JPH0815157A - Plankton sensor in water - Google Patents
Plankton sensor in waterInfo
- Publication number
- JPH0815157A JPH0815157A JP15133194A JP15133194A JPH0815157A JP H0815157 A JPH0815157 A JP H0815157A JP 15133194 A JP15133194 A JP 15133194A JP 15133194 A JP15133194 A JP 15133194A JP H0815157 A JPH0815157 A JP H0815157A
- Authority
- JP
- Japan
- Prior art keywords
- water
- light
- plankton
- sensor
- wavelength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、水中のプランクトン量
を測定するセンサに関し、特に試料を採取せずに水中投
込み方式で水中のプランクトン量を種類別に測定する方
法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sensor for measuring the amount of plankton in water, and more particularly to a method for measuring the amount of plankton in water by a submersion system without collecting a sample.
【0002】[0002]
【従来の技術】水中のプランクトン量の測定は、水を採
取して実験室で分析して行っている。この方法では深い
箇所の水は、水面まで引上げる際の水圧の変化、空気に
触れることによる変化が避けられず、真のプランクトン
量の測定は困難である。また試料採取、運搬、測定に人
手を要し、多くの試料の測定には不向きである。2. Description of the Related Art The amount of plankton in water is measured by collecting water and analyzing it in a laboratory. With this method, it is difficult to measure the true amount of plankton for water in deep areas, where changes in water pressure when pulled up to the surface of the water and changes due to contact with air cannot be avoided. Further, it requires manpower for sampling, transporting, and measuring, and is not suitable for measuring many samples.
【0003】このため水中投込方式のプランクトンセン
サの開発が種々試されているが、現状では大型で高価の
ものしかなく、研究用に用いられているに過ぎない。前
記研究用の水中投込式のプランクトンセンサとしては、
アレック電子株式会社製のクロロテックACL−100
(商品名)があるが、空中重量は6kg余と大きく、励
起波長が410〜470nmのみであるため、クロロフ
ィル色素を有する植物プランクトンしか測定できないと
いう問題がある。For this reason, various attempts have been made to develop a plankton sensor of the water submersion type, but at present, it is large and expensive, and is only used for research. As the underwater type plankton sensor for the research,
Alec Electronics Co., Ltd. chlorotech ACL-100
Although there is a (trade name), the weight in air is as large as 6 kg or more and the excitation wavelength is only 410 to 470 nm, so that there is a problem that only phytoplankton having a chlorophyll pigment can be measured.
【0004】また近年は、養殖漁業の発展に伴い、水中
のプランクトンの発生に従って魚群を移動させることが
求められているが、この場合には、水中のプランクトン
を多くの場所で時間の経過とともに迅速に測定する必要
があり、前記大型で高価なものではこれに対応できない
という問題がある。[0004] In recent years, along with the development of aquaculture, it has been required to move the school of fish in accordance with the occurrence of plankton in the water. In this case, the plankton in the water can be quickly moved in many places over time. However, there is a problem that the large and expensive one cannot handle this.
【0005】[0005]
【発明が解決しようとする課題】本発明の目的は、軽量
で取扱い易く、安価で、かつクロロフィル色素を有する
植物プランクトン以外のプランクトンも測定できるプラ
ンクトンセンサを提供することである。SUMMARY OF THE INVENTION An object of the present invention is to provide a plankton sensor which is lightweight, easy to handle, inexpensive, and capable of measuring plankton other than phytoplankton having a chlorophyll pigment.
【0006】[0006]
【課題を解決するための手段】本発明は、発光ダイオー
ドによって励起波長が420〜520nm,540〜5
80nmおよび640〜740nmの光を順次水中に照
射し、前2者によって水中プランクトンの有する色素を
励起し、発する蛍光を640〜680nmの受光部によ
って受光して、クロロフィル色素を有する水中の植物プ
ランクトン量と水中のフィコビリン色素を有する藍藻量
とを別個に定量し、640〜740nmの照射光を後方
光散乱として前記受光部で受光し、水中の懸濁物質量を
定量することを特徴とする水中のプランクトンセンサで
ある。According to the present invention, a light emitting diode has excitation wavelengths of 420 to 520 nm and 540 to 5 nm.
The amount of phytoplankton in water having a chlorophyll pigment is obtained by sequentially irradiating water with 80 nm and 640 to 740 nm in water to excite the dye contained in the underwater plankton by the former two and receiving the emitted fluorescence by the light receiving part of 640 to 680 nm. And the amount of cyanobacteria having a phycobilin pigment in water are separately quantified, and irradiation light of 640 to 740 nm is received by the light receiving unit as back light scattering to quantify the amount of suspended solids in water. Plankton sensor.
【0007】また本発明は、水温センサと導電率測定セ
ンサと水深測定センサとを付加したことを特徴とする。Further, the present invention is characterized in that a water temperature sensor, a conductivity measuring sensor and a water depth measuring sensor are added.
【0008】[0008]
【作用】本発明に従えば、発光ダイオードによって、4
20〜520nm(第1の波長),540〜580nm
(第2の波長)および640〜740nm(第3の波
長)の光を順次水中に照射する。第1の波長によって、
水中の植物プランクトンのクロロフィル色素を励起し、
放射する640〜680nmの蛍光を受光部で受光し、
その受光量から植物プランクトン中のクロロフィルの量
を定量する。また第2の波長によって水中の藍藻のフィ
コビリン色素を励起し、放射する640〜680nmの
蛍光を受光部で受光し、その受光量から藍藻中のフィコ
ビリンの量を定量する。さらに第3の波長によって水中
の懸濁物による後方光散乱による散乱光を受光部で受光
し、その受光量から水中の懸濁物の量を定量する。According to the present invention, the light emitting diode allows
20 to 520 nm (first wavelength), 540 to 580 nm
Light of (second wavelength) and light of 640 to 740 nm (third wavelength) are sequentially irradiated into water. By the first wavelength,
Excite the chlorophyll pigment of phytoplankton in water,
The 640 to 680 nm emitted fluorescent light is received by the light receiving unit,
The amount of chlorophyll in phytoplankton is quantified from the amount of received light. Further, the phycobilin pigment of cyanobacteria in water is excited by the second wavelength, and the emitted fluorescence of 640 to 680 nm is received by the light receiving part, and the amount of phycobilin in cyanobacteria is quantified from the received light amount. Further, the light receiving section receives the scattered light due to the back light scattering by the suspension in water by the third wavelength, and the amount of the suspension in water is quantified from the received light amount.
【0009】プランクトンの発生は、水温、水中塩濃度
および水深と密接な関係があるので、水温センサ、水の
導電率センサ、水深センサをさらに付加することが好ま
しい。これらのセンサとしては、従来用いられているセ
ンサが組込まれて用いられる。Since the generation of plankton is closely related to the water temperature, the salt concentration in water and the water depth, it is preferable to additionally add a water temperature sensor, a water conductivity sensor and a water depth sensor. As these sensors, conventionally used sensors are incorporated and used.
【0010】[0010]
【実施例】以下実施例によって、本発明をより具体的に
説明する。The present invention will be described in more detail with reference to the following examples.
【0011】図1は本発明の一実施例の水中のプランク
トンセンサ(以下「本装置」という)1の全体の断面図
である。本装置1は、下部のセンサ部2と上部の制御部
3とにわかれ、両部はねじ4で螺合接続されており、外
部は堅く耐圧のあるプラスチックで構成されている。制
御部3は、ケーブル5によって図示しない地上の測定基
地に接続されている。センサ部2は、先端から水深セン
サ11、発光ダイオード12、受光部13、導電率測定
用電極14、温度センサ15がある。これらを作動させ
る電源および各センサからのデータを受入れ計算し、測
定基地からの指令に基づき、計算結果を記憶し、または
転送する中央処理装置(CPU)は、制御部3に設けら
れている。FIG. 1 is an overall sectional view of an underwater plankton sensor (hereinafter referred to as "this device") 1 according to an embodiment of the present invention. The device 1 is divided into a lower sensor part 2 and an upper control part 3, both parts of which are screw-connected with each other, and the outside is made of a rigid and pressure-resistant plastic. The control unit 3 is connected by a cable 5 to a measurement base on the ground (not shown). The sensor unit 2 includes a water depth sensor 11, a light emitting diode 12, a light receiving unit 13, a conductivity measuring electrode 14, and a temperature sensor 15 from the tip. The control unit 3 is provided with a central processing unit (CPU) that receives and calculates data from each power source and each sensor for operating these, and stores or transfers the calculation result based on a command from the measurement base.
【0012】本装置1の中心となる発光ダイオード12
は、フルカラーLEDランプで構成され、その連続スペ
クトルの波長と光の強さの関係は、図2に示される。発
光ダイオード12に電圧をかけて発光させ、その前面に
設けた光ガラスフィルタによって、水中に照射する光を
420〜520nm(第1の波長)、520〜580n
m(第2の波長)および640〜740nm(第3の波
長)の波長範囲に切換える。そして発光ダイオード12
と受光部13の前面は耐圧透明プラスチックで構成され
る。The light emitting diode 12 which is the center of the device 1.
Is composed of a full-color LED lamp, and the relationship between the wavelength of its continuous spectrum and the light intensity is shown in FIG. A voltage is applied to the light emitting diode 12 to cause it to emit light, and the light to be irradiated into the water is 420 to 520 nm (first wavelength) and 520 to 580 n by the optical glass filter provided on the front surface thereof.
m (second wavelength) and 640-740 nm (third wavelength) wavelength range. And the light emitting diode 12
The front surface of the light receiving portion 13 is made of pressure-resistant transparent plastic.
【0013】図3に示すように、第1の波長の光によっ
て励起されるクロロフィルを有する植物プランクトンが
照射範囲にあれば、640〜680nmの蛍光を放射す
る。この蛍光は、受光部13によって受光される。照射
範囲の植物プランクトンの量と放射する蛍光の量とは励
起光の強さが一定であれば、比例するので、受光量から
植物プランクトンの量が測定できる。本装置1の定量範
囲は、0〜100μg/Lであり、分解能は0.01μ
g/Lである。第2の波長の光によるフィコビリン色素
を有する藍藻の定量も同様である。これらは蛍光強度法
と呼ばれており、本発明はこれを2波長を用いて行って
いる。As shown in FIG. 3, when phytoplankton having chlorophyll excited by the light of the first wavelength is in the irradiation range, it emits fluorescence of 640 to 680 nm. This fluorescence is received by the light receiving unit 13. The amount of phytoplankton in the irradiation range is proportional to the amount of fluorescence emitted when the intensity of the excitation light is constant, so that the amount of phytoplankton can be measured from the amount of received light. The quantitative range of the device 1 is 0 to 100 μg / L, and the resolution is 0.01 μm.
g / L. The same applies to the quantification of cyanobacteria having a phycobilin pigment with light of the second wavelength. These are called fluorescence intensity methods, and the present invention does this using two wavelengths.
【0014】第3の波長の光を水中の懸濁物にあてると
同一波長の光が反射される。この反射光も光の照射範囲
にある懸濁物の量に比例するので、受光部での受光量か
ら水中の懸濁物の量が測定できる。本装置1の定量範囲
は、0〜1000FTUであり、分解能は0.1FTU
である。When the light of the third wavelength is applied to the suspension in water, the light of the same wavelength is reflected. Since this reflected light is also proportional to the amount of suspended matter in the light irradiation range, the amount of suspended matter in water can be measured from the amount of light received by the light receiving section. The quantitative range of the device 1 is 0 to 1000 FTU, and the resolution is 0.1 FTU.
Is.
【0015】またこれらの発光ダイオード12と受光部
13とによる測定範囲は、図4で斜線を付した部分で本
装置から前面約5cmである。The measuring range of the light emitting diode 12 and the light receiving portion 13 is about 5 cm in front of the device in the shaded portion in FIG.
【0016】図5は、図1の切断線V−Vによる断面図
である。ここには、3電極方式の電極14が本体の外面
に向いて設けられており、これによって水の導電率が、
1〜4%,0.0005%分解能、0.001%精度で
測定される。また本体の外面には、サーミスタ方式の温
度計15が設けられ、水温が−5〜35℃の範囲で、
0.002degの分解能で、0.01degの精度で
求められる。FIG. 5 is a sectional view taken along the line VV of FIG. Here, a three-electrode type electrode 14 is provided so as to face the outer surface of the main body.
It is measured with 1 to 4%, 0.0005% resolution and 0.001% accuracy. A thermistor type thermometer 15 is provided on the outer surface of the main body, and the water temperature is in the range of -5 to 35 ° C.
It can be obtained with a resolution of 0.002 deg and an accuracy of 0.01 deg.
【0017】本装置1の先端には、ストレインゲージ方
式の水深計が設けられ、0〜70m,0〜350m,0
〜700m,0〜2100mまたは0〜3500mの範
囲の水深に切換えて、水深が0.01%FSの分解能で
0.1%FS直線性で測定される。A strain gauge type water depth gauge is provided at the tip of the present apparatus 1, and the strain gauge type water gauge is 0 to 70 m, 0 to 350 m, 0.
The water depth is measured with 0.1% FS linearity with a resolution of 0.01% FS, switching to a water depth in the range of -700 m, 0-2100 m or 0-3500 m.
【0018】なお測定は、内蔵された時計によって1秒
またはそれ以上の指示する間隔毎に行われ、測定基地に
伝達される。これによって養魚場周辺のプランクトンが
植物性プランクトンと藍藻とに分けて、また懸濁物質
量、水温、導電率および水深も同時に時間経過とともに
測定基地に伝達され、魚群の移動を早めに行うことがで
きる。また測定基地から遠く離れた場所のデータは伝達
されることなく本装置1内に記憶される。The measurement is carried out by the built-in clock at intervals designated by one second or more and transmitted to the measurement base. As a result, the plankton around the fish farm is divided into phytoplankton and cyanobacteria, and the amount of suspended solids, water temperature, conductivity, and water depth are simultaneously transmitted to the measurement base over time, allowing quick movement of the school of fish. it can. In addition, data at a location far away from the measurement base is stored in the device 1 without being transmitted.
【0019】またここで選択された第1の波長および第
2の波長は、表1に示すように水のラマン散乱による妨
害のない範囲である。Further, the first wavelength and the second wavelength selected here are within a range where there is no interference due to Raman scattering of water as shown in Table 1.
【0020】[0020]
【表1】 [Table 1]
【0021】さらに発光ダイオードを光源として用いる
ので本装置1は、1kg程度に軽量で小型化でき、水
温、導電率、水深および懸濁物の測定が同時にできる。Further, since the light emitting diode is used as the light source, the present apparatus 1 can be lightened to about 1 kg and downsized, and water temperature, conductivity, water depth and suspended matter can be measured simultaneously.
【0022】[0022]
【発明の効果】以上のように本発明によれば、発光ダイ
オードによって420〜520nmおよび540〜58
0nmの波長を水中に照射して、水中のプランクトンを
クロロフィル色素を有する植物プランクトンとフィコビ
リン色素を有する藍藻とに分けて個別に定量でき、しか
も軽量で小型化できる。またプランクトンの測定と密接
な関係のある水温、導電率、水深、懸濁物の量が同時に
測定できる。As described above, according to the present invention, a light emitting diode can be used in the range of 420 to 520 nm and 540 to 58 nm.
By irradiating water with a wavelength of 0 nm, the plankton in the water can be separately quantified by dividing it into phytoplankton having a chlorophyll pigment and cyanobacteria having a phycobilin pigment, and the weight and size can be reduced. In addition, water temperature, conductivity, water depth, and the amount of suspended matter, which are closely related to the plankton measurement, can be measured at the same time.
【図1】本発明の一実施例の断面図である。FIG. 1 is a sectional view of an embodiment of the present invention.
【図2】本発明に用いる発光ダイオードの波長と光の強
さの関係を示すグラフである。FIG. 2 is a graph showing a relationship between wavelength and light intensity of a light emitting diode used in the present invention.
【図3】植物のプランクトン21に光が照射したとき、
蛍光を発する状態を説明する説明図である。[Fig. 3] When the plankton 21 of a plant is irradiated with light,
It is explanatory drawing explaining the state which emits fluorescence.
【図4】本装置によって測定される範囲を示す説明図で
ある。FIG. 4 is an explanatory diagram showing a range measured by the device.
【図5】図1の切断面線V−Vによる断面図である。5 is a cross-sectional view taken along the section line VV in FIG.
1 プランクトンセンサ(本装置) 2 センサ部 3 制御部 5 ケーブル 11 水深センサ 12 発光ダイオード 13 受光部 14 電極 15 温度センサ 1 Plankton sensor (this device) 2 Sensor section 3 Control section 5 Cable 11 Water depth sensor 12 Light emitting diode 13 Light receiving section 14 Electrode 15 Temperature sensor
Claims (2)
0〜520nm,540〜580nmおよび640〜7
40nmの光を順次水中に照射し、前2者によって水中
プランクトンの有する色素を励起し、発する蛍光を64
0〜680nmの受光部によって受光して、クロロフィ
ル色素を有する水中の植物プランクトン量と水中のフィ
コビリン色素を有する藍藻量とを別個に定量し、640
〜740nmの照射光を後方光散乱として前記受光部で
受光し、水中の懸濁物質量を定量することを特徴とする
水中のプランクトンセンサ。1. A light emitting diode having an excitation wavelength of 42
0-520 nm, 540-580 nm and 640-7
Light of 40 nm is sequentially irradiated into water, and the former two excite the dye contained in the plankton in water to emit fluorescence of 64 nm.
The amount of phytoplankton in water having a chlorophyll pigment and the amount of cyanobacteria having a phycobilin pigment in water were separately quantified by receiving light with a light receiving unit of 0 to 680 nm, 640
An underwater plankton sensor, characterized in that irradiation light of ˜740 nm is received by the light receiving unit as backscattering light and the amount of suspended matter in water is quantified.
定センサとを付加したことを特徴とする請求項1記載の
水中のプランクトンセンサ。2. The underwater plankton sensor according to claim 1, further comprising a water temperature sensor, a conductivity measuring sensor and a water depth measuring sensor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15133194A JPH0815157A (en) | 1994-07-01 | 1994-07-01 | Plankton sensor in water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15133194A JPH0815157A (en) | 1994-07-01 | 1994-07-01 | Plankton sensor in water |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0815157A true JPH0815157A (en) | 1996-01-19 |
Family
ID=15516258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15133194A Pending JPH0815157A (en) | 1994-07-01 | 1994-07-01 | Plankton sensor in water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0815157A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005030839A (en) * | 2003-07-09 | 2005-02-03 | Dkk Toa Corp | Water quality measuring method and device |
WO2006103932A1 (en) * | 2005-03-29 | 2006-10-05 | National University Corporation Tokyo University Of Marine Science And Technology | Plant plankton distribution measuring method and device therefor |
JP2007060989A (en) * | 2005-08-31 | 2007-03-15 | Kokusai Kako Kk | Fish-luring lamp device |
KR100752158B1 (en) * | 2006-07-04 | 2007-08-24 | 주식회사 앤드 | Culture method of photosynthetic bacteria include bacteriochlorophyll using infrared led as luminous source |
WO2013084444A1 (en) * | 2011-12-05 | 2013-06-13 | リオン株式会社 | Biological particle counter, biological particle counting method, dialysate monitoring system, and water purification monitoring system |
JP2013117466A (en) * | 2011-12-05 | 2013-06-13 | Rion Co Ltd | Viable particle counter and viable particle counting method |
JP2013144057A (en) * | 2012-01-16 | 2013-07-25 | Rion Co Ltd | Biological particle counter for dialysis, biological particle counting method for dialysis, and dialysate monitoring system |
JP2013148391A (en) * | 2012-01-17 | 2013-08-01 | Rion Co Ltd | Viable particle counter for purified water, viable particle counting method for purified water, and purified water monitoring system |
ITRM20130296A1 (en) * | 2013-05-20 | 2014-11-21 | Enea Agenzia Naz Per Le Nuove Tecnologie | UNDERWATER DEVICE FOR DETECTION OF NATURAL AND / OR ANTHROPICAL SUBSTANCES IN WATER. |
JP2014233203A (en) * | 2013-05-30 | 2014-12-15 | 日本電信電話株式会社 | Concentration determination method and system of microalgae or metabolite |
WO2016056405A1 (en) * | 2014-10-10 | 2016-04-14 | アズビル株式会社 | Device for detection of fluorescence in liquid and method for detection of fluorescence in liquid |
JP2016080673A (en) * | 2014-10-10 | 2016-05-16 | アズビル株式会社 | In-liquid fluorescence detector and in-liquid fluorescence detection method |
EP3553164A4 (en) * | 2016-12-09 | 2020-07-15 | Satake Corporation | Method for inspecting microorganisms, and apparatus for said method |
KR102141531B1 (en) * | 2020-05-06 | 2020-08-05 | 대한민국 | Apparatus And Method For Detecting Marine Red Tide |
CN115161202A (en) * | 2022-07-12 | 2022-10-11 | 中国科学院水生生物研究所 | In-situ culture method and culture system for plankton |
-
1994
- 1994-07-01 JP JP15133194A patent/JPH0815157A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005030839A (en) * | 2003-07-09 | 2005-02-03 | Dkk Toa Corp | Water quality measuring method and device |
WO2006103932A1 (en) * | 2005-03-29 | 2006-10-05 | National University Corporation Tokyo University Of Marine Science And Technology | Plant plankton distribution measuring method and device therefor |
JPWO2006103932A1 (en) * | 2005-03-29 | 2008-09-04 | 国立大学法人東京海洋大学 | Phytoplankton distribution measuring method and apparatus |
JP4904505B2 (en) * | 2005-03-29 | 2012-03-28 | 国立大学法人東京海洋大学 | Phytoplankton distribution measuring method and apparatus |
JP2007060989A (en) * | 2005-08-31 | 2007-03-15 | Kokusai Kako Kk | Fish-luring lamp device |
JP4630160B2 (en) * | 2005-08-31 | 2011-02-09 | 国際化工株式会社 | Fish collection device |
KR100752158B1 (en) * | 2006-07-04 | 2007-08-24 | 주식회사 앤드 | Culture method of photosynthetic bacteria include bacteriochlorophyll using infrared led as luminous source |
JP2013117466A (en) * | 2011-12-05 | 2013-06-13 | Rion Co Ltd | Viable particle counter and viable particle counting method |
WO2013084444A1 (en) * | 2011-12-05 | 2013-06-13 | リオン株式会社 | Biological particle counter, biological particle counting method, dialysate monitoring system, and water purification monitoring system |
US9267845B2 (en) | 2011-12-05 | 2016-02-23 | Rion Co., Ltd. | Apparatus for counting viable particles in liquid in real time, dialysis fluid monitoring system and purified water monitoring system using the apparatus, and method of counting viable particles in liquid in real time |
JP2013144057A (en) * | 2012-01-16 | 2013-07-25 | Rion Co Ltd | Biological particle counter for dialysis, biological particle counting method for dialysis, and dialysate monitoring system |
JP2013148391A (en) * | 2012-01-17 | 2013-08-01 | Rion Co Ltd | Viable particle counter for purified water, viable particle counting method for purified water, and purified water monitoring system |
ITRM20130296A1 (en) * | 2013-05-20 | 2014-11-21 | Enea Agenzia Naz Per Le Nuove Tecnologie | UNDERWATER DEVICE FOR DETECTION OF NATURAL AND / OR ANTHROPICAL SUBSTANCES IN WATER. |
JP2014233203A (en) * | 2013-05-30 | 2014-12-15 | 日本電信電話株式会社 | Concentration determination method and system of microalgae or metabolite |
WO2016056405A1 (en) * | 2014-10-10 | 2016-04-14 | アズビル株式会社 | Device for detection of fluorescence in liquid and method for detection of fluorescence in liquid |
JP2016080673A (en) * | 2014-10-10 | 2016-05-16 | アズビル株式会社 | In-liquid fluorescence detector and in-liquid fluorescence detection method |
EP3553164A4 (en) * | 2016-12-09 | 2020-07-15 | Satake Corporation | Method for inspecting microorganisms, and apparatus for said method |
KR102141531B1 (en) * | 2020-05-06 | 2020-08-05 | 대한민국 | Apparatus And Method For Detecting Marine Red Tide |
CN115161202A (en) * | 2022-07-12 | 2022-10-11 | 中国科学院水生生物研究所 | In-situ culture method and culture system for plankton |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0815157A (en) | Plankton sensor in water | |
Kühl | Optical microsensors for analysis of microbial communities | |
US7209223B1 (en) | Optical device for measuring optical properties of a sample and method relating thereto | |
JP3819032B2 (en) | Imaging and spectroscopic analysis based on fluorescence lifetime in tissues and other random media | |
US8666113B2 (en) | Spectral unmixing for visualization of samples | |
McGinty et al. | In vivo fluorescence lifetime optical projection tomography | |
CN104764684B (en) | For improving the devices, systems, and methods of the measuring accuracy in particle imaging equipment by using light distribution | |
CN103403532A (en) | Photo-coupled data acquisition system and method | |
US20100207036A1 (en) | Optical imaging device | |
Kim et al. | Nonspectroscopic imaging for quantitative chlorophyll sensing | |
CN108489962B (en) | Biological tissue detection device based on spatial migration Raman spectroscopy | |
US20190137385A1 (en) | Method and apparatus for measuring the water concentration in a light-diffusing material | |
US3649833A (en) | In situ fluorometer using a synchronous detector | |
US20210128026A1 (en) | Apparatus and method for assessment of cancer margin | |
USRE41682E1 (en) | Apparatus and method for direct measurement of absorption and scattering coefficients in situ | |
JP4823064B2 (en) | Method and apparatus for backscattering spectroscopy | |
JP6305623B2 (en) | Optical composition analysis of mixtures | |
Gastoldi et al. | (Bio) sensors applied to coral reefs’ health monitoring: a critical overview | |
WO2019043408A1 (en) | Chlorophyll absorption meter | |
Morsin et al. | Development of plasmonic sensor for detection of toxic materials | |
CN206540830U (en) | Microminiature laser fluorescence spectrum instrument | |
Ostrowska | Dependence between the quantum yield of chlorophyll a fluorescence in marine phytoplankton and trophicity in low irradiance level | |
Hattery et al. | Fluorescence measurement of localized deeply embedded physiological processes | |
Shao et al. | Design and quantitative analysis of cancer detection system based on fluorescence immune analysis | |
Singh et al. | Plant Disease Detection with the Help of Advanced Imaging Sensors |