JPH08157926A - Decision of carbon quantity at blowing off in converter - Google Patents

Decision of carbon quantity at blowing off in converter

Info

Publication number
JPH08157926A
JPH08157926A JP30101094A JP30101094A JPH08157926A JP H08157926 A JPH08157926 A JP H08157926A JP 30101094 A JP30101094 A JP 30101094A JP 30101094 A JP30101094 A JP 30101094A JP H08157926 A JPH08157926 A JP H08157926A
Authority
JP
Japan
Prior art keywords
converter
carbon
degassing
blowing
manufacturing cost
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP30101094A
Other languages
Japanese (ja)
Inventor
Shuji Kuwajima
周次 桑嶋
Hidenori Tsuchida
英典 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30101094A priority Critical patent/JPH08157926A/en
Publication of JPH08157926A publication Critical patent/JPH08157926A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE: To decide the blowing-off carbon quantity to be in the lowest cost in a converter and to obtain a low carbon steel at a low cost by executing operation considering the producing cost in a converter process and a degassing process based on the variation in the conditions of kind of treating steel, its history, etc., in the degassing process. CONSTITUTION: Beforehand, the producing cost of the degassing process which is obtd. from a degassing time and the producing cost of the converter process which is obtd. from the blowing-off carbon quantity in the converter and the blowing time of the converter obtd. from the blowing-off carbon, are obtd. Further, the effects of factors such as the order of cast in a continuous casting process and the kind of treating steel, its history, etc., in the degassing process having effect on the decarburizing speed exerting on the necessary degassing time are obtd. Successively, the relation between the blowing-off carbon quantity and the necessary degassing time and the relation between the blowing-off carbon quantity and the producing cost of the degassing process are obtd. from the target carbon quantity after degassing and the above values, and successively, the relation between the blowing-off carbon quantity and the producing cost of the converter process is obtd. The blowing-off carbon quantity by which the total cost of the degassing process and the converter process becomes lowest, is used as the target carbon quantity in the converter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、製鋼処理での転炉吹止
炭素の決定方法に関するもので、特に脱ガス工程の処理
鋼種履歴等の条件変化を踏まえて、積極的に処理工程、
処理内容を変更する製鋼処理での転炉吹止炭素の決定方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for determining carbon in a converter for blowing steel in steelmaking, and in particular, in consideration of changes in conditions such as history of treated steel in the degassing process, the treatment process is positively performed.
The present invention relates to a method of determining carbon blown by a converter in a steelmaking process in which the treatment content is changed.

【0002】[0002]

【従来の技術】一般に、製鉄所における転炉では、高炉
において還元された溶銑が酸素により溶銑中の炭素が低
減され、合金鉄が添加される等の工程を経て、溶鋼が生
産される。転炉で生産された溶鋼は一旦取鍋に移され、
バブリング等の処理後タンディシュから鋳型を経て、連
続鋳造鋳片とされる。この場合に、転炉での吹止炭素の
決定方法に当たっては、予め鋼種毎に製造コスト、工程
能力のバランスから吹止炭素及び脱ガス工程の処理内容
を決めて、固定化している。
2. Description of the Related Art Generally, in a converter in an iron mill, molten steel produced in a blast furnace is produced by a process in which carbon in the molten pig iron is reduced by oxygen and alloy iron is added. Molten steel produced in the converter is once transferred to a ladle,
After processing such as bubbling, the tundish is passed through a mold to form a continuously cast slab. In this case, in the method of determining the blowout carbon in the converter, the treatment contents of the blowout carbon and the degassing process are determined and fixed in advance from the balance of manufacturing cost and process capability for each steel type.

【0003】[0003]

【発明が解決しようとする課題】上述したように、転炉
吹止炭素の決定方法に当たって、予め鋼種毎に製造コス
ト、工程能力のバランスから転炉吹止炭素及び脱ガス工
程の処理内容を決めて固定化している実状では、例えば
脱ガス工程の処理鋼種履歴等によっては、転炉吹止炭素
及び脱ガス工程の目標炭素を得るための脱炭時間が異な
ることから、それに対応した転炉吹止炭素及び脱ガス工
程でのコストと能力に合った処理内容の操業をしなけれ
ば総合的な製造コストの低減を図ることができない。す
なわち、固定的な標準では総合的な製造コストの低減を
図ることが出来ないという問題がある。
As described above, in the method of determining converter blowout carbon, the contents of the converter blowout carbon and the degassing process are determined in advance from the balance of manufacturing cost and process capability for each steel type. In the actual situation, the carbonization time for obtaining the target carbon for the converter blowing carbon and the degassing process differs depending on, for example, the history of treated steel in the degassing process. It is impossible to reduce the total manufacturing cost unless the processing contents are matched with the cost and capacity in the carbon-free and degassing process. That is, there is a problem that it is not possible to reduce the total manufacturing cost with a fixed standard.

【0004】[0004]

【課題を解決するための手段】上述したような問題を解
消するために、発明者らは鋭意研究を重ねた結果、脱ガ
ス工程の処理鋼種履歴等の条件変化を踏まえて、転炉工
程と脱ガス工程における製造コストが最安価になるよう
にダイナミックに処理工程、処理内容を変更する製鋼処
理での転炉吹止炭素の決定方法を提供することにある。
その発明の要旨とするところは、転炉工程と脱ガス工程
における製造コストが最安価となる転炉吹止炭素を決定
する方法において、予め脱ガス時間により求められる脱
ガス工程の製造コストと、転炉吹止炭素及びそれから求
められる転炉吹錬時間とから求められる転炉工程の製造
コストと、連続鋳造工程のキャスト内の順、脱ガス工程
の処理鋼種履歴などの脱ガス工程の脱炭速度に及ぼす要
因の必要脱ガス時間に与える影響とを予め求めておき、
当該チャージの脱ガス後の目標炭素及び前記脱炭速度に
及ぼす要因の各値から吹止炭素と必要脱ガス時間との関
係、更には吹止炭素と脱ガス工程の製造コストとの関係
を求め、次に当該チャージの吹止炭素と転炉工程の製造
コストとの関係を求め、脱ガス工程と転炉工程との総製
造コストが最低となる吹止炭素を転炉の目標炭素とする
ことを特徴とする転炉吹止炭素決定方法にある。
[Means for Solving the Problems] In order to solve the above-mentioned problems, as a result of intensive studies by the inventors, as a result of the change in conditions such as the history of treated steel in the degassing process It is an object of the present invention to provide a method for determining carbon blown by a converter in a steelmaking process, which dynamically changes the treatment process and the treatment contents so that the production cost in the degassing process becomes the lowest.
Where the gist of the invention is, in the method for determining the converter blowing carbon that the manufacturing cost in the converter process and the degassing process is the lowest, the manufacturing cost of the degassing process that is obtained in advance by the degassing time, Decarburization of the degassing process such as the manufacturing cost of the converter process, which is calculated from the converter blown carbon and the required converter blowing time, the order of casting in the continuous casting process, the processing steel grade history of the degassing process, etc. The effect of the factors affecting the speed on the required degassing time is calculated in advance,
The relationship between the blowout carbon and the required degassing time, and the relation between the blowout carbon and the manufacturing cost of the degassing process are obtained from the target carbon after degassing of the charge and each value of the factors affecting the decarburization rate. , Next, obtain the relationship between the blowing carbon of the charge and the manufacturing cost of the converter process, and set the blowing carbon that has the lowest total manufacturing cost of the degassing process and the converter process as the target carbon of the converter. The method for determining blown carbon of a converter is characterized by:

【0005】[0005]

【作用】以下、本発明について図面に従って詳細に説明
する。図1は本発明を実施するための一連の工程を示す
概略図である。図1に示すように、高炉より出銑された
銑鉄は脱Si処理され、溶銑予備処理として脱燐及び脱
硫を行った後溶銑払出しを行い、転炉1にて上吹き酸素
吹錬を行って脱Cした後二次精錬による、例えばRH真
空脱ガス処理2により、脱窒素及び脱水素等を行って高
純度溶鋼を連続鋳造3にてスラブ4を製造する一貫の連
続工程で行う。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic diagram showing a series of steps for carrying out the present invention. As shown in FIG. 1, the pig iron discharged from the blast furnace is subjected to de-Si treatment, dephosphorization and desulfurization are performed as hot metal pretreatment, and then hot metal is discharged, and top blowing oxygen blowing is performed in the converter 1. After decarbonization, denitrification and dehydrogenation are performed by secondary refining, for example, by RH vacuum degassing treatment 2 to perform high-purity molten steel in a continuous casting 3 to produce a slab 4 in a continuous continuous process.

【0006】図2は転炉での吹錬時間と吹止炭素との関
係を示す図である。図2に示すように、前回チャージ鋼
種の炭素が高い処理鋼種履歴を経ている場合と低い場合
とで処理後の目標炭素を得るためには脱炭時間がそれぞ
れ異なり、前回チャージでの高炭素鋼種の吹錬をした後
の今回の脱炭時間は転炉内に残留する高炭素鋼や高炭素
鋼による炉内付着地金等の影響により、目標炭素を得る
ためにはRHでの脱炭時間が長くなり、また、逆に前回
チャージでの低炭素鋼種の吹錬をした後の目標炭素を得
るための脱炭時間は短くて済むということが判る。この
ように、前回の処理鋼種履歴が次に行う脱炭時間に大き
く影響を及ぼすものであり、従って、この影響を考慮し
た脱炭時間補正をする必要がある。
FIG. 2 is a diagram showing the relationship between the blowing time in the converter and the blowing carbon. As shown in FIG. 2, the decarburization time is different in order to obtain the target carbon after treatment depending on whether the carbon of the previously charged steel grade is high or low, and the high carbon steel grade of the previous charge is different. The decarburization time this time after the smelting is due to the effects of high carbon steel remaining in the converter and the metal deposits in the furnace due to high carbon steel, etc. It becomes clear that the decarburization time for obtaining the target carbon after blowing the low carbon steel type with the previous charge is short. As described above, the previous treated steel type history has a great influence on the decarburization time to be performed next time. Therefore, it is necessary to correct the decarburization time in consideration of this influence.

【0007】図3は吹止炭素と製造コスト実績指数との
関係を示す図である。この図に示すように、転炉及び真
空脱ガス処理(RH)での各々の吹止炭素と製造コスト
との関係について、転炉においては吹止炭素が高い程吹
錬による製造コストは安くなる。逆に真空脱ガス処理
(RH)においては吹止炭素が高くなる程製造コスト実
績指数は高くなるということを示している。このように
転炉及びRHでの製造コストは吹止炭素の高低によって
異なるものである。従って、この転炉とRHとのそれぞ
れの特性を生かすことにより、総合的に安価な製造コス
トを得る操業方法を実施することが出来るものである。
そこで、この両者の併用した製造コスト実績指数曲線
(転炉+RH)を上方に示す。
FIG. 3 is a diagram showing the relationship between the blowout carbon and the manufacturing cost performance index. As shown in this figure, regarding the relationship between each blowing carbon in the converter and vacuum degassing (RH) and the manufacturing cost, in the converter, the manufacturing cost by blowing is lower as the blowing carbon is higher. . On the contrary, in the vacuum degassing process (RH), the manufacturing cost performance index increases as the blowing carbon increases. As described above, the manufacturing costs in the converter and the RH differ depending on the level of blown carbon. Therefore, by utilizing the characteristics of each of the converter and the RH, it is possible to implement an operating method for obtaining a comprehensively low manufacturing cost.
Therefore, the manufacturing cost performance index curve (converter + RH) in which both are used together is shown above.

【0008】なお、符号及びは図2と同様に、の
場合は前回チャージ鋼種の炭素が高い処理鋼種履歴を経
ている場合の曲線であり、また、は前回チャージ鋼種
の炭素が低い処理鋼種履歴を経ている場合の各々の吹止
炭素と製造コスト実績指数との関係を示している。
Similar to FIG. 2, the symbols and are the curves when the previous charged steel grade has a high carbon treatment history, and the previous charged steel grade has a low carbon treatment history. The relationship between each blown carbon and the manufacturing cost performance index is shown.

【0009】このように転炉とRHとでは、目標炭素に
脱炭するに当たっての製造コストが各々異なるものであ
るから、転炉工程と脱ガス工程における製造コストを最
安価となる転炉吹止炭素を決定するためには脱ガス工程
と転炉工程との両者のバランスから決定する必要があ
る。そこで、例えば図3に示す転炉とRHとの両者の総
合的な製造コスト実績指数の関係を示す曲線から、最も
安価な吹止炭素の値はでは4.8×10-2%、の場
合は3.8×10-2%となることが判る。このように、
予め脱ガス工程の製造コストと転炉工程の製造コストを
求めて置いて、処理鋼種履歴などによる脱炭速度に及ぼ
す要因の必要脱ガス時間に与える影響を考慮して、脱ガ
ス工程と転炉工程との総合的な製造コストが最低となる
吹止炭素を転炉の目標炭素とすることにより製造コスト
の低減を図ることが出来るものである。
As described above, since the converter and the RH have different manufacturing costs for decarburizing the target carbon, the converter blowing and the degassing step have the lowest manufacturing costs. In order to determine carbon, it is necessary to determine it from the balance between both the degassing process and the converter process. Therefore, for example, from the curve showing the relationship between the overall manufacturing cost performance index of both the converter and the RH shown in FIG. 3, in the case where the cheapest value of blown carbon is 4.8 × 10 -2 %, It can be seen that is 3.8 × 10 -2 %. in this way,
The production cost of the degassing process and the production process of the converter process should be calculated in advance, and the degassing process and the converter process should be considered in consideration of the effect of factors affecting the decarburization rate, such as the history of treated steel, on the required degassing time. It is possible to reduce the manufacturing cost by making the target carbon of the converter be the blown carbon which has the lowest total manufacturing cost with the process.

【0010】[0010]

【発明の効果】以上述べたように、本発明による前チャ
ージ成分の影響を考慮した転炉工程及び脱ガス工程の両
者の総合製造コストを加味した操業を行うことにより、
低炭素鋼を極めて低コストで製造することが出来る優れ
た効果を奏するものである。
As described above, by performing the operation in consideration of the total manufacturing cost of both the converter process and the degassing process in consideration of the influence of the precharge component according to the present invention,
It has an excellent effect that low-carbon steel can be manufactured at an extremely low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するための一連の工程を示す概略
図、
FIG. 1 is a schematic diagram showing a series of steps for carrying out the present invention,

【図2】転炉での吹錬時間と吹止炭素との関係を示す
図、
FIG. 2 is a diagram showing a relationship between blowing time in a converter and blowing carbon.

【図3】吹止炭素と製造コスト実績指数との関係を示す
図である。
FIG. 3 is a diagram showing a relationship between blown carbon and a manufacturing cost performance index.

【符号の説明】[Explanation of symbols]

1 転炉 2 RH真空脱ガス処理 3 連続鋳造 4 スラブ 1 Converter 2 RH vacuum degassing 3 Continuous casting 4 Slab

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 転炉工程と脱ガス工程における製造コス
トが最安価となる転炉吹止炭素を決定する方法におい
て、予め脱ガス時間により求められる脱ガス工程の製造
コストと、転炉吹止炭素及びそれから求められる転炉吹
錬時間とから求められる転炉工程の製造コストと、連続
鋳造工程のキャスト内の順、脱ガス工程の処理鋼種履歴
などの脱ガス工程の脱炭速度に及ぼす要因の必要脱ガス
時間に与える影響とを予め求めておき、当該チャージの
脱ガス後の目標炭素及び前記脱炭速度に及ぼす要因の各
値から吹止炭素と必要脱ガス時間との関係、更には吹止
炭素と脱ガス工程の製造コストとの関係を求め、次に当
該チャージの吹止炭素と転炉工程の製造コストとの関係
を求め、脱ガス工程と転炉工程との総製造コストが最低
となる吹止炭素を転炉の目標炭素とすることを特徴とす
る転炉吹止炭素決定方法。
1. A method of determining converter-blown carbon for which the manufacturing cost in a converter process and a degassing process is the lowest, in the method of determining degassing time, the manufacturing cost of the degassing process, and the converter blowing Factors affecting the decarburization rate of the degassing process such as the manufacturing cost of the converter process, which is determined from carbon and the converter blowing time required from it, and the order of casting in the continuous casting process, the history of treated steel grades of the degassing process, etc. And the effect on the required degassing time of the charge, the relationship between the blown carbon and the required degassing time from the target carbon after degassing of the charge and each value of the factors affecting the decarburization rate, The relationship between the blowing carbon and the manufacturing cost of the degassing process is calculated, and then the relationship between the blowing carbon of the charge and the manufacturing cost of the converter process is calculated, and the total manufacturing cost of the degassing process and the converter process is calculated. Converter with minimum blown carbon A method for determining blown carbon in a converter, which is characterized by using the target carbon of
JP30101094A 1994-12-05 1994-12-05 Decision of carbon quantity at blowing off in converter Withdrawn JPH08157926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30101094A JPH08157926A (en) 1994-12-05 1994-12-05 Decision of carbon quantity at blowing off in converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30101094A JPH08157926A (en) 1994-12-05 1994-12-05 Decision of carbon quantity at blowing off in converter

Publications (1)

Publication Number Publication Date
JPH08157926A true JPH08157926A (en) 1996-06-18

Family

ID=17891754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30101094A Withdrawn JPH08157926A (en) 1994-12-05 1994-12-05 Decision of carbon quantity at blowing off in converter

Country Status (1)

Country Link
JP (1) JPH08157926A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007164357A (en) * 2005-12-12 2007-06-28 Fujitsu Ltd Quality control method, quality control program and quality control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007164357A (en) * 2005-12-12 2007-06-28 Fujitsu Ltd Quality control method, quality control program and quality control system

Similar Documents

Publication Publication Date Title
CN101550475B (en) Method for producing ultra-low-carbon steel
CN111172351B (en) Control method for medium-carbon sulfur-containing aluminum deoxidized non-quenched and tempered steel Ds inclusion
CN114574770B (en) Preparation method of high-strength fatigue-resistant 60Si2MnA spring steel
CN111485068B (en) Smelting method of IF steel with high surface quality
CN105861775A (en) Smelting process for ultra-low phosphorus steel with high nickel content
CN116904863B (en) High-cleanliness high-carbon steel and low-carbon-emission production method thereof
JPH0230711A (en) Manufacture of extremely low carbon steel having superior cleanness
CN114807730A (en) Nickel-free copper-phosphorus series weather-resistant steel casting blank
CN105002324B (en) A kind of method for controlling Properties of Heavy Rail Steel point-like inclusion
CN112322958A (en) Low-carbon aluminum-containing steel and smelting control method thereof
CN107868858A (en) A kind of production method of low S and low P steel
JPH08157926A (en) Decision of carbon quantity at blowing off in converter
JP3460595B2 (en) Melting method for extremely low sulfur steel
CN114657311A (en) Operation method for directly smelting variety steel by duplex semisteel
CN110453035B (en) Inclusion control method for improving steel processing performance
JPH06207212A (en) Production of high creanliness extra-low carbon steel of extremely low s
CN109735684A (en) A method of improving Tempered Steel Containing Sulphur castability and transverse impact toughness
CN113265511B (en) Smelting method of low-nitrogen steel
CN113584259B (en) Method for washing RH furnace
CN115747407B (en) Smelting method of low-silicon aluminum killed low-carbon steel with controllable inclusions
JP7328534B2 (en) steel smelting method
CN115558734B (en) Low-carbon low-silicon ultralow-sulfur steel and smelting method thereof
CN115612912B (en) Refining method for controlling sulfur of structural steel for aluminum-containing shaft
CN115161434A (en) Production method of low alloy steel and low alloy steel
JPH0247215A (en) Manufacture of extremely low carbon steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020205