JP4904505B2 - Phytoplankton distribution measuring method and apparatus - Google Patents

Phytoplankton distribution measuring method and apparatus Download PDF

Info

Publication number
JP4904505B2
JP4904505B2 JP2007510379A JP2007510379A JP4904505B2 JP 4904505 B2 JP4904505 B2 JP 4904505B2 JP 2007510379 A JP2007510379 A JP 2007510379A JP 2007510379 A JP2007510379 A JP 2007510379A JP 4904505 B2 JP4904505 B2 JP 4904505B2
Authority
JP
Japan
Prior art keywords
light receiving
probe
phytoplankton
laser
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007510379A
Other languages
Japanese (ja)
Other versions
JPWO2006103932A1 (en
Inventor
秀勝 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Marine Science and Technology NUC
Original Assignee
Tokyo University of Marine Science and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Marine Science and Technology NUC filed Critical Tokyo University of Marine Science and Technology NUC
Priority to JP2007510379A priority Critical patent/JP4904505B2/en
Publication of JPWO2006103932A1 publication Critical patent/JPWO2006103932A1/en
Application granted granted Critical
Publication of JP4904505B2 publication Critical patent/JP4904505B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6473In-line geometry
    • G01N2021/6476Front end, i.e. backscatter, geometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample

Description

本発明は、水中に測定装置を自由落下させて植物プランクトンの分布を測定する植物プランクトンの分布計測方法及びその装置に関する。   The present invention relates to a phytoplankton distribution measuring method and apparatus for measuring a phytoplankton distribution by allowing a measuring device to freely fall in water.

海水の温暖化に伴い、鞭藻類、鞭毛類、繊毛類、珪藻類等の植物プランクトンが大量に増殖して、魚介類や海草に多大な被害を与える赤潮の発生が頻発している。近年では魚介類の養殖が盛んになっているため、赤潮の発生を早期に知って、魚介類を移動させることが必要となっている。   With the warming of seawater, phytoplankton such as dinoflagellates, flagellates, cilia, and diatoms proliferate in large quantities, and red tides that cause great damage to seafood and seaweed frequently occur. In recent years, the cultivation of seafood has become popular, so it is necessary to know the occurrence of red tide at an early stage and move the seafood.

このため、水中に投げ込んで自由落下させ、水中における実際の植物プランクトンの分布状況を測定する水中投入式プランクトン検出器が種々提案されている。   For this reason, various types of submerged plankton detectors have been proposed which are thrown into the water and allowed to fall freely and measure the actual phytoplankton distribution in the water.

従来、計測器の側面に発光ダイオードと受光部とを設け、発光ダイオードから水中プランクトンの色素を励起する波長の光を照射し、この光を受けて水中プランクトンが発する蛍光を受光部で受光し、受光量によって水中プランクトンの量を定量する水中のプランクトンセンサが知られている(特開平8−15157号公報参照)。   Conventionally, a light emitting diode and a light receiving unit are provided on the side surface of the measuring instrument, and light having a wavelength that excites the pigment of the underwater plankton is emitted from the light emitting diode, and the light emitted from the underwater plankton is received by the light receiving unit. An underwater plankton sensor that quantifies the amount of underwater plankton based on the amount of received light is known (see Japanese Patent Application Laid-Open No. 8-15157).

しかし、上記従来のプランクトンセンサは、先端面が陥没した筒状に形成されているので、水中を落下する際に周辺に乱流が発生し、このため、植物プランクトンが乱れて正確な分布状況を計測できない。   However, the above-mentioned conventional plankton sensor is formed in a cylindrical shape with the tip surface depressed, so that turbulent flow is generated in the surroundings when falling in the water, and therefore, the phytoplankton is disturbed and an accurate distribution situation is obtained. Cannot measure.

また、センサ部には、拡散光を照射する発光ダイオードと受光領域が遠ざかるほど広がる受光部とを互いに近づけて配置してあるので、計測領域を正確に限定しにくく、そのため、センサ部の近くに分布した植物プランクトンが発した蛍光も、センサ部から遠くに分布した植物プランクトンが発した蛍光も検出してしまい、計測結果が不正確になりやすい。   In addition, since the light emitting diode that irradiates the diffused light and the light receiving portion that spreads as the light receiving region moves away from each other are arranged close to each other in the sensor unit, it is difficult to accurately define the measurement region. Both the fluorescence emitted by the distributed phytoplankton and the fluorescence emitted by the phytoplankton distributed far from the sensor unit are detected, and the measurement result tends to be inaccurate.

そこで、計測領域を限定するために、検出器本体の側面に受光窓を設けると共に、その受光窓を囲んで複数の送光窓を環状に設け、送光窓の奥に発光ダイオードを、その光照射方向が受光孔の中心線と交差するよう配置した蛍光検出器が提案されている(特開平8−261934号公報参照)。   Therefore, in order to limit the measurement area, a light receiving window is provided on the side surface of the detector body, a plurality of light transmitting windows are provided in an annular shape surrounding the light receiving window, and a light emitting diode is provided behind the light transmitting window. A fluorescence detector has been proposed in which the irradiation direction intersects with the center line of the light receiving hole (see Japanese Patent Application Laid-Open No. 8-261934).

しかし、この蛍光検出器も、発光部として通常の発光ダイオードを用いているので、照射した光が拡散し、受光部の受光領域と重なる領域(すなわち計測領域)が広くなるため、限定された領域における植物プランクトンの分布密度を正確に計測することができず、どうしても測定精度が粗くなっている。   However, since this fluorescent detector also uses a normal light emitting diode as the light emitting part, the irradiated light diffuses and the area that overlaps the light receiving area of the light receiving part (that is, the measurement area) is widened. The distribution density of phytoplankton in Japan cannot be measured accurately, and the measurement accuracy is inevitably coarse.

また、この蛍光検出器は円筒形のプローブに搭載されているので、投入地点周辺の水流の乱れを防ぐことはできない。   In addition, since this fluorescence detector is mounted on a cylindrical probe, it is not possible to prevent disturbance of the water flow around the injection point.

本発明の目的は、装置投入個所の水流が乱れにくく、計測範囲を狭く規定することができるため、自然に近い状態できめ細かい計測が可能な、植物プランクトンの分布計測装置を提供することにある。 An object of the present invention is hardly disturbed water flow device is turned point, it is possible to define narrow the measurement range, which can be fine measurement in natural state near, to provide a distribution meter HakaSo location phytoplankton is there.

本発明の植物プランクトンの分布計測方法は、下端部が流線型で、レーザー発光部及び該レーザー発光部の下方に配置された受光部が内部に搭載されたプローブを、直立状態で水中を自由落下させ、落下中に、前記レーザー発光部によりクロロフィル色素を励起する波長のパルスレーザー光を前記プローブの側面から水中へ、前記受光部の受光領域と交差する角度で斜め下方に照射し、前記パルスレーザー光を受けて、前記受光部の受光領域とレーザー発光部の照射領域とが交差する交差領域の植物プランクトンが発する蛍光を前記受光部で検出し、前記受光部で検出した受光量によって植物プランクトンの量を水深方向に測定し、前記レーザー発光部のプローブに対する傾斜角度を調整することにより、前記交差領域の前記プローブからの距離を調整する。 Distribution measuring method of the phytoplankton of the invention, at lower end streamlined, the probe light receiving portion disposed below the laser emission unit and the laser light emitting portion is mounted therein, to fall freely water upright during dropping, the pulsed laser beam having a wavelength that excites the by land chlorophyll dye to said laser light emitting portion, into the water from the side of the probe, is irradiated obliquely downward at an angle that intersects the light receiving region of the light receiving portion, Upon receiving the pulsed laser light, the light emitted from the phytoplankton in the intersecting region where the light receiving region of the light receiving unit and the irradiation region of the laser light emitting unit intersect is detected by the light receiving unit , and the amount of received light detected by the light receiving unit by the amount of phytoplankton measured depth direction to adjust the angle of inclination with respect to the probe of the laser light emitting portion, from the probe of the intersection region Distance to adjust.

本発明の植物プランクトンの分布計測装置は、水中に直立した状態で落下する、下端部が流線型のプローブと、前記プローブ内に配置され、該プローブの側面から水中へ、クロロフィル色素を励起する波長のパルスレーザー光を斜め下方に所定周期で照射するレーザー発光部と、前記プローブ内において前記レーザー発光部の下方に配置され、前記プローブの側面から入光する蛍光を検出する受光部とを備え、前記受光部の受光領域に対して、前記レーザー発光部のレーザー光照射方向を交差させ、前記レーザー発光部から照射されるパルスレーザー光を受けて、前記受光部の受光領域とレーザー発光部の照射領域とが交差する交差領域の植物プランクトンが発する蛍光を前記受光部で受光し、その受光量によって植物プランクトンの量を水深方向に測定し、前記レーザー発光部のプローブに対する傾斜角度を調整可能として、前記交差領域の、前記プローブからの距離を調整可能としてある。 The phytoplankton distribution measuring apparatus according to the present invention falls in an upright state in water, has a streamlined probe at the lower end , and is disposed in the probe , and has a wavelength that excites chlorophyll dye from the side of the probe into the water. A laser light emitting unit that irradiates pulse laser light obliquely downward at a predetermined period; and a light receiving unit that is disposed below the laser light emitting unit in the probe and detects fluorescence incident from a side surface of the probe, and The light receiving region of the light receiving unit intersects the laser light irradiation direction of the laser light emitting unit, receives the pulse laser light emitted from the laser light emitting unit , and receives the light receiving region of the light receiving unit and the irradiation region of the laser light emitting unit. DOO has received the phytoplankton emits fluorescence intersecting region that intersects with the light receiving unit, the water the amount of phytoplankton by the received light amount Measured in the direction, as adjustable inclination angle with respect to the probe of the laser light emitting portion is of the intersection region, the distance from the probe be adjustable.

本発明によれば、プローブの下端部を流線型としたので、計測個所の水流が乱れにくく、このため、自然に近い状態で植物プランクトンの分布を計測することが可能となり、計測精度が増す。   According to the present invention, since the lower end portion of the probe is streamlined, the water flow at the measurement site is not easily disturbed, so that the distribution of phytoplankton can be measured in a state close to nature, and the measurement accuracy is increased.

また、発光部から集束性の高いパルスレーザー光を、受光部の受光領域と交差するよう照射するので、測定領域を非常に限定して狭くでき、この結果、各水深毎の植物プランクトンの分布状況をきめ細かく正確に測定できる。   In addition, highly focused pulsed laser light is emitted from the light emitting part so as to intersect the light receiving area of the light receiving part, so that the measurement area can be very limited and narrowed. As a result, the distribution of phytoplankton at each water depth Can be measured precisely and accurately.

本発明による植物プランクトンの分布計測装置の一実施例を組み込んだ水中測定装置の断面図である。It is sectional drawing of the underwater measuring apparatus incorporating one Example of the phytoplankton distribution measuring apparatus by this invention. 図1の水中測定装置の下端に取り付けられた植物プランクトンの分布計測装置の断面図である。It is sectional drawing of the distribution measuring apparatus of the phytoplankton attached to the lower end of the underwater measuring apparatus of FIG. 図2の植物プランクトンの分布計測装置の要部断面図である。It is principal part sectional drawing of the distribution measuring apparatus of the phytoplankton of FIG. 図2の植物プランクトンの分布計測装置を取り付けた実験用水中測定装置の断面図である。It is sectional drawing of the underwater measuring device for experiment which attached the distribution measuring device of the phytoplankton of FIG. 図4の実験用水中測定装置の水温センサが検知した水温と水槽に満たした水の温度との偏差の経時変化を示す図である。It is a figure which shows the time-dependent change of the deviation of the water temperature which the water temperature sensor of the experimental underwater measuring apparatus of FIG. 4 detected, and the temperature of the water with which the water tank was filled. 図4の実験用水中測定装置に取り付けた植物プランクトンの分布計測装置における受光部が検出した蛍光光度の経時変化を示す図である。It is a figure which shows the time-dependent change of the fluorescence intensity which the light-receiving part detected in the distribution measurement apparatus of the phytoplankton attached to the underwater measurement apparatus for experiment of FIG. 測定した温度(図5)及び蛍光光度(図6)のパワースペクトルを示す図である。It is a figure which shows the power spectrum of the measured temperature (FIG. 5) and fluorescence intensity (FIG. 6).

以下、本発明の実施例を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に示すように、本発明の植物プランクトンの分布計測装置1は、水中に投入されて自由落下する水中測定装置2の下端に、その軸方向に沿って設置される。水中測定装置2の上部には、水中を下降する際にバランスをとり、下降速度を調節するために浮体3が装着されている。   As shown in FIG. 1, the phytoplankton distribution measuring device 1 of the present invention is installed along the axial direction at the lower end of an underwater measuring device 2 which is thrown into water and freely falls. A floating body 3 is attached to the upper part of the underwater measuring device 2 in order to balance when descending underwater and adjust the descending speed.

また、水中測定装置2の下端には、分布計測装置1のほかに、深度センサ、温度計等の他のセンサ4、及び、分布計測装置1や他のセンサ4より長い保護棒5が取り付けられる。保護棒5は、分布計測装置1や他のセンサ4が落下中に物体と衝突して破損するのを防ぐためのものである。なお、他のセンサ4及び保護棒5は、全て周辺の水流を乱さないように先端が流線型となっている。   In addition to the distribution measurement device 1, other sensors 4 such as a depth sensor and a thermometer, and a protective rod 5 longer than the distribution measurement device 1 and other sensors 4 are attached to the lower end of the underwater measurement device 2. . The protective bar 5 is for preventing the distribution measuring device 1 and other sensors 4 from colliding with an object and being damaged during dropping. The other sensors 4 and protective rods 5 are all streamlined at their tips so as not to disturb the surrounding water flow.

植物プランクトンの分布計測装置1は、図2に示すように、水中測定装置2の下端に取り付けられたパイプ状の支持部6と、支持部6の下端に装着されたレーザー蛍光プローブ7とから構成され、レーザー蛍光プローブ7の内部には、レーザー発光部8、受光部9及び制御回路(図示せず)が収納されている。   As shown in FIG. 2, the phytoplankton distribution measuring device 1 includes a pipe-like support portion 6 attached to the lower end of the underwater measurement device 2 and a laser fluorescent probe 7 attached to the lower end of the support portion 6. In the interior of the laser fluorescent probe 7, a laser light emitting unit 8, a light receiving unit 9, and a control circuit (not shown) are accommodated.

レーザー蛍光プローブ7は、下端部が流線型の筒体より成り、その側面に発光窓10と受光窓11とが上下に並んで形成される。また、発光窓10の内側にはレーザー発光部8が設置され、受光窓11の内側には受光部9が設置される。   The laser fluorescent probe 7 is formed of a streamlined cylinder at the lower end, and a light emitting window 10 and a light receiving window 11 are formed side by side on the side thereof. A laser light emitting unit 8 is installed inside the light emitting window 10, and a light receiving unit 9 is installed inside the light receiving window 11.

図3に示すように、レーザー発光部8は、放熱ハウジング12,レーザー発光素子13及び集光レンズ14から成る。   As shown in FIG. 3, the laser light emitting unit 8 includes a heat radiating housing 12, a laser light emitting element 13, and a condenser lens 14.

レーザー蛍光プローブ7の発光窓10に集光レンズ14が設置され、その奥に放熱ハウジング12が配設され、放熱ハウジング12内にレーザー発光素子13が照射部を集光レンズ14に向けて収納されている。   A condensing lens 14 is installed in the light emitting window 10 of the laser fluorescent probe 7, a heat radiating housing 12 is disposed in the back thereof, and a laser light emitting element 13 is accommodated in the heat radiating housing 12 with the irradiation part facing the condensing lens 14. ing.

レーザー発光素子13で発振したレーザー光は集光レンズ14により直径2mm程度に集束され、レーザー発光部8からは、植物プランクトンのクロロフィル色素を励起する波長407nmにピークを持つパルスレーザー光を、パルス幅2.778×10-4 秒、パルス周期5.556×10-4 秒で照射するようになっている。 The laser light oscillated by the laser light emitting element 13 is focused to a diameter of about 2 mm by the condenser lens 14, and a pulse laser light having a peak at a wavelength of 407 nm for exciting the chlorophyll pigment of phytoplankton is emitted from the laser light emitting unit 8. Irradiation is performed at 2.778 × 10 −4 seconds and a pulse period of 5.556 × 10 −4 seconds.

受光部9は、フィルタ15と、受光素子16とを備える。フィルタ15は、波長610nm以上の光を選択的に透過し、受光窓11にはめ込んだ透明耐圧プラスチック板18の内面に重ねて設置され、その背後に受光素子16が受光面を受光窓11に向けて設置される。   The light receiving unit 9 includes a filter 15 and a light receiving element 16. The filter 15 selectively transmits light having a wavelength of 610 nm or more and is placed on the inner surface of the transparent pressure-resistant plastic plate 18 fitted in the light receiving window 11. The light receiving element 16 faces the light receiving surface toward the light receiving window 11 behind the filter 15. Installed.

また、受光部9の受光領域は、水中測定装置2の中心軸に直交する軸aを中心として、受光窓11から遠ざかるほど広がっており、受光領域の頂部の角度は20度となっている。   Further, the light receiving region of the light receiving unit 9 spreads away from the light receiving window 11 with the axis a orthogonal to the central axis of the underwater measuring device 2 as the center, and the top angle of the light receiving region is 20 degrees.

そして、受光部9の受光領域に対して、レーザー発光部8から照射される所定幅のパルスレーザー光pが交差することで、その交差した領域(図3の斜線で示す)が測定領域bとなる。   Then, the pulsed laser beam p having a predetermined width irradiated from the laser light emitting unit 8 intersects the light receiving region of the light receiving unit 9, so that the intersected region (indicated by the oblique lines in FIG. 3) is the measurement region b. Become.

レーザー発光部8はプローブ7に、プローブ7の中心軸(水中測定装置2の中心軸に平行)に対して傾斜角度調整可能に取り付けられている。そのため、受光部9の受光領域の中心軸aとレーザー発光部8から照射されるパルスレーザー光pとの交差角度は変更可能である。図3に示すように、パルスレーザー光pの照射方向をプローブ7の中心軸に対してほぼ45°下向きに調整すると、プローブ7に比較的接近した位置に測定領域b(受光部9の受光領域とレーザー発光部8の照射領域とが交差する領域)が形成され、かつ分布計測装置1を水から引き上げた時にパルスレーザー光pが人の目を照射して障害を与える等の事故を防ぐことができる。この測定領域bの、プローブ7からの距離は、レーザー発光部8の取り付け角度を調整することによって変更することができる。   The laser emission unit 8 is attached to the probe 7 so that the tilt angle can be adjusted with respect to the central axis of the probe 7 (parallel to the central axis of the underwater measuring device 2). Therefore, the intersection angle between the central axis a of the light receiving region of the light receiving unit 9 and the pulsed laser light p emitted from the laser light emitting unit 8 can be changed. As shown in FIG. 3, when the irradiation direction of the pulse laser beam p is adjusted downward by approximately 45 ° with respect to the central axis of the probe 7, the measurement region b (the light receiving region of the light receiving unit 9) is positioned relatively close to the probe 7. And a region where the irradiation region of the laser light emitting unit 8 intersects), and when the distribution measuring device 1 is lifted from the water, the pulse laser beam p irradiates the human eyes and prevents an accident. Can do. The distance of the measurement region b from the probe 7 can be changed by adjusting the mounting angle of the laser emitting unit 8.

植物プランクトンの分布は次のように測定する。   The distribution of phytoplankton is measured as follows.

浮体3の上端にケーブル17を付けて水中測定装置2を水中に投入すると、水中測定装置2は、植物プランクトンの分布計測装置1及び他のセンサ4を下にして、直立状態で水中を自然落下する。   When the cable 17 is attached to the upper end of the floating body 3 and the underwater measuring device 2 is thrown into the water, the underwater measuring device 2 naturally falls in water in an upright state with the phytoplankton distribution measuring device 1 and other sensors 4 facing down. To do.

落下中にレーザー発光部8で発信されたパルスレーザー光pが、レーザー蛍光プローブ7の側面から水中へ斜め下方に向けて照射される。   The pulsed laser light p transmitted from the laser emission unit 8 during the fall is irradiated obliquely downward into the water from the side surface of the laser fluorescent probe 7.

植物プランクトンのクロロフィル色素は、波長430nm程度の励起光によって蛍光を発するので、レーザー発光部8の照射範囲にある植物プランクトンは、照射されたパルスレーザー光pを受けてパルスレーザー光pと同じ周期で蛍光を明滅させる。   Since the chlorophyll pigment of phytoplankton emits fluorescence by excitation light having a wavelength of about 430 nm, the phytoplankton in the irradiation range of the laser emission unit 8 receives the irradiated pulse laser beam p and has the same period as the pulse laser beam p. Flickers fluorescence.

測定領域bに分布する植物プランクトンがパルスレーザー光pを受けて発する蛍光は、レーザー蛍光プローブ7の側面に形成された受光窓11に達する。受光窓11を通過する蛍光の波長は677nmなので、受光窓11の内面に設置されたフィルタ15を透過して入光し、受光素子16により検出される。波長が600nmに達しない光はフィルタ15で遮断され、受光素子16で検出されない。   The fluorescence emitted by the phytoplankton distributed in the measurement region b upon receiving the pulsed laser light p reaches the light receiving window 11 formed on the side surface of the laser fluorescent probe 7. Since the wavelength of fluorescence passing through the light receiving window 11 is 677 nm, the light passes through the filter 15 installed on the inner surface of the light receiving window 11 and is detected by the light receiving element 16. Light whose wavelength does not reach 600 nm is blocked by the filter 15 and is not detected by the light receiving element 16.

受光素子16が検出した蛍光は、制御回路において検波され、レーザー発光部8から照射されるパルスレーザー光pと同じ周期で明滅する光のみが、測定対象の蛍光であると識別され、制御回路から信号として取り出され、信号処理コンピュータによって定量される。   The fluorescence detected by the light receiving element 16 is detected by the control circuit, and only the light that blinks in the same cycle as the pulsed laser light p emitted from the laser light emitting unit 8 is identified as the fluorescence to be measured. It is extracted as a signal and quantified by a signal processing computer.

レーザー発光部8から照射されるパルスレーザー光pの強さは一定なので、測定範囲bに分布する植物プランクトンの量と、この植物プランクトンが発する蛍光の量は比例する。従って、受光部9の受光量によって植物プランクトンの量を計測することができる。   Since the intensity of the pulsed laser beam p emitted from the laser emission unit 8 is constant, the amount of phytoplankton distributed in the measurement range b is proportional to the amount of fluorescence emitted by the phytoplankton. Therefore, the amount of phytoplankton can be measured by the amount of light received by the light receiving unit 9.

植物プランクトンの分布計測装置1の解像度の検定を行うため、次のような実験を行った。   In order to test the resolution of the phytoplankton distribution measuring apparatus 1, the following experiment was performed.

図4に示すように、植物プランクトンの分布計測装置1と隣接して高感度水温センサ19を取り付け、実験用水中測定装置20とした。   As shown in FIG. 4, a high-sensitivity water temperature sensor 19 was attached adjacent to the phytoplankton distribution measuring device 1 to obtain an experimental underwater measuring device 20.

高感度水温センサ19のセンサ部は、推定測定位置(レーザー発光部8のパルスレーザ照射方向と、受光部9の中心軸aとの交点)と非常に接近して配置され、レーザー蛍光プローブ7の側面からの水平距離が10mmであって、受光素子16の中心軸から5mm上方に位置している。   The sensor part of the high-sensitivity water temperature sensor 19 is arranged very close to the estimated measurement position (intersection of the pulse laser irradiation direction of the laser light emitting part 8 and the central axis a of the light receiving part 9). The horizontal distance from the side surface is 10 mm and is located 5 mm above the center axis of the light receiving element 16.

52ミクロンフィルタで濾過した青汁(株式会社ダイショー製、大麦若菜入り)を、10℃の水7リットル中に溶解し、1ppbの青汁溶液を調製した。   The green juice filtered through a 52 micron filter (Daisha Co., Ltd., with barley wakana) was dissolved in 7 liters of water at 10 ° C. to prepare a 1 ppb green juice solution.

0.7m(W)×0.75m(H)×13m(L)の水槽に水温12.7℃の水を満たし、この水槽中に上記青汁溶液を投入した。   A water tank of 0.7 m (W) × 0.75 m (H) × 13 m (L) was filled with water having a water temperature of 12.7 ° C., and the green juice solution was put into this water tank.

水槽の上面には、その長手方向に沿ってガイドレールを設置してあり、ガイドレールに実験用水中測定装置20を滑動可能に、且つ、水中に浸漬するよう取り付けた。   On the upper surface of the water tank, a guide rail is installed along its longitudinal direction, and the experimental underwater measuring device 20 is slidably attached to the guide rail so as to be immersed in water.

そして、レーザー発光部8から波長407nmのパルスレーザー光pを、パルス幅2.778×10-4 秒、パルス周期5.556×10-4 秒、光束2mmで照射した。また、受光素子16としては、波長677nmの光を選択的に受光するものを設置した。 Then, a pulse laser beam p having a wavelength of 407 nm was irradiated from the laser light emitting unit 8 with a pulse width of 2.778 × 10 −4 seconds, a pulse period of 5.556 × 10 −4 seconds, and a luminous flux of 2 mm. As the light receiving element 16, an element that selectively receives light having a wavelength of 677 nm was installed.

実験用水中測定装置20を、その下端を前にして、10cm/secの速度でガイドレールに沿って移動させながら、高感度水温センサ19が検知した水温と水槽に満たした水の温度(12.7℃)との偏差、及び、受光部9が検出した蛍光光度を測定した。その結果を図5及び図6にそれぞれ示すと共に、両者のパワースペクトルを図7に示す。   While moving the experimental underwater measuring device 20 along the guide rail at a speed of 10 cm / sec with the lower end in front, the water temperature detected by the high sensitivity water temperature sensor 19 and the temperature of the water filled in the water tank (12. 7 ° C.) and the fluorescence intensity detected by the light receiving unit 9 was measured. The results are shown in FIGS. 5 and 6, respectively, and the power spectra of both are shown in FIG.

溶液の水温と青汁による蛍光物質の水槽内の分布は、溶液投入直後において、ほぼ同一である。   The water temperature of the solution and the distribution of the fluorescent substance in the water tank due to the green juice are almost the same immediately after the solution is charged.

図5と図6から明らかなように、受光素子16が受光した蛍光光度と、高感度水温センサ19が測定した水温とは、高い相関関係がある。   As is clear from FIGS. 5 and 6, the fluorescence intensity received by the light receiving element 16 and the water temperature measured by the high sensitivity water temperature sensor 19 have a high correlation.

従って、受光素子16は、高感度水温センサ19のセンサ部と非常に近い位置、即ち、植物プランクトンの分布計測装置1自身と非常に近い位置の、きわめて狭い範囲内の蛍光光度を測定していることがわかる。   Therefore, the light receiving element 16 measures the fluorescence intensity in a very narrow range at a position very close to the sensor portion of the high-sensitivity water temperature sensor 19, that is, a position very close to the phytoplankton distribution measuring device 1 itself. I understand that.

図7に示すパワースペクトルにより、植物プランクトンの分布計測装置1の解像度は、高感度水温センサ19よりも高いことがわかる。   From the power spectrum shown in FIG. 7, it can be seen that the resolution of the phytoplankton distribution measuring apparatus 1 is higher than that of the high-sensitivity water temperature sensor 19.

Claims (2)

下端部が流線型で、レーザー発光部及び該レーザー発光部の下方に配置された受光部が内部に搭載されたプローブを、直立状態で水中を自由落下させる工程
前記プローブの落下中に、前記レーザー発光部によりクロロフィル色素を励起する波長のパルスレーザー光を、前記プローブの側面から水中へ、前記受光部の受光領域と交差する角度で斜め下方に照射する工程
前記パルスレーザー光を受けて、前記受光部の受光領域とレーザー発光部の照射領域とが交差する交差領域の植物プランクトンが発する蛍光を前記受光部で検出する工程
前記受光部で検出した受光量によって植物プランクトンの量を水深方向に測定する工程、を含む、植物プランクトンの分布計測方法において、
前記レーザー発光部のプローブに対する傾斜角度を調整することにより、前記交差領域の前記プローブからの距離を調整することを特徴とする植物プランクトンの分布計測方法。
Step lower end streamlined, the probe light receiving portion disposed below the laser emission unit and the laser light emitting portion is mounted therein, to free fall in water in an upright state,
A step of irradiating a pulsed laser beam having a wavelength for exciting a chlorophyll dye by the laser emitting unit into the water from the side of the probe obliquely downward at an angle crossing the light receiving region of the light receiving unit during the fall of the probe,
Step wherein upon receiving a pulsed laser beam to detect the phytoplankton emits fluorescence intersection region where the irradiation area of the light receiving area and the laser emission portion of the light receiving portion intersect at the light receiving unit,
In the method for measuring the distribution of phytoplankton, including the step of measuring the amount of phytoplankton in the direction of water depth according to the amount of light detected by the light receiving unit ,
The phytoplankton distribution measuring method , wherein the distance of the intersecting region from the probe is adjusted by adjusting an inclination angle of the laser emitting unit with respect to the probe .
水中に直立した状態で落下する、下端部が流線型のプローブと、
前記プローブ内に配置され、該プローブの側面から水中へ、クロロフィル色素を励起する波長のパルスレーザー光を斜め下方に照射するレーザー発光部と、
前記プローブ内において前記レーザー発光部の下方に配置され、前記プローブの側面から入光する蛍光を検出する受光部とを備え、
前記受光部の受光領域に対して、前記レーザー発光部のレーザー光照射方向を交差させ、前記レーザー発光部から照射されるパルスレーザー光を受けて、前記受光部の受光領域とレーザー発光部の照射領域とが交差する交差領域の植物プランクトンが発する蛍光を前記受光部で受光し、その受光量によって植物プランクトンの量を水深方向に測定し、前記レーザー発光部のプローブに対する傾斜角度を調整可能として、前記交差領域の、前記プローブからの距離を調整可能としてある、
植物プランクトンの分布計測装置。
A probe whose bottom end is streamlined and falls while standing upright in water,
A laser emitting unit that is disposed in the probe and irradiates a pulse laser beam having a wavelength that excites a chlorophyll dye obliquely downward into the water from the side surface of the probe;
A light receiving portion that is disposed below the laser light emitting portion in the probe and detects fluorescence entering from the side surface of the probe;
The laser light emitting direction of the laser light emitting unit intersects the light receiving region of the light receiving unit, receives pulsed laser light emitted from the laser light emitting unit, and irradiates the light receiving region of the light receiving unit and the laser light emitting unit. Fluorescence emitted from the phytoplankton in the intersecting region where the region intersects is received by the light receiving unit, the amount of phytoplankton is measured in the depth direction according to the amount of received light, and the tilt angle of the laser emitting unit with respect to the probe can be adjusted, The distance of the intersecting region from the probe is adjustable.
Phytoplankton distribution measuring device.
JP2007510379A 2005-03-29 2006-03-15 Phytoplankton distribution measuring method and apparatus Active JP4904505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007510379A JP4904505B2 (en) 2005-03-29 2006-03-15 Phytoplankton distribution measuring method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005095726 2005-03-29
JP2005095726 2005-03-29
PCT/JP2006/305142 WO2006103932A1 (en) 2005-03-29 2006-03-15 Plant plankton distribution measuring method and device therefor
JP2007510379A JP4904505B2 (en) 2005-03-29 2006-03-15 Phytoplankton distribution measuring method and apparatus

Publications (2)

Publication Number Publication Date
JPWO2006103932A1 JPWO2006103932A1 (en) 2008-09-04
JP4904505B2 true JP4904505B2 (en) 2012-03-28

Family

ID=37053195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007510379A Active JP4904505B2 (en) 2005-03-29 2006-03-15 Phytoplankton distribution measuring method and apparatus

Country Status (2)

Country Link
JP (1) JP4904505B2 (en)
WO (1) WO2006103932A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014002062A (en) * 2012-06-19 2014-01-09 Jfe Advantech Co Ltd Fluorescence detector

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101490737B1 (en) * 2013-10-15 2015-02-11 (주)한국해양기상기술 Apparatus for examining plankton
KR101490738B1 (en) * 2013-10-15 2015-02-11 (주)한국해양기상기술 Apparatus for examining plankton
JP2018093758A (en) * 2016-12-09 2018-06-21 株式会社サタケ Microorganism examination method and device therefor

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450751A (en) * 1990-06-18 1992-02-19 Nikken Syst Kk Measuring instrument for turbidity, chromaticity, or the like
JPH0815157A (en) * 1994-07-01 1996-01-19 Kimoto Denshi Kogyo Kk Plankton sensor in water
JPH08261934A (en) * 1995-03-17 1996-10-11 Aretsuku Denshi Kk Fluorescence detector
JPH0933426A (en) * 1995-07-25 1997-02-07 Denso Corp Device for detecting particle concentration in liquid
JPH11289939A (en) * 1998-04-13 1999-10-26 Tokyo Seitankousho:Kk Forged steel weight for fishing
JPH11326210A (en) * 1998-05-14 1999-11-26 Nec Corp Chlorophyll fluorescence measuring instrument
JP2000144701A (en) * 1998-11-04 2000-05-26 Kajima Corp Ground water sampling device
JP2000275135A (en) * 1999-03-29 2000-10-06 Mitsubishi Heavy Ind Ltd Apparatus and method for inspection of leakage oil
JP2001083094A (en) * 1999-09-13 2001-03-30 Toshiba Corp Algae concentration measurement system
JP2001264254A (en) * 2000-03-15 2001-09-26 Central Res Inst Of Electric Power Ind Estimating method for chlorophyll content of leaf and estimating device using it
JP2001527213A (en) * 1997-12-22 2001-12-25 コミユノテ・ウロペエンヌ Non-destructive analysis device for vegetation and vehicle equipped with such device on vehicle
JP2002181710A (en) * 2000-12-15 2002-06-26 Toshiba Ceramics Co Ltd Fluorescence detecting and measuring instrument
JP2003107003A (en) * 2001-09-28 2003-04-09 Fuji Photo Film Co Ltd Imaging apparatus
JP2005522668A (en) * 2001-09-12 2005-07-28 アプライズ テクノロジーズ,インコーポレーテッド Multi-channel fluorescence sensor

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450751A (en) * 1990-06-18 1992-02-19 Nikken Syst Kk Measuring instrument for turbidity, chromaticity, or the like
JPH0815157A (en) * 1994-07-01 1996-01-19 Kimoto Denshi Kogyo Kk Plankton sensor in water
JPH08261934A (en) * 1995-03-17 1996-10-11 Aretsuku Denshi Kk Fluorescence detector
JPH0933426A (en) * 1995-07-25 1997-02-07 Denso Corp Device for detecting particle concentration in liquid
JP2001527213A (en) * 1997-12-22 2001-12-25 コミユノテ・ウロペエンヌ Non-destructive analysis device for vegetation and vehicle equipped with such device on vehicle
JPH11289939A (en) * 1998-04-13 1999-10-26 Tokyo Seitankousho:Kk Forged steel weight for fishing
JPH11326210A (en) * 1998-05-14 1999-11-26 Nec Corp Chlorophyll fluorescence measuring instrument
JP2000144701A (en) * 1998-11-04 2000-05-26 Kajima Corp Ground water sampling device
JP2000275135A (en) * 1999-03-29 2000-10-06 Mitsubishi Heavy Ind Ltd Apparatus and method for inspection of leakage oil
JP2001083094A (en) * 1999-09-13 2001-03-30 Toshiba Corp Algae concentration measurement system
JP2001264254A (en) * 2000-03-15 2001-09-26 Central Res Inst Of Electric Power Ind Estimating method for chlorophyll content of leaf and estimating device using it
JP2002181710A (en) * 2000-12-15 2002-06-26 Toshiba Ceramics Co Ltd Fluorescence detecting and measuring instrument
JP2005522668A (en) * 2001-09-12 2005-07-28 アプライズ テクノロジーズ,インコーポレーテッド Multi-channel fluorescence sensor
JP2003107003A (en) * 2001-09-28 2003-04-09 Fuji Photo Film Co Ltd Imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014002062A (en) * 2012-06-19 2014-01-09 Jfe Advantech Co Ltd Fluorescence detector

Also Published As

Publication number Publication date
JPWO2006103932A1 (en) 2008-09-04
WO2006103932A1 (en) 2006-10-05

Similar Documents

Publication Publication Date Title
EP1761816B1 (en) Autofocus mechanism for spectroscopic system
CA2813032C (en) Laser induced breakdown spectroscopy analyser
CN111551250B (en) Method and device for measuring light field distribution
CA2599173C (en) Fluorescence meter
JP4904505B2 (en) Phytoplankton distribution measuring method and apparatus
US7817277B2 (en) Fiber optic probe and related apparatus, systems and methods for making optics-based measurements of liquid samples
WO2006007883A1 (en) Fluorometer
ATE498145T1 (en) DEVICE FOR OBTAINING A THREE-DIMENSIONAL IMAGE AND PROCESSING DEVICE THEREFOR
JP5870497B2 (en) Measuring apparatus and measuring method
WO2017060105A1 (en) Particle sensor for particle detection
CN105829843B (en) High speed spectrum sensor component and system
KR20120013297A (en) Method and system for analysing solid particles in a medium
JP7407160B2 (en) Flowing nanoparticle measuring device and method for determining nanoparticles using the same
US10247665B2 (en) Device for determining a concentration of a chemical substance
JP2017536550A (en) Integration of fluorescence detection function into absorbance measuring device
US10948416B2 (en) Method and apparatus for determining a concentration of a substance in a liquid medium
SE503116C2 (en) Device for detecting fluorescence
RU2010123872A (en) METHOD AND DEVICE FOR DETERMINING FLOW LIQUID FLOW
JP4594810B2 (en) Method for controlling position of particles in sample liquid and particle measuring apparatus
CN211206254U (en) Laser light transmittance measuring device for plastic material
WO2016095008A1 (en) Apparatus, systems and methods for real-time solids content measurements
JP4621893B2 (en) Object investigation method and investigation apparatus
Hu A novel trimodal sensor for eddy correlation measurements of benthic flux in aquatic environments
JP2005098813A (en) Apparatus and method for performing in-situ and instantaneous measurement on characteristics of liquid
GB2402210A (en) Underwater fluorescence detector for monitoring movement of sediment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150