JPH08157259A - Production of ceramic dielectric - Google Patents

Production of ceramic dielectric

Info

Publication number
JPH08157259A
JPH08157259A JP6296500A JP29650094A JPH08157259A JP H08157259 A JPH08157259 A JP H08157259A JP 6296500 A JP6296500 A JP 6296500A JP 29650094 A JP29650094 A JP 29650094A JP H08157259 A JPH08157259 A JP H08157259A
Authority
JP
Japan
Prior art keywords
dielectric
firing
value
temperature
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6296500A
Other languages
Japanese (ja)
Inventor
Keiji Nishimoto
恵司 西本
Junichi Kato
純一 加藤
Hiroshi Kagata
博司 加賀田
Kojiro Okuyama
浩二郎 奥山
Yoichiro Yokoya
洋一郎 横谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6296500A priority Critical patent/JPH08157259A/en
Publication of JPH08157259A publication Critical patent/JPH08157259A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE: To produce a ceramic dielectric for a microwave having an increased Q value by annealing a dielectric. CONSTITUTION: A dielectric porcelain compsn. contg. 10-60mol% ZrO2 , 20-60mol% TiO2 and 1-70mol% oxide of one or more among Mg, Co, Ni, Zn, Mn, Sn, Nb, Ta and W is fired at 1,300-1,600 deg.C and the resultant fired dielectric is continuously held at 800-1,200 deg.C for 1-24hr at the time of cooling after firing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はセラミック誘電体の製
造方法に関する。さらに詳細には、ZrO2−TiO2
を主成分とするマイクロ波用セラミック誘電体の製造方
法に関する。
FIELD OF THE INVENTION The present invention relates to a method for manufacturing a ceramic dielectric. More specifically, ZrO 2 —TiO 2
The present invention relates to a method of manufacturing a ceramic dielectric for microwaves containing as a main component.

【0002】[0002]

【従来の技術】近年、携帯電話や自動車電話等移動体通
信の普及に伴い、これら通信機器や基地局の数も増加し
ているが、マイクロ波領域での移動体通信には、周波数
の帯域通過(阻止)フィルタなどに共振器として誘電体
磁器が広く使用されている。
2. Description of the Related Art In recent years, with the spread of mobile communication such as mobile phones and car phones, the number of these communication devices and base stations has been increasing. However, mobile communication in the microwave region has a frequency band. Dielectric ceramics are widely used as resonators in pass (block) filters and the like.

【0003】誘電体共振器に要求される特性は、マイク
ロ波領域での誘電損失が小さいこと、すなわち無負荷Q
値が大きいことである。また、その他に要求される特性
として、同じ共振モードを利用する場合、誘電体の大き
さは誘電率の平方根に逆比例するため、小型化の要求に
対して比誘電率が大きいこと、そして、共振周波数の温
度変化が小さいことが必要であり、さらに、前記の各特
性のばらつきが小さいことが要求される。特に、基地局
用誘電体共振器は、誘電体として送信用及び受信用の共
振器として組み込まれているが、非常に低損失であるこ
と、つまり無負荷Q値が非常に大きいことが要求され
る。
The characteristic required for the dielectric resonator is that the dielectric loss in the microwave region is small, that is, the unloaded Q.
The value is large. In addition, as other required characteristics, when the same resonance mode is used, the size of the dielectric is inversely proportional to the square root of the dielectric constant, so that the relative dielectric constant is large with respect to the demand for miniaturization, and It is necessary that the temperature change of the resonance frequency is small, and further, the variation in each of the above characteristics is also small. In particular, a dielectric resonator for a base station is incorporated as a resonator for transmission and reception as a dielectric, but it is required to have a very low loss, that is, an unloaded Q value is very large. It

【0004】一般に、マイクロ波用セラミック誘電体の
共振周波数fと無負荷Q値の積であるfQ積は、材料が
同じであれば共振器素子の大きさによらず一定であると
されている。すなわち、同じ材料であれば、共振周波数
fと無負荷Q値は反比例の関係にあるので、誘電体素子
の形状が大きくなるほど共振周波数fは小さくなり、無
負荷Q値が大きくなるとされている。しかしながら、特
に素子の形状が非常に大きくなり共振周波数fが1GH
z以下になった場合、fの減少に対してQ値の増加は小
さく、fQ積の値は著しく低下してくる。基地局用誘電
体においては送信用フィルタとして使用する場合、送信
電力が共振器で消費されるため、Q値が低いと発熱が問
題となる。受信用で用いる場合、狭帯域を実現するため
に高いQ値が要求される。
Generally, the product of the resonance frequency f of the microwave ceramic dielectric and the unloaded Q value is constant regardless of the size of the resonator element if the material is the same. . That is, if the same material is used, the resonance frequency f and the no-load Q value are in inverse proportion to each other. Therefore, the larger the shape of the dielectric element, the smaller the resonance frequency f and the larger the no-load Q value. However, especially the shape of the element becomes very large and the resonance frequency f becomes 1 GH.
When it becomes z or less, the increase of the Q value is small with respect to the decrease of f, and the value of the fQ product remarkably decreases. When used as a transmission filter in a base station dielectric, transmission power is consumed by the resonator, so heat generation becomes a problem when the Q value is low. When used for reception, a high Q value is required to realize a narrow band.

【0005】従来、この目的で使用される誘電体とし
て、ZrO2−TiO2を主成分とする材料では、例えば
特開昭62-132769号公報、特開平2-192460号公報等のも
のが知られている。しかし、周波数が低くなるにつれて
fQ積の値は著しく小さくなっていたため、さらに高い
Qの材料が必要である。さらに高いQを有する材料とし
て、Ba(ZnTa)O3(特開昭53 -60540号公報)や
Ba(MgTa)O3(特開昭53-60544号公報)を主成分
とする材料が知られている。これらは主成分として原料
が高価なTaを使用するので、大型の共振素子では非常
に高価となる。そこでZrO2−TiO2を主成分とする
高いQを得る製造方法が求められていた。
Conventionally, as a dielectric material used for this purpose, as a material containing ZrO 2 --TiO 2 as a main component, for example, those disclosed in JP-A-62-132769 and JP-A-2-192460 are known. Has been. However, since the value of the fQ product was remarkably reduced as the frequency was lowered, a higher Q material was needed. As materials having a higher Q, materials containing Ba (ZnTa) O 3 (JP-A-53-60540) or Ba (MgTa) O 3 (JP-A-53-60544) as main components are known. ing. Since Ta, whose raw material is expensive, is used as a main component, these are very expensive for a large-sized resonant element. Therefore, there has been a demand for a manufacturing method for obtaining a high Q containing ZrO 2 —TiO 2 as a main component.

【0006】[0006]

【発明が解決しようとする課題】発明者らの検討によれ
ば、ZrO2−TiO2を主成分とする材料は高いQ値を
得るために、焼成時に48時間以上の保持と20℃/hr
の徐冷却が必要であるが、焼成が長時間になるために、
光熱費及び電気炉の償却費が大きく、コスト高になって
いた。
According to the studies made by the inventors, a material containing ZrO 2 —TiO 2 as a main component has a high Q value, so that the material should be kept for 48 hours or longer and 20 ° C./hr during firing.
Gradual cooling is required, but since firing takes a long time,
Utilities costs and electric furnace depreciation costs were high, leading to high costs.

【0007】本発明はこのような問題を解決するもので
あり、ZrO2−TiO2を主成分とする誘電体を焼成温
度で保持した後、降温時に連続して、または焼成した誘
電体を800℃〜1200℃でアニールすることによ
り、短時間の焼成で、高いQ値が得られる、低コストな
セラミック誘電体の製造方法を提供することを目的とす
る。
The present invention solves such a problem by holding a dielectric material containing ZrO 2 —TiO 2 as a main component at a firing temperature and then continuously or at a temperature of 800 when firing the dielectric material. An object of the present invention is to provide a low-cost method for producing a ceramic dielectric, which can obtain a high Q value by firing in a short time by annealing at a temperature of ℃ to 1200 ℃.

【0008】[0008]

【課題を解決するための手段】この課題を解決するため
に、第1発明のセラミック誘電体の製造方法は、 (1)ZrO2 10〜60mol% 、TiO2 20〜60
mol% 、{Mg,Co,Ni,Zn,Mn,Sn,N
b,Ta,W}からなる少なくとも一種以上の酸化物が
1〜70mol% 含まれる誘電体磁器組成物を1300℃
〜1600℃で焼成し、焼成後の降温時に連続して、ま
たは焼成した誘電体を、800℃〜1200℃の温度で
1〜24時間保持することを特徴とする。
In order to solve this problem, the method for producing a ceramic dielectric of the first invention is as follows: (1) ZrO 2 10 to 60 mol%, TiO 2 20 to 60
mol%, {Mg, Co, Ni, Zn, Mn, Sn, N
a dielectric porcelain composition containing 1 to 70 mol% of at least one oxide composed of b, Ta, W} at 1300 ° C.
It is characterized in that it is baked at ˜1600 ° C. and continuously or at the time of temperature decrease after baking, or the baked dielectric is held at a temperature of 800 ° C. to 1200 ° C. for 1 to 24 hours.

【0009】(2)また、第2発明のセラミック誘電体
の製造方法は、組成式をxZrO2−yTiO2−zA
(1+w)/3Nb(2-w)/3(2-w/2)で表したとき、記号Aが
{Mg,Co,Ni,Zn,Mn}から選ばれた少なく
とも一種の成分であり、かつ、x,y,z,wが次の数
式で示される範囲内にある誘電体磁器組成物を1300
℃〜1600℃で焼成し、焼成後の降温時に連続して、
または焼成した誘電体を、800℃〜1200℃の温度
で1〜24時間保持すること特徴とする(ただし、x,
y,zはモル分率、wは下記で表される数値を示す)。
(2) Further, in the method for producing a ceramic dielectric of the second invention, the compositional formula is xZrO 2 -yTiO 2 -zA.
When represented by (1 + w) / 3 Nb (2-w) / 3 O (2-w / 2) , the symbol A is at least one component selected from {Mg, Co, Ni, Zn, Mn} And a dielectric porcelain composition having x, y, z, w within the range represented by the following mathematical formula: 1300
Firing at ℃ ~ 1600 ℃, continuously during the temperature decrease after firing,
Alternatively, the fired dielectric is held at a temperature of 800 ° C. to 1200 ° C. for 1 to 24 hours (where x,
y and z are mole fractions, and w is a numerical value shown below).

【0010】x+y+z=1 0.10≦x≦0.60 0.20≦y≦0.60 0.01≦z≦0.70 0≦w≦1.50X + y + z = 1 0.10 ≦ x ≦ 0.60 0.20 ≦ y ≦ 0.60 0.01 ≦ z ≦ 0.70 0 ≦ w ≦ 1.50

【0011】[0011]

【作用】上記のようにセラミック誘電体の製造方法は、
ZrO2 10〜60mol% 、TiO2 20〜60mol%
、{Mg,Co,Ni,Zn,Mn,Sn,Nb,T
a,W}からなる少なくとも一種以上の酸化物が1〜7
0mol% 含まれる誘電体磁器組成物を1300℃〜16
00℃で焼成し、焼成後の降温時に連続して、または焼
成した誘電体を、800℃〜1200℃の温度で1〜2
4時間保持して製造するので、短時間の焼成で非常に高
いQ値を得ることができるZrO2−TiO2を主成分と
するセラミック誘電体を製造することができる。
As described above, the method for manufacturing the ceramic dielectric is
ZrO 2 10-60 mol%, TiO 2 20-60 mol%
, {Mg, Co, Ni, Zn, Mn, Sn, Nb, T
1 to 7 of at least one or more oxides composed of a, W}
Dielectric porcelain composition containing 0 mol% 1300 ℃ ~ 16
The dielectric is fired at 00 ° C. and continuously at the time of temperature decrease after firing, or at a temperature of 800 ° C. to 1200 ° C. for 1 to 2
Since it is held for 4 hours to be manufactured, it is possible to manufacture a ceramic dielectric material containing ZrO 2 —TiO 2 as a main component, which can obtain a very high Q value by firing for a short time.

【0012】また、本発明のセラミック誘電体の製造方
法は、組成式xZrO2−yTiO2−zA(1+w)/3Nb
(2-w)/3(2-w/2) を上記の条件を満たす組成とし、上
記条件のアニールをするので、短時間の焼成で非常に高
いQ値を容易に得ることができるZrO2−TiO2を主
成分とするセラミック誘電体を製造することができる。
Further, the method for producing a ceramic dielectric of the present invention comprises a compositional formula xZrO 2 --yTiO 2 --zA (1 + w) / 3 Nb.
(2-w) / 3 O (2-w / 2) is used as a composition satisfying the above conditions, and annealing is performed under the above conditions. Therefore, a very high Q value can be easily obtained by firing for a short time. Ceramic dielectrics based on 2- TiO 2 can be manufactured.

【0013】[0013]

【実施例】以下本発明の一実施例について説明する。出
発原料には化学的に高純度であるZrO2 ,TiO2
MgO,CoO,NiO,ZnO,MnO2 ,SnO,
Nb25 ,Ta25 ,WO3 の各粉末を用い、純度補
正を行った後、表1、表2、表3及び表4に示した組成
比率が得られるよう所定量秤量する。
EXAMPLE An example of the present invention will be described below. The starting materials are chemically high purity ZrO 2 , TiO 2 ,
MgO, CoO, NiO, ZnO, MnO 2 , SnO,
After using each powder of Nb 2 O 5 , Ta 2 O 5 , and WO 3 to correct the purity, a predetermined amount is weighed so that the composition ratios shown in Table 1, Table 2, Table 3, and Table 4 are obtained.

【0014】これらの粉末を混合、800〜1200℃
で仮焼、粉砕、造粒した後、1000kg/cm2で直径13
mm厚さ6mmの円柱状にプレス成形する。また、異なる周
波数での特性を見るために、一部の試料は円柱の大きさ
を変えて成形した。
Mixing these powders, 800-1200 ° C
After calcining, crushing and granulating at 1000 kg / cm 2 , diameter 13
mm Press-molded into a cylindrical shape with a thickness of 6 mm. Also, in order to see the characteristics at different frequencies, some of the samples were molded by changing the size of the cylinder.

【0015】その成形体を600℃で4時間加熱してバ
インダを焼却後、鞘に入れ、組成に応じて1300℃〜
1600℃で4時間焼成し、室温まで冷却する。その
後、焼成体を700℃〜1300℃で1〜24時間アニ
ールを行った。特性は誘電体共振器法による測定から、
アニール前後の無負荷Q値と共振周波数を求めた。この
結果を表1〜3、及び表6,7に示す。表6,7中の記
号x,y,A,z,wは、上記解決手段の(2)項に記
載の第2発明の組成式中の記号を示す。
The molded body is heated at 600 ° C. for 4 hours to incinerate the binder, then put in a sheath, and 1300 ° C. or higher depending on the composition.
Bake at 1600 ° C. for 4 hours and cool to room temperature. Then, the fired body was annealed at 700 ° C to 1300 ° C for 1 to 24 hours. The characteristics are measured by the dielectric resonator method,
The unloaded Q value and the resonance frequency before and after annealing were obtained. The results are shown in Tables 1 to 3 and Tables 6 and 7. The symbols x, y, A, z, and w in Tables 6 and 7 represent the symbols in the composition formula of the second invention described in the item (2) of the above-mentioned solving means.

【0016】また、1300℃〜1600℃で4時間焼
成した後、降温時に連続して700℃〜1200℃で1
〜24時間アニールを行った。その結果を表4に示す。
なお、焼成時の保持時間が48時間以上で20℃/hr の
徐冷却を行った比較例を表5に示す。試料番号に*印を
付けたものは本発明範囲外の比較例であり、それ以外は
本発明の実施例である。
After firing at 1300 ° C to 1600 ° C for 4 hours, the temperature is continuously lowered at 700 ° C to 1200 ° C for 1 hour.
Annealed for ~ 24 hours. The results are shown in Table 4.
Table 5 shows a comparative example in which the holding time during firing is 48 hours or longer and the slow cooling is performed at 20 ° C./hr. Sample numbers marked with * are comparative examples outside the scope of the present invention, and other examples are examples of the present invention.

【0017】なお、試料番号48〜53については、焼
成後のQ値、アニール後のQ値と周波数の関係を図1に
示した。
For sample Nos. 48 to 53, the relationship between the Q value after firing, the Q value after annealing and the frequency is shown in FIG.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【表4】 [Table 4]

【0022】表1〜表4から明らかなように、短時間の
焼成でアニールされたセラミックは、焼成後のQ値と比
べていずれもQ値が向上しているが、図1に示すよう
に、共振周波数の低いものほどQ値向上の効果は大きく
なっている。例えば、試料番号48、49、51、53
では、9GHzで3%,4.5GHzで6%、1.8G
Hzで10%、0.80GHzで23%それぞれQ値が
向上している。
As is clear from Tables 1 to 4, the ceramics annealed by firing for a short time all have improved Q values as compared with the Q values after firing, but as shown in FIG. The lower the resonance frequency, the greater the effect of improving the Q value. For example, sample numbers 48, 49, 51, 53
Then, 3% at 9 GHz, 6% at 4.5 GHz, 1.8 G
The Q value is improved by 10% at Hz and 23% at 0.80 GHz.

【0023】[0023]

【表5】 [Table 5]

【0024】[0024]

【表6】 [Table 6]

【0025】[0025]

【表7】 [Table 7]

【0026】また、表6,7に示す結果から明らかなよ
うに、(2)項に記載の第2発明の組成範囲内の誘電体
磁器組成物は、焼成後のQ値に比べてアニール後のQ値
は大きく向上している。
Further, as is clear from the results shown in Tables 6 and 7, the dielectric ceramic composition within the composition range of the second invention described in the item (2) is after annealing as compared with the Q value after firing. Q value of is greatly improved.

【0027】しかし、表1〜表4では、アニール温度が
800℃未満のものや1200℃より高いものはアニー
ルによるQ値の向上率が必ずしも大きくなく、アニール
による効果は小さいので、上記解決手段の(1)項記載
の第1発明の目的を達成することができず、発明の範囲
外とした。
However, in Tables 1 to 4, if the annealing temperature is lower than 800 ° C. or higher than 1200 ° C., the Q value improvement rate by annealing is not necessarily large, and the effect of annealing is small. The object of the first invention described in the item (1) could not be achieved, and thus it was out of the scope of the invention.

【0028】また、表6,7では、xが試料番号76の
ように0.60よりも大きくなるか、試料番号72のよ
うに0.10より小さくなった場合、アニールを行って
もQ値は低いままであり、実用に適さないので、(2)
項記載の発明の範囲外とした。
Further, in Tables 6 and 7, when x is larger than 0.60 as in sample No. 76 or smaller than 0.10 as in sample No. 72, Q value is maintained even if annealing is performed. Remains low and is not suitable for practical use, so (2)
It is outside the scope of the invention described in the section.

【0029】同様に、yが試料番号68、69のように
0.60よりも大きくなるか、試料番号77、91、9
2、93のように0.20より小さくなった場合、zが
試料番号91、92、93のように0.70より大きく
なった場合、wが試料番号86、87のように1.50
より大きくなった場合にも、アニールを行ってもQ値は
低いままであり、実用に適さないので、(2)項記載の
第2発明の範囲外とした。
Similarly, whether y becomes larger than 0.60 as in sample numbers 68 and 69, or sample numbers 77, 91 and 9 are obtained.
2, 93 is smaller than 0.20, z is larger than 0.70 like sample numbers 91, 92 and 93, and w is 1.50 like sample numbers 86 and 87.
Even when it becomes larger, the Q value remains low even if annealing is performed, and it is not suitable for practical use. Therefore, it was out of the range of the second invention described in the item (2).

【0030】[0030]

【発明の効果】以上の説明から明らかなように本発明に
よれば、ZrO2−TiO2を主成分とするマイクロ波用
誘電体磁器組成物の製造方法において、1300℃〜1
600℃で焼成し、焼成後の降温時に連続して、または
焼成した誘電体を800℃〜〜1200℃で1〜24時
間保持することにより、短時間の焼成でQ値を大きく向
上することができる。しかも、基地局用共振器など大き
いQを要求される共振周波数の低い大型素子ほどQ値の
向上率は大きく、この効果は非常に大きい。
As is apparent from the above description, according to the present invention, in the method for producing a dielectric ceramic composition for microwaves containing ZrO 2 —TiO 2 as a main component, 1300 ° C. to 1 ° C.
By firing at 600 ° C. and continuously after firing or lowering the temperature of the fired dielectric at 800 ° C. to 1200 ° C. for 1 to 24 hours, the Q value can be greatly improved by firing in a short time. it can. In addition, a large element having a low resonance frequency that requires a large Q, such as a base station resonator, has a large improvement rate of the Q value, and this effect is very large.

【0031】また、本発明はZrO2−TiO2を主成分
としており、高価な原料であるTaを主成分としたセラ
ミックと比べて、特に大型の共振素子ではコストを大き
く抑えることができ、非常に安価な大型共振素子を供給
することができる。
Further, the present invention contains ZrO 2 --TiO 2 as a main component, and as compared with a ceramic containing Ta, which is an expensive raw material, as a main component, the cost can be greatly suppressed particularly in a large-sized resonant element. It is possible to supply an inexpensive large-sized resonant element.

【0032】従って本発明の製造方法は、セラミック誘
電体のQ値を大きく向上し、特性を非常に良好にするこ
とができる。よって、量産時の歩留りを大きく向上させ
ることができる。また、焼成時間が非常に短くなること
から、光熱費及び電気炉の償却費を大幅に削減でき、さ
らに、主成分に高価な原料を用いていないのでコストを
大きく抑えることができるので、工業的価値の非常に大
きいものである。
Therefore, according to the manufacturing method of the present invention, the Q value of the ceramic dielectric can be greatly improved and the characteristics can be made very good. Therefore, the yield in mass production can be greatly improved. In addition, since the firing time is extremely short, utility costs and depreciation costs for electric furnaces can be significantly reduced, and since costly raw materials are not used as the main component, the cost can be greatly reduced, which is industrial. It is of great value.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例、試料番号48〜53の焼成
後のQ値、アニール後のQ値と周波数の関係を示す図で
ある。
FIG. 1 is a diagram showing the relationship between the Q value after firing and the Q value after annealing and frequency of Examples Nos. 48 to 53 of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥山 浩二郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 横谷 洋一郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kojiro Okuyama 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Yoichiro Yokotani 1006 Kadoma, Kadoma City Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ZrO2 10〜60mol% 、TiO2
0〜60mol% 、{Mg,Co,Ni,Zn,Mn,S
n,Nb,Ta,W}からなる少なくとも一種以上の酸
化物が1〜70mol% 含まれる誘電体磁器組成物を13
00℃〜1600℃で焼成し、焼成後の降温時に連続し
て、または焼成した誘電体を、800℃〜1200℃の
温度で1〜24時間保持することを特徴とするセラミッ
ク誘電体の製造方法。
1. ZrO 2 10 to 60 mol%, TiO 2 2
0-60 mol%, {Mg, Co, Ni, Zn, Mn, S
a dielectric ceramic composition containing 1 to 70 mol% of at least one oxide of n, Nb, Ta, W}.
A method for producing a ceramic dielectric, characterized by firing at 00 ° C to 1600 ° C, and continuously or at the time of cooling after firing, or holding the fired dielectric at a temperature of 800 ° C to 1200 ° C for 1 to 24 hours. .
【請求項2】 組成式をxZrO2−yTiO2−zA
(1+w)/3Nb(2-w)/3(2 -w/2) で表したとき、記号Aが
{Mg,Co,Ni,Zn,Mn}から選ばれた少なく
とも一種の成分であり、かつ、x,y,z,wが次の数
式で示される範囲内にある誘電体磁器組成物を1300
℃〜1600℃で焼成し、焼成後の降温時に連続して、
または焼成した誘電体を、800℃〜1200℃の温度
で1〜24時間保持すること特徴とするセラミック誘電
体の製造方法(ただし、x,y,zはモル分率、wは下
記で表される数値を示す)。 x+y+z=1 0.10≦x≦0.60 0.20≦y≦0.60 0.01≦z≦0.70 0≦w≦1.50
2. The composition formula is xZrO 2 —yTiO 2 —zA.
When represented by (1 + w) / 3 Nb (2-w) / 3 O (2- w / 2) , the symbol A is at least one component selected from {Mg, Co, Ni, Zn, Mn} And a dielectric porcelain composition having x, y, z, w within the range represented by the following mathematical formula: 1300
Firing at ℃ ~ 1600 ℃, continuously during the temperature decrease after firing,
Alternatively, the fired dielectric is held at a temperature of 800 ° C. to 1200 ° C. for 1 to 24 hours, wherein x, y, and z are mole fractions and w is represented by the following. Shows the numerical value). x + y + z = 1 0.10 ≦ x ≦ 0.60 0.20 ≦ y ≦ 0.60 0.01 ≦ z ≦ 0.70 0 ≦ w ≦ 1.50
JP6296500A 1994-11-30 1994-11-30 Production of ceramic dielectric Pending JPH08157259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6296500A JPH08157259A (en) 1994-11-30 1994-11-30 Production of ceramic dielectric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6296500A JPH08157259A (en) 1994-11-30 1994-11-30 Production of ceramic dielectric

Publications (1)

Publication Number Publication Date
JPH08157259A true JPH08157259A (en) 1996-06-18

Family

ID=17834360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6296500A Pending JPH08157259A (en) 1994-11-30 1994-11-30 Production of ceramic dielectric

Country Status (1)

Country Link
JP (1) JPH08157259A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060270A (en) * 2000-08-21 2002-02-26 Sumitomo Special Metals Co Ltd Dielectric ceramic composition for electronic device
KR100444223B1 (en) * 2001-11-13 2004-08-16 삼성전기주식회사 Dielectric Ceramic Compositions
US6835681B2 (en) * 2000-12-20 2004-12-28 Matsushita Electric Industrial Co., Ltd. Dielectric ceramic composition and dielectric device
WO2012147769A1 (en) * 2011-04-25 2012-11-01 京セラ株式会社 Dielectric ceramic and dielectric filter provided with same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002060270A (en) * 2000-08-21 2002-02-26 Sumitomo Special Metals Co Ltd Dielectric ceramic composition for electronic device
JP4688008B2 (en) * 2000-08-21 2011-05-25 日立金属株式会社 Dielectric ceramic composition for electronic devices
US6835681B2 (en) * 2000-12-20 2004-12-28 Matsushita Electric Industrial Co., Ltd. Dielectric ceramic composition and dielectric device
KR100444223B1 (en) * 2001-11-13 2004-08-16 삼성전기주식회사 Dielectric Ceramic Compositions
WO2012147769A1 (en) * 2011-04-25 2012-11-01 京セラ株式会社 Dielectric ceramic and dielectric filter provided with same
JP5774094B2 (en) * 2011-04-25 2015-09-02 京セラ株式会社 Dielectric ceramics and dielectric filter provided with the same

Similar Documents

Publication Publication Date Title
JP4596004B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP3840869B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JPH08157259A (en) Production of ceramic dielectric
JP2515611B2 (en) Dielectric porcelain composition
JPH1072258A (en) Dielectric ceramic composition
JP2526701B2 (en) Dielectric porcelain composition
JP2526702B2 (en) Dielectric porcelain composition
JP4155132B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JPH08259319A (en) Low-temperature-baked dielectric porcelain and its production
JP4513076B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP3446318B2 (en) High frequency dielectric ceramic composition
JPH0717444B2 (en) Dielectric porcelain composition
JP4830286B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JPH0412056A (en) Piezoelectric porcelain composition
JP3979433B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
JP3598886B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
KR20040078525A (en) Dielectric Ceramic Compositions for High Frequency Applications
JPH06203629A (en) Dielectric ceramic composition and manufacture thereof
JP3575336B2 (en) High frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication device
KR100415983B1 (en) Dielectric Ceramic Compositions for High Frequency Applications
JPH0850813A (en) Dielectric ceramic composition
JPH03290359A (en) Dielectric ceramic composition
KR960004391B1 (en) High freguency using electric material
JPH06196019A (en) Dielectric ceramic composition and manufacture thereof
JP4006655B2 (en) Dielectric porcelain composition for microwave