JPH08156115A - Carbon fiber reinforced composite material - Google Patents

Carbon fiber reinforced composite material

Info

Publication number
JPH08156115A
JPH08156115A JP6301938A JP30193894A JPH08156115A JP H08156115 A JPH08156115 A JP H08156115A JP 6301938 A JP6301938 A JP 6301938A JP 30193894 A JP30193894 A JP 30193894A JP H08156115 A JPH08156115 A JP H08156115A
Authority
JP
Japan
Prior art keywords
carbon fiber
reinforced composite
composite material
fiber reinforced
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6301938A
Other languages
Japanese (ja)
Other versions
JP3517468B2 (en
Inventor
Tomoo Sano
智雄 佐野
Kazuya Goto
和也 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP30193894A priority Critical patent/JP3517468B2/en
Publication of JPH08156115A publication Critical patent/JPH08156115A/en
Application granted granted Critical
Publication of JP3517468B2 publication Critical patent/JP3517468B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE: To provide a carbon fiber reinforced composite material which develops high dynamical characteristics by using a carbon fiber in which PAN (polyacrylonitrile) series precursor is taken as a raw material. CONSTITUTION: An epoxy resin as a base resin, an acid anhydride as a hardening agent, and am imidazole catalyst as a catalytic hardener are used. An epoxy resin composition to which 0.1-3 pts.wt. of polymeric surface active agent having a carboxyl group as an additive is added, is used as a matrix resin. A carbon fiber taking a polyacrylonitrile series precursor as a raw material, is used as a reinforced fiber. Thus, a carbon fiber reinforced composite material is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリアクリロニトリル
(以下、略してPANと称する)系プレカーサーを原料
とする炭素繊維を強化繊維に用いた炭素繊維強化複合材
料の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a carbon fiber reinforced composite material in which carbon fibers made of a polyacrylonitrile (hereinafter abbreviated as PAN) precursor are used as reinforcing fibers.

【0002】[0002]

【従来の技術】炭素繊維強化複合材料はその優れた力学
的性質により、航空宇宙用途を始め、スポーツ、レジャ
ー用途などの商品として生産・販売されているが、これ
ら炭素繊維強化複合材料の高性能化のために、炭素繊維
強化複合材料としたときに高い力学特性を発現するマト
リックス樹脂が要求されている。
2. Description of the Related Art Carbon fiber reinforced composite materials are produced and sold as products for aerospace applications, sports and leisure applications due to their excellent mechanical properties. Therefore, a matrix resin that exhibits high mechanical properties when formed into a carbon fiber reinforced composite material is required.

【0003】マトリックス樹脂は炭素繊維および黒鉛繊
維(以下、一括して炭素繊維と称する)と複合材料にし
たときに高い力学特性を発現する必要があり、マトリッ
クス樹脂自身の性能だけでなく、炭素繊維との接着強度
や炭素繊維トウへの含浸性が高くなければならない。す
なわち、マトリックス樹脂の炭素繊維トウへの含浸性を
高めるあるいはマトリックス樹脂と炭素繊維の接着強度
を高めることで曲げ強度や曲げ弾性率等の炭素繊維強化
複合材料の力学特性を向上させることができる。
The matrix resin is required to exhibit high mechanical properties when it is made into a composite material with carbon fiber and graphite fiber (hereinafter collectively referred to as carbon fiber), and not only the performance of the matrix resin itself but also the carbon fiber. It must have high adhesive strength with and impregnation with carbon fiber tow. That is, the mechanical properties of the carbon fiber reinforced composite material such as the bending strength and the bending elastic modulus can be improved by increasing the impregnation property of the matrix resin into the carbon fiber tow or by increasing the adhesive strength between the matrix resin and the carbon fiber.

【0004】一般に炭素繊維とマトリックス樹脂の接着
は悪く、炭素繊維との接着強度が高いといわれるエポキ
シ樹脂との炭素繊維強化複合材料でさえ炭素繊維−マト
リックス樹脂界面破壊が律速となり十分な強度を得られ
ないことが多い。炭素繊維とマトリックス樹脂の接着強
度の向上は通常、炭素繊維表面の電界処理やサイズ処理
等のように炭素繊維の表面改質に頼っているのが現状で
ある。
Generally, the adhesion between the carbon fiber and the matrix resin is poor, and even a carbon fiber reinforced composite material with an epoxy resin, which is said to have a high adhesion strength with the carbon fiber, causes the carbon fiber-matrix resin interface to break down at a rate-determining rate and obtains sufficient strength. Often not. At present, the improvement of the adhesive strength between the carbon fiber and the matrix resin usually depends on the surface modification of the carbon fiber such as the electric field treatment or the size treatment of the surface of the carbon fiber.

【0005】炭素繊維とマトリックス樹脂の接着につい
ては、炭素繊維の表面処理やサイズ剤などの変更が提案
されている。しかし、マトリックス樹脂により有効に働
くサイズ剤が異なるため炭素繊維をサイズ剤だけで数種
に区別しなければならない。また、表面処理は炭素繊維
表面の脆性化を防ぐために低いレベルに制限される。
Regarding the adhesion between the carbon fiber and the matrix resin, it has been proposed to change the surface treatment of the carbon fiber and the size. However, since the sizing agent that works effectively differs depending on the matrix resin, it is necessary to distinguish the carbon fibers into several types only by the sizing agent. Also, surface treatments are limited to low levels to prevent embrittlement of the carbon fiber surface.

【0006】一般に炭素繊維の表面処理は、炭素繊維の
弾性率レベルごとに炭素繊維表面の脆性化が起こらない
程度のレベルで固定されている。また、炭素繊維のサイ
ズ剤は収束性が重視されるためにその種類が限定され、
マトリックス樹脂と高い濡れ性や高い接着性を示すサイ
ズ剤を見いだすのは困難である。
Generally, the surface treatment of carbon fibers is fixed at a level such that brittleness of the carbon fiber surface does not occur for each elastic modulus level of the carbon fibers. Also, the type of carbon fiber sizing agent is limited because of its importance for convergence.
It is difficult to find a sizing agent that exhibits high wettability and high adhesiveness with the matrix resin.

【0007】一方、マトリックス樹脂の炭素繊維トウへ
の含浸性はマトリックス樹脂の粘度や炭素繊維とマトリ
ックス樹脂の濡れ性に大きな影響を受ける。このうち、
マトリックス樹脂の粘度は中間材の形態によりかなり制
限される。特に、炭素繊維強化複合材料の中間材として
最もよく用いられているプリプレグの粘度は数10po
iseオーダーであり、粘度低下により含浸性を高める
のは困難である。また、濡れ性には炭素繊維、マトリッ
クス樹脂それぞれの電気的性質、表面自由エネルギー等
の様々な因子が効いており、全ての因子を満足させるの
は非常に困難である。マトリックス樹脂自身の硬化性や
強度、耐熱性等を所望のレベルに到達させようとすると
更に困難になる。
On the other hand, the impregnability of the matrix resin into the carbon fiber tow is greatly affected by the viscosity of the matrix resin and the wettability between the carbon fiber and the matrix resin. this house,
The viscosity of the matrix resin is considerably limited by the morphology of the intermediate material. In particular, the viscosity of prepreg, which is most often used as an intermediate material for carbon fiber reinforced composite materials, is several tens po.
It is of the order of ise, and it is difficult to improve the impregnating property by decreasing the viscosity. In addition, various factors such as electrical properties of carbon fiber and matrix resin, surface free energy, etc. are effective for wettability, and it is very difficult to satisfy all the factors. It becomes even more difficult to reach the desired level of curability, strength, heat resistance, etc. of the matrix resin itself.

【0008】[0008]

【発明が解決しようとする課題】本発明は、かかる従来
の問題点を解消し、PAN系プレカーサーを原料とする
炭素繊維を用いて高い力学特性を発現する炭素繊維強化
複合材料の提供を課題とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems of the prior art and to provide a carbon fiber reinforced composite material exhibiting high mechanical properties by using carbon fiber made of a PAN precursor as a raw material. To do.

【0009】[0009]

【課題を解決するための手段】本発明は、ベースレジン
にエポキシ樹脂、硬化剤に酸無水物、硬化触媒にイミダ
ゾール系触媒を用い、カルボキシル基を持つ高分子量界
面活性剤0.1〜3重量部を添加物として加えたエポキ
シ樹脂組成物をマトリックス樹脂とし、ポリアクリロニ
トリル系プレカーサーを原料とする炭素繊維を強化繊維
とした炭素繊維強化複合材料を上記課題を解決するため
の手段とする。
The present invention uses an epoxy resin as a base resin, an acid anhydride as a curing agent, an imidazole catalyst as a curing catalyst, and 0.1 to 3 parts by weight of a high molecular weight surfactant having a carboxyl group. A carbon fiber reinforced composite material in which an epoxy resin composition to which a part is added as an additive is used as a matrix resin and a carbon fiber obtained from a polyacrylonitrile precursor is used as a reinforcing fiber is used as a means for solving the above problems.

【0010】本発明におけるベースレジンとしては、ビ
スフェノールAジグリシジルエーテル、ビスフェノール
Fジグリシジルエーテル、ビスフェノールSジグリシジ
ルエーテル、テトラグリシジルジアミノジフェニルメタ
ン、クレゾールノボラックポリグリシジルエーテル、フ
ェノールノボラックポリグリシジルエーテルを挙げるこ
とができる。エポキシ樹脂であればこれらに制限される
ことはないが、強度、接着性、耐熱性等の物性のバラン
スのとれたビスフェノールAジグリシジルエーテル、ビ
スフェノールFジグリシジルエーテルが望ましい。
Examples of the base resin in the present invention include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, tetraglycidyl diaminodiphenylmethane, cresol novolac polyglycidyl ether, and phenol novolac polyglycidyl ether. . The epoxy resin is not limited to these, but bisphenol A diglycidyl ether and bisphenol F diglycidyl ether having a good balance of physical properties such as strength, adhesiveness and heat resistance are preferable.

【0011】硬化剤としてはメチルテトラヒドロ無水フ
タル酸、無水メチルナジック酸を挙げることができ、そ
の添加量としてはエポキシ樹脂に対する量論量の50〜
120%でなければならない。これは、この範囲を越え
ると硬化物の耐熱性が低下するためである。70〜10
0%はさらに好ましい。
Examples of the curing agent include methyl tetrahydrophthalic anhydride and methyl nadic acid anhydride, and the addition amount thereof is 50 to 50 which is a stoichiometric amount based on the epoxy resin.
Must be 120%. This is because if it exceeds this range, the heat resistance of the cured product decreases. 70-10
0% is more preferable.

【0012】本発明におけるイミダゾール系触媒として
は2−エチル−4−メチルイミダゾール、1−ベンジル
−2−メチルイミダゾールを挙げることができ、対エポ
キシ重量部は0.1〜5重量部が好ましい。この範囲よ
りも少ないと硬化速度が著しく遅くなり、この範囲より
も多いと中間材状態時の樹脂粘度の安定性が著しく損な
われるので好ましくない。0.5〜3重量部はさらに好
ましい。
Examples of the imidazole-based catalyst in the present invention include 2-ethyl-4-methylimidazole and 1-benzyl-2-methylimidazole, and the amount by weight of epoxy is preferably 0.1 to 5 parts by weight. If it is less than this range, the curing speed will be remarkably slow, and if it is more than this range, the stability of the resin viscosity in the intermediate material state will be significantly impaired, which is not preferable. 0.5 to 3 parts by weight is more preferable.

【0013】本発明における添加剤である高分子量界面
活性剤は本発明におけるもっとも重要な因子である。な
ぜならばカルボキシル基を持つ高分子量界面活性剤を添
加することにより初めて、マトリックス樹脂の炭素繊維
トウへの優れた含浸性、マトリックス樹脂と炭素繊維の
優れた接着性を賦与することができるからである。すな
わち、カルボキシル基を持つ高分子量界面活性剤を添加
することでマトリックス樹脂の表面張力を下げてマトリ
ックス樹脂の炭素繊維トウへの含浸性を上げ、なおか
つ、マトリックス樹脂硬化時に炭素繊維−マトリックス
樹脂界面で高分子量界面活性剤自身も反応に関与するこ
とでバインダーとしての役割を果たし炭素繊維−マトリ
ックス界面の接着強度を上げるためである。さらにはマ
トリックス樹脂の表面張力を低下させるために、ボイド
源となる空気を抜け易くする働きもある。
The high molecular weight surfactant which is an additive in the present invention is the most important factor in the present invention. This is because, by adding a high molecular weight surfactant having a carboxyl group, excellent impregnation of the matrix resin into the carbon fiber tow and excellent adhesion between the matrix resin and the carbon fiber can be imparted only for the first time. . That is, by adding a high molecular weight surfactant having a carboxyl group, the surface tension of the matrix resin is lowered to enhance the impregnability of the matrix resin into the carbon fiber tow, and at the time of curing the matrix resin, the carbon fiber-matrix resin interface This is because the high molecular weight surfactant itself also plays a role as a binder by participating in the reaction to increase the adhesive strength at the carbon fiber-matrix interface. Further, the surface tension of the matrix resin is lowered, so that the air serving as a void source can be easily released.

【0014】本発明における高分子量界面活性剤はカル
ボキシル基を持っておらねばならず、高分子ポリカルボ
ン酸のアンモニウム塩や高分子飽和ポリエステル等を挙
げることができる。添加量は対エポキシ重量部で0.1
〜3重量部でなければならない。これは、これより少な
いと添加の効果が現れず、多すぎると耐熱性の低下等の
デメリットが大きいためである。0.5〜2重量部はさ
らに好ましい。
The high molecular weight surfactant in the present invention must have a carboxyl group, and examples thereof include ammonium salts of high molecular weight polycarboxylic acids and high molecular weight saturated polyesters. Addition amount is 0.1 parts by weight to epoxy
Must be ~ 3 parts by weight. This is because if the amount is less than this, the effect of addition does not appear, and if the amount is too large, the demerits such as reduction in heat resistance are large. 0.5 to 2 parts by weight is more preferable.

【0015】本発明に用いられる炭素繊維はPAN系プ
レカーサーを原料とするものであれば特に制限はなく、
炭素繊維製造時の焼成条件や炭素繊維の弾性率レベルな
どにも制限されない。
The carbon fiber used in the present invention is not particularly limited as long as it is made of PAN type precursor.
There is no limitation on the firing conditions at the time of manufacturing the carbon fiber or the elastic modulus level of the carbon fiber.

【0016】本発明の炭素繊維強化複合材料の成形方法
に関しては、オートクレーブ法、フィラメントワインデ
ィング法、レジントランスファーモールディング法等、
公知の方法のいずれでもよい。ただし、本発明における
エポキシ樹脂の脱泡性を活かす方法としてフィラメント
ワインディングやレジントランスファーモールディング
などのように低粘度エポキシ樹脂として用いる方法が好
ましい。
The method for molding the carbon fiber reinforced composite material of the present invention includes autoclave method, filament winding method, resin transfer molding method and the like.
Any known method may be used. However, as a method of utilizing the defoaming property of the epoxy resin in the present invention, a method of using as a low viscosity epoxy resin such as filament winding or resin transfer molding is preferable.

【0017】[0017]

【実施例】以下実施例により本発明を具体的に説明す
る。尚、実施例及び比較例におけるエポキシ樹脂の調
整、炭素繊維強化複合材料の作製、並びに炭素繊維強化
複合材料の曲げ強度及びTgの測定法等は以下の方法に
拠る。
The present invention will be described in detail with reference to the following examples. The adjustment of the epoxy resin, the production of the carbon fiber reinforced composite material, and the method for measuring the bending strength and Tg of the carbon fiber reinforced composite material in the examples and comparative examples are based on the following methods.

【0018】(1)「エポキシ樹脂の調製」:ビスフェ
ノールFジグリシジルエーテル(DGEBF:油化シェ
ルエポキシ社製Ep807)200g(100重量
部)、メチルテトラヒドロ無水フタル酸(MeTHP
A)180g(90重量部)、2エチル4メチルイミダ
ゾール(2E4MZ)1.5g(0.75重量部)、高
分子ポリカルボン酸アルキルアンモニウム塩(PCA
S:BYK Chemie社製BYK−W960)をフ
ラスコ内で混合攪拌し、エポキシ樹脂を調製した。
(1) "Preparation of epoxy resin": Bisphenol F diglycidyl ether (DGEBF: Ep807 manufactured by Yuka Shell Epoxy Co., Ltd.) 200 g (100 parts by weight), methyltetrahydrophthalic anhydride (MeTHP)
A) 180 g (90 parts by weight), 2 ethyl 4-methylimidazole (2E4MZ) 1.5 g (0.75 parts by weight), polymeric polycarboxylic acid alkyl ammonium salt (PCA)
S: BYK Chemie BYK-W960) was mixed and stirred in a flask to prepare an epoxy resin.

【0019】(2)「炭素繊維強化複合材料の作製」:
このエポキシ樹脂と弾性率40トンタイプPAN系炭素
繊維(三菱レイヨン社製HR40−12M)を用いて、
フィラメントワインディング法により炭素繊維強化複合
材料を作製した。平板状の型に巻き付け、プレス機で加
圧昇温して平板型の炭素繊維強化複合材料を得た。マト
リックス樹脂の硬化条件は140℃×1hrとした。
(2) "Preparation of carbon fiber reinforced composite material":
Using this epoxy resin and 40-ton elastic type PAN-based carbon fiber (HR40-12M manufactured by Mitsubishi Rayon Co., Ltd.),
A carbon fiber reinforced composite material was produced by the filament winding method. The carbon fiber reinforced composite material was wound around a flat die and heated under pressure with a press to obtain a flat carbon fiber reinforced composite material. The curing condition of the matrix resin was 140 ° C. × 1 hr.

【0020】(3)「炭素繊維強化複合材料の曲げ強度
の測定」:炭素繊維強化複合材料の0度及び90度曲げ
強度を測定した。L/Dは90度曲げ試験で16、0度
曲げ試験で40とし、圧子先端半径3.2mmの圧子を
用いた。
(3) "Measurement of flexural strength of carbon fiber reinforced composite material": 0 degree and 90 degree flexural strength of the carbon fiber reinforced composite material was measured. L / D was 16 in the 90-degree bending test and 40 in the 0-degree bending test, and an indenter having an indenter tip radius of 3.2 mm was used.

【0021】(4)「炭素繊維強化複合材料のTg測
定」:TMAにより炭素繊維強化複合材料のTgを測定
した。測定条件は昇温速度10℃/minとした。
(4) "Tg measurement of carbon fiber reinforced composite material": Tg of the carbon fiber reinforced composite material was measured by TMA. The measurement conditions were a temperature rising rate of 10 ° C./min.

【0022】(実施例1)PCASを3g(1.5重量
部)加えてエポキシ樹脂を調製し、そのエポキシ樹脂で
炭素繊維強化複合材料を作製した。この炭素繊維強化複
合材料の0度及び90度曲げ強度、ILSSを表1に示
す。
Example 1 3 g (1.5 parts by weight) of PCAS was added to prepare an epoxy resin, and a carbon fiber reinforced composite material was produced from the epoxy resin. Table 1 shows the 0-degree and 90-degree bending strength and ILSS of this carbon fiber reinforced composite material.

【0023】(比較例1)PCASを加えない以外は実
施例1と同様にして炭素繊維強化複合材料を作製した。
この炭素繊維強化複合材料の0度及び90度曲げ強度、
ILSSを実施例1の結果と共に表1に示す。
Comparative Example 1 A carbon fiber reinforced composite material was produced in the same manner as in Example 1 except that PCAS was not added.
0 degree and 90 degree bending strength of this carbon fiber reinforced composite material,
ILSS is shown in Table 1 together with the results of Example 1.

【0024】(実施例2)実施例1においてPCASを
それぞれ1g(0.5重量部、実施例2−1)、3g
(1.5重量部、実施例2−2)、5g(2.5重量
部、実施例2−3)に変える以外は実施例1と同様にし
て3種の炭素繊維強化複合材料を作製した。これらの9
0度曲げ強度、Tgを測定した。結果を表2に示す。
Example 2 1 g of PCAS in Example 1 (0.5 parts by weight, Example 2-1), 3 g
(1.5 parts by weight of Example 2-2) Three kinds of carbon fiber reinforced composite materials were produced in the same manner as in Example 1 except that the amount was changed to 5 g (2.5 parts by weight, Example 2-3). . These 9
The 0 degree bending strength and Tg were measured. Table 2 shows the results.

【0025】(比較例2)実施例1においてPCASを
それぞれ0(0重量部、比較例2−1)、7g(3.5
重量部、比較例2−2)に変える以外は実施例1と同様
にして2種の炭素繊維強化複合材料を作製した。これら
炭素繊維強化複合材料の90度曲げ強度、Tgを実施例
2の結果と共に表2に示す。同表に示すようにPCAS
を加えることで90°曲げ強度は、無添加のものに比べ
て同等あるいは高い値を示した。またTgについては、
5g(2.5重量部)の添加までは無添加のものと同程
度であるが、7g(3.5重量部)添加すると無添加の
ものに比べて20℃も低くなっている。
(Comparative Example 2) PCAS in Example 1 was 0 (0 part by weight, Comparative Example 2-1) and 7 g (3.5 parts), respectively.
Two kinds of carbon fiber reinforced composite materials were produced in the same manner as in Example 1 except that parts by weight and Comparative Example 2-2) were used. The 90 degree bending strength and Tg of these carbon fiber reinforced composite materials are shown in Table 2 together with the results of Example 2. As shown in the table, PCAS
The 90.degree. Bending strength of the steel with the addition of B. Regarding Tg,
Up to the addition of 5 g (2.5 parts by weight), it is about the same as that without addition, but when 7 g (3.5 parts by weight) is added, it is 20 ° C. lower than that without addition.

【0026】(実施例3)実施例1においてPCASを
3g(1.5重量部)にしたエポキシ樹脂を用いて、フ
ィラメントワインディング法により円筒形マンドレルに
85度ヘリカル巻にして、円筒形炭素繊維強化複合材料
を作製した。硬化条件は平板時と同じく140℃×1h
rとした。これら円筒形炭素繊維強化複合材料の軸方向
断面を光学顕微鏡で観察したところボイドはほとんど存
在していなかった。
Example 3 Using the epoxy resin in which PCAS was 3 g (1.5 parts by weight) in Example 1, a cylindrical mandrel was helically wound by 85 degrees by a filament winding method to reinforce the cylindrical carbon fiber. A composite material was made. The curing conditions are the same as for the flat plate, 140 ℃ x 1h
r. When an axial cross section of these cylindrical carbon fiber reinforced composite materials was observed by an optical microscope, almost no voids were present.

【0027】(比較例3)実施例1においてPCASを
添加しないエポキシ樹脂を用いる以外は実施例3と同様
にして円筒形炭素繊維強化複合材料を形成した。得られ
た複合材料の軸方向断面を光学顕微鏡で観察したとこ
ろ、ボイドがかなり多く存在しているのが確認された。
Comparative Example 3 A cylindrical carbon fiber reinforced composite material was formed in the same manner as in Example 3 except that the epoxy resin containing no PCAS was used. When the axial cross section of the obtained composite material was observed with an optical microscope, it was confirmed that a large number of voids were present.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【発明の効果】本発明の炭素繊維強化複合材料は、ポリ
アクリロニトリル系プレカーサーを原料とする炭素繊維
を用いた炭素繊維強化複合材料であって、ボイドがほと
んどなく、従来品よりも高い力学特性をもった炭素繊維
強化複合材料である。
EFFECT OF THE INVENTION The carbon fiber reinforced composite material of the present invention is a carbon fiber reinforced composite material using carbon fibers made of a polyacrylonitrile precursor as a raw material, has almost no void, and has higher mechanical properties than conventional products. It is a carbon fiber reinforced composite material.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29K 105:08 307:04 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B29K 105: 08 307: 04

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ベースレジンにエポキシ樹脂、硬化剤に
酸無水物、硬化触媒にイミダゾール系触媒を用い、カル
ボキシル基を持つ高分子量界面活性剤0.1〜3重量部
を添加物として加えたエポキシ樹脂組成物をマトリック
ス樹脂とし、ポリアクリロニトリル系プレカーサーを原
料とする炭素繊維を強化繊維とした炭素繊維強化複合材
料。
1. An epoxy resin containing an epoxy resin as a base resin, an acid anhydride as a curing agent, an imidazole catalyst as a curing catalyst, and 0.1 to 3 parts by weight of a high molecular weight surfactant having a carboxyl group as an additive. A carbon fiber reinforced composite material comprising a resin composition as a matrix resin and a carbon fiber made of a polyacrylonitrile precursor as a raw material.
JP30193894A 1994-12-06 1994-12-06 Carbon fiber reinforced composite material Expired - Lifetime JP3517468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30193894A JP3517468B2 (en) 1994-12-06 1994-12-06 Carbon fiber reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30193894A JP3517468B2 (en) 1994-12-06 1994-12-06 Carbon fiber reinforced composite material

Publications (2)

Publication Number Publication Date
JPH08156115A true JPH08156115A (en) 1996-06-18
JP3517468B2 JP3517468B2 (en) 2004-04-12

Family

ID=17902922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30193894A Expired - Lifetime JP3517468B2 (en) 1994-12-06 1994-12-06 Carbon fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JP3517468B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184324A1 (en) 2019-03-08 2020-09-17 株式会社Adeka Resin composition for fiber-reinforced plastic, and fiber-reinforced plastic containing said composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184324A1 (en) 2019-03-08 2020-09-17 株式会社Adeka Resin composition for fiber-reinforced plastic, and fiber-reinforced plastic containing said composition
KR20210136985A (en) 2019-03-08 2021-11-17 가부시키가이샤 아데카 Resin composition for fiber-reinforced plastics, and fiber-reinforced plastics containing the composition

Also Published As

Publication number Publication date
JP3517468B2 (en) 2004-04-12

Similar Documents

Publication Publication Date Title
JP5403184B1 (en) Fiber reinforced composite material
EP0217657B1 (en) Low-viscosity epoxy resin, resin composition containing it, and fibre-reinforced composite material containing cured product of the composition
KR100623457B1 (en) Resin Compositions, Prepregs and Fiber Reinforced Composites for Fiber Reinforced Composites
WO2011163282A2 (en) Curable epoxy resin compositions and composites made therefrom
WO2024037194A1 (en) Epoxy resin composition having two-phase sea-island structure, composite material, and preparation methods therefor
JP5269278B2 (en) Epoxy resin composition and fiber reinforced composite material using the epoxy resin composition
JP2017226745A (en) Epoxy resin composition, and film, prepreg and fiber-reinforced plastic using the same
JP3363927B2 (en) Resin composition and prepreg
JP7139572B2 (en) Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels
JPH0445524B2 (en)
JP3517468B2 (en) Carbon fiber reinforced composite material
JPH06329763A (en) Epoxy resin composition
JP6961912B2 (en) Epoxy resin compositions, fiber reinforced composites, moldings and pressure vessels
US5128425A (en) Epoxy resin composition for use in carbon fiber reinforced plastics, containing amine or amide based fortifiers
JPS58138729A (en) Thermosetting molding composition
JP3345963B2 (en) Epoxy resin composition for yarn prepreg and yarn prepreg
JPH01185351A (en) Epoxy resin composition for carbon fiber reinforced material
RU2777895C2 (en) Epoxy binder, prepreg based on it, and product made of it
JPS61138622A (en) Fiber-reinforced composite material, and cured product produced therefrom
JPH09278914A (en) Prepreg and carbon-fiber reinforced plastics
JP4344662B2 (en) Epoxy resin composition, prepreg and molded body, and method for producing epoxy resin composition
JP3442851B2 (en) Epoxy resin composition for CFRP
JP3342709B2 (en) Epoxy resin composition and prepreg therefrom
JPH05310890A (en) Epoxy resin composition and prepreg for composite material prepared therefrom
JPS6377926A (en) Epoxy resin composition

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term