 in the adjacent rows coincide with each other in the pipe axis direction.
It means that the position Q is located in the cross section orthogonal to the tube axis at. Further, it is not necessary that the position P and the position Q coincide with each other in the pipe axis direction in this manner, but it is sufficient that they substantially coincide with each other.

【0022】また、管周方向に隣り合う列において、凹
部11はその端部で相互に重なり合い、この重なり部分
の長さL1とL2の和L0と、凹部11の長さLとの比L0
/Lが0.2〜0.8である。また、凹部11の深さh
は0.5〜1.5mmであり、凹部の長さLは10〜5
0mmである。更に、凹部11の管周方向の幅W1と凹
部間の凸部12の管周方向のW2との比W1/W2が0.
5〜2.5である。
In the rows adjacent to each other in the pipe circumferential direction, the recesses 11 overlap each other at their ends, and the sum L 0 of the lengths L 1 and L 2 of the overlapping portions and the length L of the recesses 11 are formed. Ratio L 0
/ L is 0.2 to 0.8. Also, the depth h of the recess 11
Is 0.5 to 1.5 mm, and the length L of the recess is 10 to 5
It is 0 mm. Furthermore, the ratio W 1 / W 2 of the tube circumferential direction of W 2 of the convex portion 12 between a width W 1 and the recess of the tube circumferential direction of the concave portion 11 is 0.
5 to 2.5.

【0023】本発明では管周方向の隣り合う列の凹部の
重なりの長さL0と凹部の長さLとの比L0/Lを0.2
〜0.8としているが、L0/Lが0.8より大きい
と、加工が煩雑となる反面、連続した凹部を持つ伝熱管
と性能が略同一となり、L0/Lが0.2より小さいと
上述したように吸収液の捕捉が十分でなくなる。従っ
て、L0/Lは0.2〜0.8とする。
In the present invention, the ratio L 0 / L between the overlapping length L 0 of the recesses in the adjacent rows in the pipe circumferential direction and the recess length L is 0.2.
Although it is set to 0.8, if L 0 / L is larger than 0.8, the processing becomes complicated, but the performance is almost the same as that of the heat transfer tube having continuous recesses, and L 0 / L is more than 0.2. If it is small, the absorption liquid will not be sufficiently captured as described above. Therefore, L 0 / L is set to 0.2 to 0.8.

【0024】また、本発明では、凹部の深さ、長さの寸
法並びに凹部と凸部の幅の比を所定の範囲に設定してい
る。凹部の深さを0.5〜1.5mmとしたのは、凹部
の深さが0.5mmより小さいと、吸収液の滞留が短
く、所定の吸収を行うことができないまま吸収液が流下
するためである。また、凹部の深さが1.5mmより大
きいと、吸収液の滞留が長くなり過ぎると共に、管表面
の吸収流量が増加し、吸収液の必要循環量が増加し、機
器の重量が増加する。凹部の深さを0.5〜1.5mm
とすることで、吸収液を適度に滞留させることができ
る。凹部の長さについては、50mmより長いと管表面
の吸収流量が増加して前述の問題を生じ、更に管の設置
方向による性能のバラツキが生じるようになる。凹部の
長さが10mmより短いと、凹部の加工箇所が増加する
反面、それ程大きな性能の向上は得られない。
Further, in the present invention, the depth and length dimensions of the concave portion and the width ratio of the concave portion and the convex portion are set within predetermined ranges. The depth of the recess is 0.5 to 1.5 mm. When the depth of the recess is smaller than 0.5 mm, the absorption liquid stays short and the absorption liquid flows down without being able to perform a predetermined absorption. This is because. Further, if the depth of the recess is larger than 1.5 mm, the absorption liquid stays too long, the absorption flow rate on the pipe surface increases, the required circulation amount of the absorption liquid increases, and the weight of the device increases. The depth of the recess is 0.5 to 1.5 mm
With this, the absorbing liquid can be appropriately retained. If the length of the concave portion is longer than 50 mm, the absorption flow rate on the surface of the pipe increases and the above-mentioned problem occurs, and further, the performance varies depending on the installation direction of the pipe. If the length of the concave portion is shorter than 10 mm, the number of processed portions of the concave portion increases, but the performance cannot be improved so much.

【0025】次に、凹部の管周方向の幅W1と凸部の管
周方向の幅W2との比W1/W2が0.5よりも小さい
と、吸収液の保持量が十分でなくなるため、吸収性能が
低下する。一方、W1/W2が2.5より大きいと、管軸
に直角の断面の流路面積が小さくなり過ぎ、管内の冷却
水の圧力損失が大きくなる。冷却水の移送は電動ポンプ
により行われているが、圧力損失が大きくなると、出力
の大きいポンプが必要となり、機器の総合エネルギ効率
が低下する。
Next, if the ratio W 1 / W 2 between the width W 1 of the concave portion in the circumferential direction of the pipe and the width W 2 of the convex portion in the circumferential direction of the pipe is smaller than 0.5, the amount of the absorbed liquid retained is sufficient. Therefore, the absorption performance decreases. On the other hand, if W 1 / W 2 is larger than 2.5, the flow passage area of the cross section perpendicular to the pipe axis becomes too small, and the pressure loss of the cooling water in the pipe becomes large. Although the cooling water is transferred by an electric pump, if the pressure loss becomes large, a pump having a large output is required, and the total energy efficiency of the device is reduced.

【0026】W1/W2が0.5〜2.5であれば適度に
吸収液が滞留し、且つ管内の冷却水の圧力損失も適当な
値となる。
When W 1 / W 2 is 0.5 to 2.5, the absorbing liquid is retained appropriately, and the pressure loss of the cooling water in the pipe becomes an appropriate value.

【0027】一方、本発明では長手方向に管の両端部を
含む少なくとも2カ所以上に非凹凸領域(平滑部:凹部
を有しない部分)を有することにより、冷凍機の管板へ
の取付が容易となる。また、冷凍機のバッフルプレート
(邪魔板)に相当する位置に平滑部を配置することがで
きる。従って、管板の穴と管とのクリアランスを小さく
することができ、冷凍機運転中の振動で管と管板がこす
れ合うことによって生じる管のフレッティングコロージ
ョンを抑制することができる。
On the other hand, according to the present invention, the non-concave area (smooth portion: a portion having no recess) is provided at least at two or more locations including both ends of the tube in the longitudinal direction, so that the refrigerator can be easily attached to the tube sheet. Becomes Further, the smooth portion can be arranged at a position corresponding to the baffle plate (baffle plate) of the refrigerator. Therefore, it is possible to reduce the clearance between the hole of the tube sheet and the tube, and it is possible to suppress the fretting corrosion of the tube caused by the rubbing of the tube and the tube sheet due to vibration during operation of the refrigerator.

【0028】また、断面における凸部頂上を結んだ包路
線からなる円の曲率半径R0と、前記非凹凸領域の曲率
半径Rとの比R0/Rが1.03より大きいと、管の挿
入作業の際に管が管板の穴に引っかかり易く、挿入が困
難となり作業性が著しく低下する。R0/Rが0.97
より小さいと、管の断面流路面積が小さくなり、圧力の
損失が小さくなるため、上述した機器の総合エネルギ効
率の低下が生じる。本発明の伝熱管ではR0/Rを0.
97〜1.03としているので管の挿入作業の際に管が
管板の穴に引っかかることがなくスムーズに挿入でき、
作業性が良好であると共に、流路断面積の減少による圧
力損失の増加もない。
If the ratio R 0 / R of the radius of curvature R 0 of the circle formed by the envelope line connecting the tops of the convex portions in the cross section to the radius of curvature R of the non-concave region is larger than 1.03, At the time of insertion work, the pipe is easily caught in the hole of the tube sheet, which makes insertion difficult and the workability is significantly reduced. R 0 / R is 0.97
If it is smaller, the cross-sectional flow passage area of the pipe becomes smaller and the pressure loss becomes smaller, so that the above-mentioned overall energy efficiency of the device lowers. In the heat transfer tube of the present invention, R 0 / R is set to 0.
Since it is 97 to 1.03, the pipe can be inserted smoothly without getting caught in the hole of the tube plate during the insertion work of the pipe,
The workability is good, and the pressure loss is not increased due to the reduction of the flow passage cross-sectional area.

【0029】次に、本発明の実施例に係る伝熱管を製造
し、その特性を比較例と比較した結果について説明す
る。
Next, the results of manufacturing the heat transfer tubes according to the examples of the present invention and comparing the characteristics thereof with the comparative examples will be described.

【0030】本実施例及び比較例として、リン脱酸銅
(JIS H3300 C1201)からなる素管を使
用し、凹凸加工については、図8(a)に示す構造の装
置を用いて加工を施した。即ち、この装置は、管4の移
動方向に、ダイス5と、開閉式割ダイス6と、仕上ダイ
ス7とを配置し、管4を順次絞り加工する。
As the present example and comparative example, a raw tube made of phosphorous deoxidized copper (JIS H3300 C1201) was used, and the concavo-convex process was performed using the apparatus having the structure shown in FIG. 8 (a). . That is, in this apparatus, the die 5, the openable split die 6 and the finishing die 7 are arranged in the moving direction of the pipe 4, and the pipe 4 is sequentially drawn.

【0031】割ダイス6は図8(b)に示すように、そ
の中心から放射状に分割されて組み立てられるようにな
っており、管周方向に管に対して割りダイス6を角度β
で旋回運動させる駆動機構(図示せず)と割ダイス6を
管の半径方向に拡縮させる開閉機構(図示せず)とが設
けられている。管4を図の矢印方向に引き出すと共に、
一定周期で駆動機構が割ダイス6を往復運動させると共
に、開閉機構が開閉することにより、凹部を設けるため
の凹凸加工が行われる。
As shown in FIG. 8 (b), the split die 6 is designed to be radially divided from the center of the split die 6 to be assembled, and the split die 6 is angled β with respect to the pipe in the circumferential direction of the pipe.
There are provided a drive mechanism (not shown) for making a swivel motion and an opening / closing mechanism (not shown) for expanding and contracting the split die 6 in the radial direction of the pipe. While pulling out the tube 4 in the direction of the arrow in the figure,
The drive mechanism reciprocates the split die 6 at a constant cycle, and the opening / closing mechanism opens and closes, whereby unevenness processing for forming a recess is performed.

【0032】更に、凹部加工機構の管の引き出し方向下
流には仕上げダイスが設けられており、凹凸加工されな
い平滑部を所定の寸法にサイジングしている。
Further, a finishing die is provided downstream of the recess processing mechanism in the pipe withdrawing direction, and the smooth portion which is not subjected to the uneven processing is sized to a predetermined size.

【0033】なお、本実施例では1個の旋回可能な開閉
ダイスの装置を開示したがこれは複数の開閉ダイスを回
転方向に位相をずらせてタンデムに配置した機構でも良
い。
In this embodiment, the device of a single turnable open / close die is disclosed, but this may be a mechanism in which a plurality of open / close dies are arranged in tandem with their phases shifted in the rotational direction.

【0034】本実施例及び比較例の管は上記工程を経た
後、脱脂処理として還元雰囲気中で250℃×1時間の
熱処理を施したものである。また、伝熱管の寸法は平滑
部が外形16mm、肉厚0.7mmであり、凹凸加工部
の外径は15.7〜16.0mmであり、その他の寸法
は下記表1に示すとおりである。なお、比較例1は連続
した凹部をもつ縦溝管で有り、比較例2は平滑管、則
ち、凹凸部を有しない管である。
The tubes of this example and the comparative example were subjected to heat treatment at 250 ° C. for 1 hour in a reducing atmosphere as a degreasing treatment after the above steps. Further, the dimensions of the heat transfer tube are such that the outer diameter of the smooth portion is 16 mm and the wall thickness is 0.7 mm, the outer diameter of the uneven portion is 15.7 to 16.0 mm, and other dimensions are as shown in Table 1 below. . Comparative Example 1 is a flute tube having continuous recesses, and Comparative Example 2 is a smooth tube, that is, a tube having no uneven portion.

【0035】なお、表1において管周方向の隣り合う列
の凹部の重なりの長さL0と凹部の長さLとの比L0/L
は略1.0となるように加工している。
In Table 1, the ratio L 0 / L of the overlapping length L 0 of the recesses in the adjacent rows in the pipe circumferential direction and the recess length L is L 0 / L.
Is processed to be about 1.0.

【0036】[0036]

【表1】 [Table 1]

【0037】上記の実施例及び比較例の管を1列×10
段に配置し、表2に示す測定条件で伝熱性能を測定し
た。伝熱管の吸収能力は伝熱性能に略比例し、伝熱性能
が高いほど、高い吸収能力が得られることになる。
The tubes of the above-mentioned Examples and Comparative Examples were arranged in one row × 10.
The heat transfer performance was measured under the measurement conditions shown in Table 2 by arranging in stages. The absorption capacity of the heat transfer tube is substantially proportional to the heat transfer performance, and the higher the heat transfer performance, the higher the absorption capacity.

【0038】伝熱性能については、管1本ずつの方向を
任意に設定し配置して伝熱性能を評価した。図3に示す
ように比較例の伝熱管は性能が高いものの性能のバラツ
キが約12%であり管の設置方向によるバラツキが大き
い。一方、本発明の実施例1及び2は高い伝熱性能を示
すと共に性能のバラツキが約5%以内と小さい値となっ
ている。
Regarding the heat transfer performance, the heat transfer performance was evaluated by arbitrarily setting and arranging the tubes one by one. As shown in FIG. 3, the heat transfer tube of the comparative example has high performance, but the variation in performance is about 12%, and the variation depending on the installation direction of the tube is large. On the other hand, Examples 1 and 2 of the present invention show high heat transfer performance, and the variation in performance is as small as about 5% or less.

【0039】[0039]

【表2】 [Table 2]

【0040】更に 実施例1,2及び比較例1の管の液
体流下特性について調べた例について説明する。図4は
液体流下特性を調べる装置を示す模式図であり、散布管
21から一定量の水を管23に滴下し、水が管下部から
床面24に伝わって流下する範囲を測定し、散布管21
の散布長さから差し引いた値、即ち、液切れ長さを測定
するものである。
Further, an example in which the liquid flow-down characteristics of the tubes of Examples 1 and 2 and Comparative Example 1 are examined will be described. FIG. 4 is a schematic diagram showing an apparatus for examining the liquid flow-down characteristics. A certain amount of water is dropped from the spray pipe 21 to the pipe 23, and the range in which the water flows from the lower part of the pipe to the floor surface 24 is measured and sprayed. Tube 21
The value obtained by subtracting from the sprayed length of, that is, the liquid cut length is measured.

【0041】図5は管を傾けたときの液切れ長さを示す
ものであり、伝熱管の傾きが大きくなるにつれ液切れ長
さが増加するが、実施例1,2に比較して比較例3は液
切れ長さの増加の割合が大きい。即ち、本発明の伝熱管
は冷凍機に若干の傾きがあっても濡れ面積があまり減少
せず、性能の低下が殆ど生じないという優れた特性を持
つものである。大型冷凍機においては管が長尺のため自
重で撓む場合があり、また冷凍機の設置時に機器が若干
傾く場合がある。このような場合おいて従来の伝熱管で
は性能の低下が生じる可能性が高いが、本発明の伝熱管
では上述したように管の傾斜による性能低下を生じな
い。
FIG. 5 shows the liquid cut length when the tube is tilted. The liquid cut length increases as the heat transfer tube tilts, but Comparative Example 3 is different from Examples 1 and 2. The rate of increase in the liquid breakage length is large. That is, the heat transfer tube of the present invention has excellent characteristics that the wetted area does not decrease so much even if the refrigerator has a slight inclination, and the performance hardly deteriorates. In a large refrigerator, since the pipe is long, it may be bent by its own weight, and the device may be slightly inclined when the refrigerator is installed. In such a case, the performance of the conventional heat transfer tube is likely to deteriorate, but the performance of the heat transfer tube of the present invention does not occur due to the inclination of the tube as described above.

【0042】次に、凹部と凸部の寸法に対する液の滞留
性、管流路面積、伝熱性能、圧力損失については調査し
た実施例について説明する。
Next, an example in which the liquid retention, the pipe passage area, the heat transfer performance, and the pressure loss with respect to the dimensions of the concave portion and the convex portion are investigated will be described.

【0043】図6は凹部の幅W1と凸部の幅W2の比、W
1/W2に対する吸収液の滞留量及び管内流路面積につい
て調べた例であり、夫々平滑管を基準とした時の比較値
を示したものである。また、凹部の深さhは1mmであ
り、凹部の長さLは30mmである。
FIG. 6 shows the ratio of the width W 1 of the concave portion to the width W 2 of the convex portion, W
It is an example of investigating the retention amount of the absorbing liquid with respect to 1 / W 2 and the flow path area in the pipe, and shows comparative values when a smooth pipe is used as a reference. The depth h of the recess is 1 mm, and the length L of the recess is 30 mm.

【0044】なお、W1は凹部の変曲点間の距離であ
り、W2は凸部の変曲点間の距離である。吸収液は濃度
55%のものを用いており、液の滞留量は管に散布した
吸収液の流量と管下部から流下する吸収液の差を求め単
位時間当たりの付着量を算出したものである。
W 1 is the distance between the inflection points of the concave portion, and W 2 is the distance between the inflection points of the convex portion. The absorbing liquid used has a concentration of 55%, and the retention amount of the liquid is obtained by calculating the difference between the flow amount of the absorbing liquid sprayed on the pipe and the absorbing liquid flowing down from the lower part of the pipe, and calculating the adhesion amount per unit time. .

【0045】W1/W2が0.5より小さいと管内流路面
積は大きいが、液の滞留量が小さい。W1/W2が2.5
より大きくなると液の滞留量は大きくなる、反面管内流
路面積が小さくなり過ぎる。管内流路面積が小さくなる
と管内を通過する冷却水の圧力損失が大きくなるため、
必要ポンプ動力が大きくなり、前述したように冷凍機の
総合効率が低下する。
If W 1 / W 2 is less than 0.5, the flow passage area in the pipe is large, but the amount of liquid retained is small. W 1 / W 2 is 2.5
If it becomes larger, the amount of liquid retained becomes larger, but on the other hand, the flow passage area in the pipe becomes too small. Since the pressure loss of the cooling water passing through the pipe increases as the flow area in the pipe decreases,
The required pump power increases, and the overall efficiency of the refrigerator decreases as described above.

【0046】W1/W2が0.5〜2.5であれば、管内
流路面積の減少が大きくならずに液の滞留量を大きくす
ることができる。
When W 1 / W 2 is 0.5 to 2.5, the amount of liquid retained can be increased without causing a large decrease in the flow path area in the pipe.

【0047】次に、凹部の深さhに対する伝熱性能及び
圧力損失を調査した例を示す。性能評価の条件は前記表
2と同一の条件で実施した。また、W1/W2は2とし、
凹部の長さを30mmとした。
Next, an example of investigating the heat transfer performance and the pressure loss with respect to the depth h of the recess will be shown. The conditions for performance evaluation were the same as those in Table 2 above. Also, W 1 / W 2 is 2,
The length of the recess was 30 mm.

【0048】図7に示すように、凹部の深さhが0.5
mmより小さいと、吸収液の滞留量が小さく性能の低下
が大きい。凹部の深さhが大きくなるにつれて性能が向
上するが、凹部の深さhが1.5mmを超えてもそれ程
性能の向上が得られない一方で、管内の圧力損失が増加
するため、上述したように冷凍機の総合効率が低下す
る。
As shown in FIG. 7, the depth h of the recess is 0.5.
If it is less than mm, the amount of retention of the absorbing liquid is small and the performance is largely deteriorated. The performance improves as the depth h of the recess increases, but even if the depth h of the recess exceeds 1.5 mm, the performance is not improved so much, but the pressure loss in the pipe increases. As a result, the overall efficiency of the refrigerator decreases.

【0049】次に、凹部の長さLに対する伝熱性能への
影響について調査した例を示す。性能評価の条件は表2
の場合と略同じであるが、吸収液の流量を0.05mg
/m・s一定として性能を評価した。なお、ここでW1
/W2は2とし、hは1.0mmとし、凸部の長さは凹
部の長さLよりも略5〜10mm短い寸法で設定した。
Next, an example of investigating the influence of the length L of the recess on the heat transfer performance will be shown. Table 2 shows the conditions for performance evaluation.
The flow rate of the absorption liquid is 0.05mg
The performance was evaluated at a constant value of / m · s. In addition, here W 1
/ W 2 was 2, h was 1.0 mm, and the length of the convex portion was set to be shorter than the length L of the concave portion by approximately 5 to 10 mm.

【0050】図9は凹部の長さLと伝熱性能の関係を示
す図である。Lが50mmよりも大きいと管の設置方向
による性能のバラツキは大きくなる。一方、Lが小さく
なるにつれ管の設置方向によるバラツキが少なくなる傾
向があるが10mmより小さくなると差異は認められな
くなると共に前述した開閉ダイスの開閉を頻繁に行う必
要があり、開閉の制御が煩わしくなるため、生産性が低
下する。
FIG. 9 shows the relationship between the length L of the recess and the heat transfer performance. If L is larger than 50 mm, there will be large variations in performance depending on the tube installation direction. On the other hand, as L becomes smaller, the variation due to the installation direction of the pipe tends to decrease, but when it becomes smaller than 10 mm, the difference is not recognized and it is necessary to open and close the opening and closing die frequently, and the control of opening and closing becomes troublesome. Therefore, productivity is reduced.

【0051】Lが10〜50mmであれば、性能のバラ
ツキを生じさせないで、且つ生産性を低下させずに加工
することが可能である。
When L is 10 to 50 mm, it is possible to perform processing without causing variations in performance and without reducing productivity.

【0052】最後に管周方向の隣り合う列の凹部の重な
りの長さL0と凹部の長さLとの比L0/Lと管外熱伝達
性能の関係について述べる。
Finally, the relationship between the ratio L 0 / L between the overlapping length L 0 of the recesses in the adjacent rows in the pipe circumferential direction and the length L of the recesses and the heat transfer performance outside the pipe will be described.

【0053】この場合においてW1/W2は2とし、hは
1.0mmとしている。図12はL0/Lと管外熱伝達
率の関係を示す図で吸収液流量は0.05mg/m・s
一定である。L0/Lが0.8より大きいと管外熱伝達
率が低下する傾向にある。一方、L0/Lが0.2より
小さいと、管外熱伝達率の増加が殆どなくなる反面、上
述の連続した凹部を持つ伝熱管のように、管の設置方向
によってその性能に差がでている。従って、L0/Lは
0.2〜0.8が適正な範囲である。
In this case, W 1 / W 2 is 2, and h is 1.0 mm. FIG. 12 is a diagram showing the relationship between L 0 / L and the heat transfer coefficient outside the pipe. The flow rate of the absorbing liquid is 0.05 mg / m · s.
It is constant. If L 0 / L is larger than 0.8, the heat transfer coefficient outside the tube tends to decrease. On the other hand, when L 0 / L is less than 0.2, the increase in the heat transfer coefficient outside the pipe hardly occurs, but on the other hand, there is a difference in the performance depending on the installation direction of the pipe, such as the heat transfer pipe having the above-mentioned continuous recess. ing. Therefore, 0.2 to 0.8 is an appropriate range for L 0 / L.

【0054】上述した本発明の伝熱管において、凹部と
凸部の断面形状は、先端を略平坦にした略台形状でもよ
いが、吸収液をスムーズに流下させるためには楕円等の
円弧状にすると、より一層効果的である。
In the heat transfer tube of the present invention described above, the cross-sectional shape of the concave portion and the convex portion may be a substantially trapezoidal shape having a substantially flat tip, but in order to allow the absorbing liquid to flow down smoothly, an arc shape such as an ellipse is used. Then, it is even more effective.

【0055】また、本実施例では管材質として銅を使用
しているが、他の金属材料、例えば鉄製伝熱管に本発明
を適用できることは勿論である。
Further, although copper is used as the tube material in the present embodiment, it goes without saying that the present invention can be applied to other metal materials, for example, iron heat transfer tubes.

【0056】[0056]

【発明の効果】以上説明したように、本発明に係る吸収
起用伝熱管は、連続した凹部を管軸方向に適正な位置に
配置しているので、吸収液の流下のバラツキを抑制する
ことができ、且つ適度に吸収液を滞留させることができ
るので、管の設置方向による性能のバラツキが少ない。
更に、凹部寸法の適正化を図っているので、管に適度に
吸収液を滞留させることができると共に、管内冷却水の
圧力損失を適度に抑制することができ、冷凍機に若干の
傾斜が存在しても、性能のバラツキが少ない。また、請
求項2に記載のように、凹凸加工部の曲率半径R0と概
平滑部の曲率半径Rの比を適正な値に設定することによ
り、管の冷凍機への挿入性、即ち組み付け作業性が向上
する。
As described above, in the heat transfer tube for absorption and absorption according to the present invention, since the continuous recesses are arranged at proper positions in the tube axis direction, it is possible to suppress variations in the flow of the absorbing liquid. Since the absorbing liquid can be retained appropriately, the variation in performance depending on the installation direction of the pipe is small.
Furthermore, since the size of the recess is optimized, the absorption liquid can be retained appropriately in the pipe, the pressure loss of the cooling water in the pipe can be appropriately suppressed, and the refrigerator has a slight inclination. Even so, there is little variation in performance. Further, as described in claim 2, by setting the ratio of the radius of curvature R 0 of the concavo-convex processed portion and the radius of curvature R of the substantially smooth portion to an appropriate value, insertability of the pipe into the refrigerator, that is, assembling Workability is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る伝熱管の外観を示す模式図であ
る。
FIG. 1 is a schematic diagram showing an appearance of a heat transfer tube according to the present invention.

【図2】本発明に係る伝熱管の管軸直角断面の断面図で
あり、A−Aは凹凸加工部の断面図、B−Bは非凹凸領
域の断面図を示す。
FIG. 2 is a cross-sectional view of a cross section of a heat transfer tube according to the present invention which is perpendicular to the tube axis, in which AA is a cross-sectional view of an uneven processed portion and BB is a cross-sectional view of a non-uneven region.

【図3】実施例に係る伝熱管と比較例の伝熱管の吸収液
流量(横軸)に対する管外熱伝達率(縦軸)を示すもの
である。
FIG. 3 shows external heat transfer coefficients (vertical axis) with respect to the absorbed liquid flow rate (horizontal axis) of the heat transfer tube according to the example and the heat transfer tube of the comparative example.

【図4】管の傾斜に対して液体流下特性を調査する装置
の模式図である。
FIG. 4 is a schematic diagram of an apparatus for investigating liquid flow-down characteristics with respect to the inclination of a tube.

【図5】管の傾斜に対する液体流下特性(液切れ長さ)
を示す図である。
[Fig. 5] Liquid flow-down characteristics with respect to pipe inclination (liquid break length)
FIG.

【図6】凹部の幅W1と凸部の幅W2の比W1/W2に対す
る液体流量及び管内流路面積比を示す図である。
FIG. 6 is a diagram showing a liquid flow rate and a flow path area ratio in a pipe with respect to a ratio W 1 / W 2 of a width W 1 of a concave portion and a width W 2 of a convex portion.

【図7】凹部の深さhに対する管外熱伝達率比及び圧力
損失比(平滑管比)を示す図である。
FIG. 7 is a diagram showing the ratio of the heat transfer coefficient outside the tube and the pressure loss ratio (smooth tube ratio) with respect to the depth h of the recess.

【図8】本発明の伝熱管を製造する装置を示す模式図で
ある。
FIG. 8 is a schematic view showing an apparatus for manufacturing the heat transfer tube of the present invention.

【図9】凹部の長さLに対する管外熱伝達率比を示す図
である。
FIG. 9 is a diagram showing the ratio of the heat transfer coefficient outside the tube to the length L of the recess.

【図10】従来技術に係る伝熱管において吸収液がドロ
ップアウトを生じている様子を示す模式図である。
FIG. 10 is a schematic diagram showing a state in which the absorbing liquid causes dropouts in the heat transfer tube according to the conventional technique.

【図11】従来例に係る伝熱管の吸収液流下状態を示す
図である。
FIG. 11 is a diagram showing a state in which a heat transfer tube according to a conventional example is flowing down an absorbing liquid.

【図12】管周方向の隣り合う列の凹部の重なりの長さ
0と凹部の長さLとの比L0/Lと管外熱伝達性能の関
係を示す図である。
FIG. 12 is a diagram showing a relationship between a ratio L 0 / L between an overlapping length L 0 of recesses in adjacent rows in the pipe circumferential direction and the length L of the recesses and the heat transfer performance outside the pipe.

【符号の説明】[Explanation of symbols]

1;吸収液 5;ダイス 6;開閉式割りダイス 7;仕上げダイス 10;管 11;凹部 12;凸部 13;平滑部 14;凸部頂上を結んだ包絡線 21;散布管 22;流下液 23;管 24;床面 W1;凹部の幅 W2;凸部の幅 h;凹部の深さ R;凹凸部の曲率半径 R0;平滑部の曲率半径 θ;管の傾斜角度 X;液切れ長さ β;開閉式割ダイス回転角度 L0;管周方向の隣り合う列の凹部の重なりの長さ L;凹部の長さ1; Absorbing liquid 5; Dies 6; Retractable split dies 7; Finishing dies 10; Pipes 11; Recesses 12; Convex parts 13; Smooth parts 14; Envelopes 21 connecting the tops of the convex parts 21; Scattering pipes 22; Flowing liquids 23 Pipe 24; floor surface W 1 ; width of concave portion W 2 ; width of convex portion h; depth of concave portion R; radius of curvature of concave and convex portion R 0 ; radius of curvature of smooth portion θ; inclination angle of pipe X; liquid cut length Size β: Retractable split die rotation angle L 0 ; Length of overlap between recesses in adjacent rows in the pipe circumferential direction L: Length of recess

───────────────────────────────────────────────────── フロントページの続き (72)発明者 肥後 富夫 神奈川県秦野市平沢65番地 株式会社神戸 製鋼所秦野工場内 (72)発明者 石田 政司 東京都千代田区丸の内1丁目8番2号 株 式会社神戸製鋼所東京本社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tomio Higo 65 Hirazawa, Hadano City, Kanagawa Prefecture Kobe Steel Works Hadano Plant (72) Inventor Masashi Ishida 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Stock Company Kobe Steel, Tokyo Head Office

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数の管を水平に配置して構成される吸
収器に使用される吸収器用伝熱管において、管軸方向に
延びる複数の凹部を管軸方向に断続的に配列し、管周方
向に隣り合う凹部列において一方の列の凹部の中心と、
他方の列の凹部間の中心とが管軸方向に関して一致し、
管周方向に隣り合う列における凹部の重なり部分の長さ
0と凹部の長さLとの比L0/Lが0.2〜0.8であ
り、凹部の管周方向の幅W1と凹部間の凸部の管周方向
のW2との比W1/W2が0.5〜2.5であり、凹部の
深さhが0.5〜1.5mmであり、凹部の長さLが1
0〜50mmであることを特徴とする吸収器用伝熱管。
1. A heat transfer tube for an absorber used in an absorber configured by arranging a plurality of tubes horizontally, wherein a plurality of recesses extending in the tube axis direction are intermittently arranged in the tube axis direction, and a tube circumference is provided. The center of the recesses in one row in the row of recesses adjacent in the direction,
The center between the recesses in the other row coincides with the tube axis direction,
The ratio L 0 / L between the length L 0 of the overlapping portion of the recesses and the length L of the recesses in the rows adjacent to each other in the pipe circumferential direction is 0.2 to 0.8, and the width W 1 of the recesses in the pipe circumferential direction is W 1. And the ratio W 1 / W 2 of the convex portion between the concave portion and W 2 in the tube circumferential direction is 0.5 to 2.5, the depth h of the concave portion is 0.5 to 1.5 mm, and Length L is 1
A heat transfer tube for an absorber, which has a length of 0 to 50 mm.
【請求項2】 管長手方向の管両端部を含む少なくとも
2部位以上に凹部を有しない非凹凸領域が設けられてお
り、管軸に直交する断面における凹部間の凸部の頂点を
結んだ包絡線からなる円の曲率半径R0と、前記非凹凸
領域の曲率半径Rとの比R0/Rが0.97〜1.03
であることを特徴とする請求項1に記載の吸収器用伝熱
管。
2. An envelope in which a non-concave region having no recess is provided in at least two portions including both ends of the pipe in the longitudinal direction of the pipe, and the peaks of the protrusions between the recesses in a cross section orthogonal to the pipe axis are connected. The ratio R 0 / R of the radius of curvature R 0 of the circle formed by the line to the radius of curvature R of the non-concave / convex region is 0.97 to 1.03.
The heat transfer tube for an absorber according to claim 1, wherein:
JP30670394A 1994-12-09 1994-12-09 Heat transfer tube for absorber Expired - Lifetime JP3231565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30670394A JP3231565B2 (en) 1994-12-09 1994-12-09 Heat transfer tube for absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30670394A JP3231565B2 (en) 1994-12-09 1994-12-09 Heat transfer tube for absorber

Publications (2)

Publication Number Publication Date
JPH08159605A true JPH08159605A (en) 1996-06-21
JP3231565B2 JP3231565B2 (en) 2001-11-26

Family

ID=17960296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30670394A Expired - Lifetime JP3231565B2 (en) 1994-12-09 1994-12-09 Heat transfer tube for absorber

Country Status (1)

Country Link
JP (1) JP3231565B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026239A1 (en) * 1996-12-13 1998-06-18 Sanyo Electric Co., Ltd. Heating tube for absorber and method of manufacturing same
US6098420A (en) * 1998-03-31 2000-08-08 Sanyo Electric Co., Ltd. Absorption chiller and heat exchanger tube used the same
CN104296579A (en) * 2014-07-29 2015-01-21 无锡塔尔基热交换器科技有限公司 Heat exchange tube, manufacturing method of heat exchange tube and heat exchanger with heat exchange tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026239A1 (en) * 1996-12-13 1998-06-18 Sanyo Electric Co., Ltd. Heating tube for absorber and method of manufacturing same
US6098420A (en) * 1998-03-31 2000-08-08 Sanyo Electric Co., Ltd. Absorption chiller and heat exchanger tube used the same
CN104296579A (en) * 2014-07-29 2015-01-21 无锡塔尔基热交换器科技有限公司 Heat exchange tube, manufacturing method of heat exchange tube and heat exchanger with heat exchange tube

Also Published As

Publication number Publication date
JP3231565B2 (en) 2001-11-26

Similar Documents

Publication Publication Date Title
JP3315785B2 (en) Heat transfer tube for absorber
US5960870A (en) Heat transfer tube for absorber
EP0882939B1 (en) Heating tube for absorber and method of manufacturing same
JP3322292B2 (en) Heat transfer tube
JPH08159605A (en) Heat-transfer tube for absorber
JPH09101093A (en) Heat transfer pipe with inner surface groove
JP3480514B2 (en) Heat transfer tube for falling film evaporator
JP3286171B2 (en) Heat transfer tube with internal groove
JPH0579783A (en) Heat transfer tube with inner surface groove
JP3388677B2 (en) Heat transfer tube for absorber
JP3675498B2 (en) Heat absorption tube for absorption refrigerator
JP3617538B2 (en) Heat exchanger tube for absorber
JP3617537B2 (en) Heat exchanger tube for absorber
JPH06147532A (en) Air conditioner
JP2002257432A (en) Heat transfer pipe for absorber
JPH06159860A (en) Heat transfer pipe for absorber
JPH0726772B2 (en) Heat transfer tube for absorber
JPH06101985A (en) Heat exchanger tube with grooved internal wall
JPH11108579A (en) Pipe with grooved inner face
JPH0228371Y2 (en)
JPH0961013A (en) Absorption refrigerating machine
JPH09113164A (en) Heat transfer pipe for absorber
JP2726480B2 (en) Heat transfer tube
JPH10115476A (en) Heat transfer tube for condensation in tube
JPH11118382A (en) Heat transfer pipe for evaporator and manufacture thereof

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080914

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090914

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 12

EXPY Cancellation because of completion of term