WO2006103932A1 - Plant plankton distribution measuring method and device therefor - Google Patents
Plant plankton distribution measuring method and device therefor Download PDFInfo
- Publication number
- WO2006103932A1 WO2006103932A1 PCT/JP2006/305142 JP2006305142W WO2006103932A1 WO 2006103932 A1 WO2006103932 A1 WO 2006103932A1 JP 2006305142 W JP2006305142 W JP 2006305142W WO 2006103932 A1 WO2006103932 A1 WO 2006103932A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- probe
- phytoplankton
- light receiving
- laser
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6486—Measuring fluorescence of biological material, e.g. DNA, RNA, cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N2021/6463—Optics
- G01N2021/6473—In-line geometry
- G01N2021/6476—Front end, i.e. backscatter, geometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/85—Investigating moving fluids or granular solids
- G01N21/8507—Probe photometers, i.e. with optical measuring part dipped into fluid sample
Definitions
- FIG. 6 is a diagram showing a change with time of the fluorescence intensity detected by the light receiving unit in the phytoplankton distribution measuring device attached to the experimental underwater measuring device of FIG. 4.
- the distance of the measurement region b from the probe 7 can be changed by adjusting the mounting angle of the laser emitting unit 8.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
A plant plankton distribution measuring device (1) comprising a laser fluorescence probe (7) having a streamline lower end, a laser light emitting section (8) for irradiating pulse laser light having a wavelength for exciting chlorophyll dye from the side face of the probe (7) into the water, and a light receiving section (9) for detecting fluorescence entering through the side face of the probe (7). The distribution measuring device (1) is dropped into the water, laser light irradiating direction of the laser light emitting section (8) is made to intersect the light receiving region of the light receiving section (9), fluorescence being emitted from plant planktons upon receiving the pulse laser light is received at the light receiving section (9), and then the quantity of plant planktons is measured based on the quantity of received light.
Description
明 細 書 Specification
植物プランクトンの分布計測方法及びその装置 Phytoplankton distribution measuring method and apparatus
技術分野 Technical field
[0001] 本発明は、水中に測定装置を自由落下させて植物プランクトンの分布を測定する 植物プランクトンの分布計測方法及びその装置に関する。 TECHNICAL FIELD [0001] The present invention relates to a phytoplankton distribution measurement method and apparatus for measuring a phytoplankton distribution by allowing a measuring device to freely fall in water.
背景技術 Background art
[0002] 海水の温暖化に伴い、鞭藻類、鞭毛類、繊毛類、珪藻類等の植物プランクトンが大 量に増殖して、魚介類や海草に多大な被害を与える赤潮の発生が頻発している。近 年では魚介類の養殖が盛んになっているため、赤潮の発生を早期に知って、魚介類 を移動させることが必要となって 、る。 [0002] With the warming of seawater, phytoplankton such as dinoflagellates, flagellates, cilia, and diatoms proliferate and red tides that cause great damage to seafood and seaweed frequently occur. Yes. In recent years, the cultivation of seafood has become popular, so it is necessary to know the occurrence of red tide at an early stage and move the seafood.
[0003] このため、水中に投げ込んで自由落下させ、水中における実際の植物プランクトン の分布状況を測定する水中投入式プランクトン検出器が種々提案されて 、る。 [0003] For this reason, various types of submerged plankton detectors have been proposed which are thrown into water and allowed to fall freely and measure the actual distribution of phytoplankton in water.
[0004] 従来、計測器の側面に発光ダイオードと受光部とを設け、発光ダイオードから水中 プランクトンの色素を励起する波長の光を照射し、この光を受けて水中プランクトンが 発する蛍光を受光部で受光し、受光量によって水中プランクトンの量を定量する水中 のプランクトンセンサが知られている(特開平 8— 15157号公報参照)。 [0004] Conventionally, a light-emitting diode and a light-receiving unit have been provided on the side of the measuring instrument, and light having a wavelength that excites the planktonic dye in water is emitted from the light-emitting diode, and the light emitted from the plankton in water is received by this light. An underwater plankton sensor that receives light and quantifies the amount of underwater plankton based on the amount of received light is known (see Japanese Patent Laid-Open No. 8-15157).
[0005] しかし、上記従来のプランクトンセンサは、先端面が陥没した筒状に形成されて 、る ので、水中を落下する際に周辺に乱流が発生し、このため、植物プランクトンが乱れ て正確な分布状況を計測できな 、。 [0005] However, the conventional plankton sensor is formed in a cylindrical shape with the tip surface depressed, so that turbulent flow is generated in the periphery when dropping in the water, and therefore the phytoplankton is disturbed and accurate. I can't measure the correct distribution situation.
[0006] また、センサ部には、拡散光を照射する発光ダイオードと受光領域が遠ざ力るほど 広がる受光部とを互いに近づけて配置してあるので、計測領域を正確に限定しにくく 、そのため、センサ部の近くに分布した植物プランクトンが発した蛍光も、センサ部か ら遠くに分布した植物プランクトンが発した蛍光も検出してしまい、計測結果が不正 確になりやすい。 [0006] In addition, since the light emitting diode that irradiates diffused light and the light receiving portion that spreads as the light receiving region is moved away from each other are arranged in the sensor unit, it is difficult to accurately limit the measurement region. In addition, the fluorescence emitted by phytoplankton distributed near the sensor unit and the fluorescence emitted by phytoplankton distributed far from the sensor unit are detected, and the measurement result tends to be inaccurate.
[0007] そこで、計測領域を限定するために、検出器本体の側面に受光窓を設けると共に、 その受光窓を囲んで複数の送光窓を環状に設け、送光窓の奥に発光ダイオードを、 その光照射方向が受光孔の中心線と交差するよう配置した蛍光検出器が提案されて
いる(特開平 8— 261934号公報参照)。 [0007] Therefore, in order to limit the measurement area, a light receiving window is provided on the side surface of the detector body, a plurality of light transmitting windows are provided in an annular shape surrounding the light receiving window, and a light emitting diode is provided at the back of the light transmitting window. A fluorescence detector has been proposed in which the light irradiation direction intersects the center line of the light receiving hole. (See JP-A-8-261934).
[0008] しかし、この蛍光検出器も、発光部として通常の発光ダイオードを用いて 、るので、 照射した光が拡散し、受光部の受光領域と重なる領域 (すなわち計測領域)が広くな るため、限定された領域における植物プランクトンの分布密度を正確に計測すること ができず、どうしても測定精度が粗くなつている。 However, since this fluorescence detector also uses a normal light emitting diode as the light emitting section, the irradiated light diffuses and the area overlapping the light receiving area of the light receiving section (that is, the measurement area) becomes wide. However, the distribution density of phytoplankton in a limited area cannot be accurately measured, and the measurement accuracy is inevitably becoming coarse.
[0009] また、この蛍光検出器は円筒形のプローブに搭載されているので、投入地点周辺 の水流の乱れを防ぐことはできな 、。 [0009] In addition, since this fluorescence detector is mounted on a cylindrical probe, it is impossible to prevent disturbance of the water flow around the injection point.
発明の開示 Disclosure of the invention
[0010] 本発明の目的は、装置投入個所の水流が乱れにくぐ計測範囲を狭く規定すること ができるため、自然に近い状態できめ細かい計測が可能な、植物プランクトンの分布 計測方法及びその装置を提供することにある。 [0010] An object of the present invention is to provide a phytoplankton distribution measurement method and apparatus capable of fine measurement in a state close to nature because the measurement range in which the water flow at the place where the apparatus is introduced is difficult to be disturbed can be narrowly defined. It is to provide.
[0011] 本発明の植物プランクトンの分布計測方法は、下端部が流線型で、レーザー発光 部及び受光部が搭載されたプローブを、直立状態で水中を自由落下させ、落下中に 前記レーザー発光部により、クロロフィル色素を励起する波長のパルスレーザー光を 前記プローブの側面から水中へ、前記受光部の受光領域と交差する角度で照射し、 パルスレーザー光を受けて植物プランクトンが発する蛍光を前記受光部で検出し、 該受光部の受光量によって植物プランクトンの量を測定する。 [0011] The phytoplankton distribution measuring method of the present invention comprises a probe having a streamlined lower end and a laser emitting section and a light receiving section that freely falls in water in an upright state, and is dropped by the laser emitting section during the fall. Irradiating a pulse laser beam having a wavelength for exciting the chlorophyll dye into the water from the side of the probe at an angle crossing the light receiving region of the light receiving unit, and receiving the pulse laser light to emit fluorescence emitted by phytoplankton at the light receiving unit. The amount of phytoplankton is measured based on the amount of light received by the light receiving unit.
[0012] 本発明の植物プランクトンの分布計測装置は、直立状態で水中を自由落下し、下 端部が流線型のプローブと、該プローブの側面から水中へ、クロロフィル色素を励起 する波長のパルスレーザー光を所定周期で照射するレーザー発光部と、前記プロ一 ブの側面力 入光する蛍光を検出する受光部とを備え、該受光部の受光領域に対し て、前記レーザー発光部のレーザー光照射方向を交差させ、前記レーザー発光部 力 照射されるパルスレーザー光を受けて植物プランクトンが発する蛍光を前記受光 部で受光し、その受光量によって植物プランクトンの量を測定する。 [0012] The phytoplankton distribution measuring apparatus of the present invention freely falls in water in an upright state, and has a streamlined probe at the lower end and a pulsed laser beam having a wavelength for exciting a chlorophyll dye from the side of the probe into the water. And a light receiving unit for detecting fluorescence incident on the side surface of the probe, and the direction of laser light irradiation of the laser emitting unit with respect to the light receiving region of the light receiving unit , And the fluorescence emitted from the phytoplankton is received by the light receiving unit in response to the pulsed laser light emitted by the laser emitting unit, and the amount of phytoplankton is measured based on the amount of the received light.
[0013] 本発明によれば、プローブの下端部を流線型としたので、計測個所の水流が乱れ にくぐこのため、自然に近い状態で植物プランクトンの分布を計測することが可能と なり、計測精度が増す。 [0013] According to the present invention, since the lower end portion of the probe is streamlined, the water flow at the measurement location is not easily disturbed, so that the distribution of phytoplankton can be measured in a state close to nature, and the measurement accuracy Increase.
[0014] また、発光部から集束性の高 、パルスレーザー光を、受光部の受光領域と交差す
るよう照射するので、測定領域を非常に限定して狭くでき、この結果、各水深毎の植 物プランクトンの分布状況をきめ細力べ正確に測定できる。 [0014] Further, a highly focused pulsed laser beam from the light emitting part intersects the light receiving region of the light receiving part. Therefore, the measurement area can be made very narrow and narrow, and as a result, the distribution of vegetation plankton at each water depth can be meticulously measured.
図面の簡単な説明 Brief Description of Drawings
[0015] [図 1]本発明による植物プランクトンの分布計測装置の一実施例を組み込んだ水中 測定装置の断面図である。 [0015] FIG. 1 is a cross-sectional view of an underwater measuring apparatus incorporating an embodiment of a phytoplankton distribution measuring apparatus according to the present invention.
[図 2]図 1の水中測定装置の下端に取り付けられた植物プランクトンの分布計測装置 の断面図である。 2 is a cross-sectional view of a phytoplankton distribution measuring device attached to the lower end of the underwater measuring device of FIG.
[図 3]図 2の植物プランクトンの分布計測装置の要部断面図である。 FIG. 3 is a cross-sectional view of a principal part of the phytoplankton distribution measuring apparatus in FIG. 2.
[図 4]図 2の植物プラン外ンの分布計測装置を取り付けた実験用水中測定装置の断 面図である。 FIG. 4 is a cross-sectional view of an experimental underwater measurement device equipped with the plant plan distribution measurement device of FIG. 2.
[図 5]図 4の実験用水中測定装置の水温センサが検知した水温と水槽に満たした水 の温度との偏差の経時変化を示す図である。 FIG. 5 is a graph showing the change over time in the deviation between the water temperature detected by the water temperature sensor of the experimental underwater measuring device in FIG. 4 and the temperature of the water filled in the water tank.
[図 6]図 4の実験用水中測定装置に取り付けた植物プランクトンの分布計測装置にお ける受光部が検出した蛍光光度の経時変化を示す図である。 FIG. 6 is a diagram showing a change with time of the fluorescence intensity detected by the light receiving unit in the phytoplankton distribution measuring device attached to the experimental underwater measuring device of FIG. 4.
[図 7]測定した温度(図 5)及び蛍光光度(図 6)のパワースペクトルを示す図である。 発明を実施するための最良の形態 FIG. 7 is a diagram showing power spectra of measured temperature (FIG. 5) and fluorescence intensity (FIG. 6). BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明の実施例を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0017] 図 1に示すように、本発明の植物プランクトンの分布計測装置 1は、水中に投入され て自由落下する水中測定装置 2の下端に、その軸方向に沿って設置される。水中測 定装置 2の上部には、水中を下降する際にバランスをとり、下降速度を調節するため に浮体 3が装着されている。 As shown in FIG. 1, the phytoplankton distribution measuring apparatus 1 of the present invention is installed along the axial direction at the lower end of an underwater measuring apparatus 2 that is thrown into water and freely falls. A floating body 3 is mounted on the upper part of the underwater measuring device 2 in order to balance and adjust the descending speed when descending underwater.
[0018] また、水中測定装置 2の下端には、分布計測装置 1のほかに、深度センサ、温度計 等の他のセンサ 4、及び、分布計測装置 1や他のセンサ 4より長い保護棒 5が取り付 けられる。保護棒 5は、分布計測装置 1や他のセンサ 4が落下中に物体と衝突して破 損するのを防ぐためのものである。なお、他のセンサ 4及び保護棒 5は、全て周辺の 水流を乱さな 、ように先端が流線型となって 、る。 [0018] In addition to the distribution measuring device 1, other sensors 4 such as a depth sensor and a thermometer, and a protective rod 5 longer than the distribution measuring device 1 and other sensors 4 are provided at the lower end of the underwater measuring device 2. Can be installed. The protective bar 5 is used to prevent the distribution measuring device 1 and other sensors 4 from colliding with an object during dropping and being damaged. The other sensors 4 and the protective rods 5 are all streamlined so that the surrounding water flow is not disturbed.
[0019] 植物プランクトンの分布計測装置 1は、図 2に示すように、水中測定装置 2の下端に 取り付けられたパイプ状の支持部 6と、支持部 6の下端に装着されたレーザー蛍光プ
ローブ 7とから構成され、レーザー蛍光プローブ 7の内部には、レーザー発光部 8、受 光部 9及び制御回路(図示せず)が収納されている。 As shown in FIG. 2, the phytoplankton distribution measuring device 1 includes a pipe-like support portion 6 attached to the lower end of the underwater measurement device 2, and a laser fluorescent probe attached to the lower end of the support portion 6. The laser fluorescent probe 7 contains a laser light emitting unit 8, a light receiving unit 9, and a control circuit (not shown).
[0020] レーザー蛍光プローブ 7は、下端部が流線型の筒体より成り、その側面に発光窓 1[0020] The laser fluorescent probe 7 is composed of a streamlined cylinder at the lower end, and a light emitting window 1 is formed on the side surface thereof.
0と受光窓 11とが上下に並んで形成される。また、発光窓 10の内側にはレーザー発 光部 8が設置され、受光窓 11の内側には受光部 9が設置される。 0 and the light receiving window 11 are formed side by side. In addition, a laser emitting unit 8 is installed inside the light emitting window 10, and a light receiving unit 9 is installed inside the light receiving window 11.
[0021] 図 3に示すように、レーザー発光部 8は、放熱ハウジング 12,レーザー発光素子 13 及び集光レンズ 14から成る。 As shown in FIG. 3, the laser light emitting unit 8 includes a heat radiating housing 12, a laser light emitting element 13, and a condenser lens 14.
[0022] レーザー蛍光プローブ 7の発光窓 10に集光レンズ 14が設置され、その奥に放熱ハ ウジング 12が配設され、放熱ハウジング 12内にレーザー発光素子 13が照射部を集 光レンズ 14に向けて収納されて 、る。 [0022] A condensing lens 14 is installed in the light emission window 10 of the laser fluorescent probe 7, a heat dissipating housing 12 is disposed in the back thereof, and a laser light emitting element 13 in the heat dissipating housing 12 provides an irradiation part to the condensing lens 14. It's stored and facing.
[0023] レーザー発光素子 13で発振したレーザー光は集光レンズ 14により直径 2mm程度 に集束され、レーザー発光部 8からは、植物プランクトンのクロロフィル色素を励起す る波長 407nmにピークを持つパルスレーザー光を、パルス幅 2. 778 X 10— 4秒、ノ ルス周期 5. 556 X 10 4秒で照射するようになっている。 [0023] The laser light oscillated by the laser light-emitting element 13 is focused to a diameter of about 2 mm by the condenser lens 14, and the laser light-emitting section 8 emits a pulsed laser light having a peak at a wavelength of 407 nm for exciting the phytoplankton chlorophyll pigment the pulse width 2. 778 X 10- 4 seconds, so as to irradiate at Bruno pulse cycle 5. 556 X 10 4 seconds.
[0024] 受光部 9は、フィルタ 15と、受光素子 16とを備える。フィルタ 15は、波長 610nm以 上の光を選択的に透過し、受光窓 11にはめ込んだ透明耐圧プラスチック板 18の内 面に重ねて設置され、その背後に受光素子 16が受光面を受光窓 11に向けて設置さ れる。 The light receiving unit 9 includes a filter 15 and a light receiving element 16. The filter 15 selectively transmits light having a wavelength of 610 nm or more and is placed on the inner surface of the transparent pressure-resistant plastic plate 18 fitted in the light receiving window 11. It is installed toward
[0025] また、受光部 9の受光領域は、水中測定装置 2の中心軸に直交する軸 aを中心とし て、受光窓 11から遠ざ力るほど広がっており、受光領域の頂部の角度は 20度となつ ている。 [0025] Further, the light receiving area of the light receiving unit 9 is widened away from the light receiving window 11 around the axis a orthogonal to the central axis of the underwater measuring device 2, and the angle of the top of the light receiving area is It is about 20 degrees.
[0026] そして、受光部 9の受光領域に対して、レーザー発光部 8から照射される所定幅の パルスレーザー光 pが交差することで、その交差した領域(図 3の斜線で示す)が測定 領域 bとなる。 [0026] Then, the pulse laser beam p of a predetermined width irradiated from the laser light emitting unit 8 intersects the light receiving region of the light receiving unit 9, and the intersected region (indicated by the oblique lines in FIG. 3) is measured. Region b.
[0027] レーザー発光部 8はプローブ 7に、プローブ 7の中心軸(水中測定装置 2の中心軸 に平行)に対して傾斜角度調整可能に取り付けられている。そのため、受光部 9の受 光領域の中心軸 aとレーザー発光部 8から照射されるパルスレーザー光 pとの交差角 度は変更可能である。図 3に示すように、パルスレーザー光 pの照射方向をプローブ
7の中心軸に対してほぼ 45° 下向きに調整すると、プローブ 7に比較的接近した位 置に測定領域 b (受光部 9の受光領域とレーザー発光部 8の照射領域とが交差する 領域)が形成され、かつ分布計測装置 1を水力 引き上げた時にパルスレーザー光 p が人の目を照射して障害を与える等の事故を防ぐことができる。この測定領域 bの、 プローブ 7からの距離は、レーザー発光部 8の取り付け角度を調整することによって 変更することができる。 The laser emission unit 8 is attached to the probe 7 so that the inclination angle can be adjusted with respect to the central axis of the probe 7 (parallel to the central axis of the underwater measuring device 2). Therefore, the crossing angle between the central axis a of the light receiving region of the light receiving unit 9 and the pulsed laser light p emitted from the laser light emitting unit 8 can be changed. As shown in Fig. 3, the direction of irradiation of pulsed laser beam p is probed. When adjusted to approximately 45 ° downward with respect to the center axis of 7, the measurement area b (the area where the light receiving area of the light receiving section 9 and the irradiation area of the laser emitting section 8 intersect) is positioned relatively close to the probe 7. It is possible to prevent accidents such as the pulse laser beam p irradiating human eyes and causing damage when the distribution measuring device 1 is hydraulically lifted. The distance of the measurement region b from the probe 7 can be changed by adjusting the mounting angle of the laser emitting unit 8.
[0028] 植物プランクトンの分布は次のように測定する。 [0028] The distribution of phytoplankton is measured as follows.
[0029] 浮体 3の上端にケーブル 17を付けて水中測定装置 2を水中に投入すると、水中測 定装置 2は、植物プランクトンの分布計測装置 1及び他のセンサ 4を下にして、直立 状態で水中を自然落下する。 [0029] When the underwater measurement device 2 is inserted into the water with the cable 17 attached to the upper end of the floating body 3, the underwater measurement device 2 is placed in an upright state with the phytoplankton distribution measurement device 1 and other sensors 4 down. Naturally falls underwater.
[0030] 落下中にレーザー発光部 8で発信されたパルスレーザー光 pが、レーザー蛍光プロ ーブ 7の側面から水中へ斜め下方に向けて照射される。 [0030] The pulsed laser beam p transmitted from the laser emission unit 8 during the fall is irradiated obliquely downward into the water from the side surface of the laser fluorescent probe 7.
[0031] 植物プランクトンのクロロフィル色素は、波長 430nm程度の励起光によって蛍光を 発するので、レーザー発光部 8の照射範囲にある植物プランクトンは、照射されたパ ルスレーザー光 pを受けてパルスレーザー光 pと同じ周期で蛍光を明滅させる。 [0031] Since the chlorophyll pigment of phytoplankton emits fluorescence by excitation light having a wavelength of about 430 nm, the phytoplankton in the irradiation range of the laser emission section 8 receives the pulsed laser beam p and receives the pulsed laser beam p. Fluoresce in the same cycle as.
[0032] 測定領域 bに分布する植物プランクトン力パルスレーザー光 pを受けて発する蛍光 は、レーザー蛍光プローブ 7の側面に形成された受光窓 11に達する。受光窓 11を 通過する蛍光の波長は 677nmなので、受光窓 11の内面に設置されたフィルタ 15を 透過して入光し、受光素子 16により検出される。波長が 600nmに達しない光はフィ ルタ 15で遮断され、受光素子 16で検出されない。 [0032] The fluorescence emitted upon receiving the phytoplankton force pulsed laser light p distributed in the measurement region b reaches the light receiving window 11 formed on the side surface of the laser fluorescent probe 7. Since the wavelength of the fluorescent light passing through the light receiving window 11 is 677 nm, the light passes through the filter 15 installed on the inner surface of the light receiving window 11 and is detected by the light receiving element 16. Light whose wavelength does not reach 600 nm is blocked by the filter 15 and is not detected by the light receiving element 16.
[0033] 受光素子 16が検出した蛍光は、制御回路において検波され、レーザー発光部 8か ら照射されるパルスレーザー光 Pと同じ周期で明滅する光のみが、測定対象の蛍光 であると識別され、制御回路力も信号として取り出され、信号処理コンピュータによつ て定量される。 [0033] The fluorescence detected by the light receiving element 16 is detected by the control circuit, and only the light that flickers in the same cycle as the pulsed laser light P emitted from the laser light emitting unit 8 is identified as the fluorescence to be measured. The control circuit force is also extracted as a signal and quantified by a signal processing computer.
[0034] レーザー発光部 8から照射されるパルスレーザー光 pの強さは一定なので、測定範 囲 bに分布する植物プランクトンの量と、この植物プランクトンが発する蛍光の量は比 例する。従って、受光部 9の受光量によって植物プランクトンの量を計測することがで きる。
[0035] 植物プランクトンの分布計測装置 1の解像度の検定を行うため、次のような実験を 行った。 [0034] Since the intensity of the pulsed laser light p emitted from the laser emission unit 8 is constant, the amount of phytoplankton distributed in the measurement range b and the amount of fluorescence emitted by the phytoplankton are proportional. Therefore, the amount of phytoplankton can be measured based on the amount of light received by the light receiving unit 9. [0035] In order to test the resolution of the phytoplankton distribution measuring apparatus 1, the following experiment was performed.
[0036] 図 4に示すように、植物プランクトンの分布計測装置 1と隣接して高感度水温センサ As shown in FIG. 4, a highly sensitive water temperature sensor adjacent to the phytoplankton distribution measuring apparatus 1
19を取り付け、実験用水中測定装置 20とした。 19 was attached, and the experimental underwater measuring device 20 was obtained.
[0037] 高感度水温センサ 19のセンサ部は、推定測定位置(レーザー発光部 8のパルスレ 一ザ照射方向と、受光部 9の中心軸 aとの交点)と非常に接近して配置され、レーザ 一蛍光プローブ 7の側面からの水平距離が 10mmであって、受光素子 16の中心軸 力 5mm上方に位置して!/、る。 [0037] The sensor part of the high-sensitivity water temperature sensor 19 is arranged very close to the estimated measurement position (intersection of the pulse laser irradiation direction of the laser light emitting part 8 and the central axis a of the light receiving part 9). The horizontal distance from the side surface of one fluorescent probe 7 is 10 mm, and it is located 5 mm above the central axial force of the light receiving element 16.
[0038] 52ミクロンフィルタで濾過した青汁 (株式会社ダイショー製、大麦若菜入り)を、 10[0038] Aojiru filtered with a 52 micron filter (Daisho Co., Ltd., with barley wakana), 10
°Cの水 7リットル中に溶解し、 lppbの青汁溶液を調製した。 Dissolved in 7 liters of water at ° C to prepare lppb green juice solution.
[0039] 0. 7m (W) X O. 75m (H) X 13m (L)の水槽に水温 12. 7°Cの水を満たし、この水 槽中に上記青汁溶液を投入した。 [0039] A water tank of 0.7 m (W) X O. 75 m (H) X 13 m (L) was filled with water at a water temperature of 12.7 ° C, and the green juice solution was charged into the water tank.
[0040] 水槽の上面には、その長手方向に沿ってガイドレールを設置してあり、ガイドレール に実験用水中測定装置 20を滑動可能に、且つ、水中に浸潰するよう取り付けた。 [0040] On the upper surface of the water tank, a guide rail is installed along its longitudinal direction, and the experimental underwater measuring device 20 is slidably attached to the guide rail so as to be immersed in water.
[0041] そして、レーザー発光部 8から波長 407nmのパルスレーザー光 pを、パルス幅 2. 7[0041] Then, a pulse laser beam p having a wavelength of 407 nm is emitted from the laser light emitting unit 8 to a pulse width of 2.7.
78 X 10— 4秒、パルス周期 5. 556 X 10— 4秒、光束 2mmで照射した。また、受光素子78 X 10- 4 sec pulse cycle 5. 556 X 10- 4 seconds, and irradiated with the light beam 2 mm. The light receiving element
16としては、波長 677nmの光を選択的に受光するものを設置した。 As 16, one that selectively receives light having a wavelength of 677 nm was installed.
[0042] 実験用水中測定装置 20を、その下端を前にして、 lOcmZsecの速度でガイドレー ルに沿って移動させながら、高感度水温センサ 19が検知した水温と水槽に満たした 水の温度(12. 7°C)との偏差、及び、受光部 9が検出した蛍光光度を測定した。その 結果を図 5及び図 6にそれぞれ示すと共に、両者のパワースペクトルを図 7に示す。 [0042] While moving the experimental underwater measuring device 20 along the guide rail at a speed of lOcmZsec with the lower end in front, the water temperature detected by the high-sensitivity water temperature sensor 19 and the temperature of the water filled in the water tank ( 12. The deviation from 7 ° C) and the fluorescence intensity detected by the light receiving unit 9 were measured. The results are shown in Figs. 5 and 6, respectively, and the power spectra of both are shown in Fig. 7.
[0043] 溶液の水温と青汁による蛍光物質の水槽内の分布は、溶液投入直後において、ほ ぼ同一である。 [0043] The water temperature of the solution and the distribution of the fluorescent substance in the water tank due to the green juice are almost the same immediately after the addition of the solution.
[0044] 図 5と図 6から明らかなように、受光素子 16が受光した蛍光光度と、高感度水温セ ンサ 19が測定した水温とは、高い相関関係がある。 As apparent from FIGS. 5 and 6, the fluorescence intensity received by the light receiving element 16 and the water temperature measured by the high sensitivity water temperature sensor 19 have a high correlation.
[0045] 従って、受光素子 16は、高感度水温センサ 19のセンサ部と非常に近い位置、即ちTherefore, the light receiving element 16 is located very close to the sensor portion of the high sensitivity water temperature sensor 19, that is,
、植物プランクトンの分布計測装置 1自身と非常に近い位置の、きわめて狭い範囲内 の蛍光光度を測定して 、ることがわ力る。
図 7に示すパワースペクトルにより、植物プランクトンの分布計測装置 1の解像度は 、高感度水温センサ 19よりも高いことがわかる。
The phytoplankton distribution measuring device 1 is extremely useful to measure the fluorescence intensity in a very narrow range at a position very close to itself. From the power spectrum shown in FIG. 7, it can be seen that the resolution of the phytoplankton distribution measuring apparatus 1 is higher than that of the high-sensitivity water temperature sensor 19.
Claims
[1] 下端部が流線型で、レーザー発光部及び受光部が搭載されたプローブを、直立状 態で水中を自由落下させること、 [1] The probe with a streamlined lower end and a laser emitting and receiving unit is allowed to fall freely underwater in an upright state.
前記プローブの落下中に、前記レーザー発光部によりクロロフィル色素を励起する 波長のパノレスレーザー光を、前記プローブの側面から水中へ、前記受光部の受光 領域と交差する角度で照射すること、 Irradiating a panoreth laser beam having a wavelength for exciting a chlorophyll dye by the laser light emitting unit during the fall of the probe into the water from the side surface of the probe at an angle intersecting the light receiving region of the light receiving unit,
前記パルスレーザー光を受けて植物プランクトンが発する蛍光を前記受光部で検 出すること、 Detecting the fluorescence emitted from the phytoplankton by receiving the pulsed laser light with the light receiving unit;
前記受光部で検出した受光量によって植物プランクトンの量を測定すること、 を含む、植物プランクトンの分布計測方法。 A method for measuring the distribution of phytoplankton, comprising measuring the amount of phytoplankton based on the amount of received light detected by the light receiving unit.
[2] 水中に直立した状態で落下する、下端部が流線型のプローブと、 [2] A probe with a streamlined bottom end, falling in an upright position in water,
前記プローブの側面から水中へ、クロロフィル色素を励起する波長のパルスレーザ 一光を照射するレーザー発光部と、 A laser emitting unit that emits a single pulse laser of a wavelength that excites the chlorophyll dye into the water from the side of the probe;
前記プローブの側面力 入光する蛍光を検出する受光部とを備え、 A side force of the probe, and a light receiving unit for detecting the incident fluorescence,
前記受光部の受光領域に対して、前記レーザー発光部のレーザー光照射方向を 交差させ、前記レーザー発光部から照射されるパルスレーザー光を受けて植物ブラ ンクトンが発する蛍光を前記受光部で受光し、その受光量によって植物プランクトン の量を測定する、 The light-receiving area of the light-receiving unit intersects the laser light irradiation direction of the laser light-emitting unit, and the light emitted from the plant blankon is received by the light-receiving unit in response to the pulsed laser light emitted from the laser light-emitting unit. Measure the amount of phytoplankton by the amount of light received,
植物プランクトンの分布計測装置。 Phytoplankton distribution measuring device.
[3] 前記レーザー発光部はプローブに、そのプローブに対して傾斜角度調整可能に取 り付けられ、前記受光部の受光領域とレーザー発光部 8から照射されるパルスレーザ 一光との交差する領域の、前記プローブ力もの距離を調整可能としている、請求の 範囲第 2項記載の植物プランクトンの分布計測装置。 [3] The laser emission unit is attached to the probe so that the inclination angle of the probe can be adjusted. The phytoplankton distribution measuring apparatus according to claim 2, wherein the distance of the probe force can be adjusted.
[4] 前記レーザー光発光部は、前記プローブ内に前記受光部よりも上方に配置されて 、パルスレーザー光を斜め下方に照射し、一方、前記受光部は、その受光領域の中 心軸が前記プローブの中心軸に対して直交する方向となるように前記プローブ内に 設けられている、請求の範囲第 2項記載の植物プランクトンの分布計測装置。
[4] The laser light emitting unit is disposed in the probe above the light receiving unit and irradiates pulse laser light obliquely downward, while the light receiving unit has a central axis of the light receiving region. 3. The phytoplankton distribution measuring apparatus according to claim 2, wherein the phytoplankton distribution measuring apparatus is provided in the probe so as to be in a direction orthogonal to a central axis of the probe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007510379A JP4904505B2 (en) | 2005-03-29 | 2006-03-15 | Phytoplankton distribution measuring method and apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-095726 | 2005-03-29 | ||
JP2005095726 | 2005-03-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006103932A1 true WO2006103932A1 (en) | 2006-10-05 |
Family
ID=37053195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/305142 WO2006103932A1 (en) | 2005-03-29 | 2006-03-15 | Plant plankton distribution measuring method and device therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4904505B2 (en) |
WO (1) | WO2006103932A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013191135A1 (en) * | 2012-06-19 | 2013-12-27 | Jfeアドバンテック株式会社 | Fluorescence detector |
WO2015056862A1 (en) * | 2013-10-15 | 2015-04-23 | 주식회사 한국해양기상기술 | Apparatus for detecting plankton |
WO2015056864A1 (en) * | 2013-10-15 | 2015-04-23 | 주식회사 한국해양기상기술 | Device for examining plankton |
WO2018105414A1 (en) * | 2016-12-09 | 2018-06-14 | 株式会社サタケ | Method for inspecting microorganisms, and apparatus for said method |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0450751A (en) * | 1990-06-18 | 1992-02-19 | Nikken Syst Kk | Measuring instrument for turbidity, chromaticity, or the like |
JPH0815157A (en) * | 1994-07-01 | 1996-01-19 | Kimoto Denshi Kogyo Kk | Plankton sensor in water |
JPH08261934A (en) * | 1995-03-17 | 1996-10-11 | Aretsuku Denshi Kk | Fluorescence detector |
JPH0933426A (en) * | 1995-07-25 | 1997-02-07 | Denso Corp | Device for detecting particle concentration in liquid |
JP2000275135A (en) * | 1999-03-29 | 2000-10-06 | Mitsubishi Heavy Ind Ltd | Apparatus and method for inspection of leakage oil |
JP2001264254A (en) * | 2000-03-15 | 2001-09-26 | Central Res Inst Of Electric Power Ind | Estimating method for chlorophyll content of leaf and estimating device using it |
JP2001527213A (en) * | 1997-12-22 | 2001-12-25 | コミユノテ・ウロペエンヌ | Non-destructive analysis device for vegetation and vehicle equipped with such device on vehicle |
JP2002181710A (en) * | 2000-12-15 | 2002-06-26 | Toshiba Ceramics Co Ltd | Fluorescence detecting and measuring instrument |
JP2003107003A (en) * | 2001-09-28 | 2003-04-09 | Fuji Photo Film Co Ltd | Imaging apparatus |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11289939A (en) * | 1998-04-13 | 1999-10-26 | Tokyo Seitankousho:Kk | Forged steel weight for fishing |
JPH11326210A (en) * | 1998-05-14 | 1999-11-26 | Nec Corp | Chlorophyll fluorescence measuring instrument |
JP3000458B1 (en) * | 1998-11-04 | 2000-01-17 | 鹿島建設株式会社 | Groundwater sampling equipment |
JP3842492B2 (en) * | 1999-09-13 | 2006-11-08 | 株式会社東芝 | Algae concentration measurement system |
WO2003023379A1 (en) * | 2001-09-12 | 2003-03-20 | Apprise Technologies, Inc. | Multichannel fluorosensor |
-
2006
- 2006-03-15 JP JP2007510379A patent/JP4904505B2/en active Active
- 2006-03-15 WO PCT/JP2006/305142 patent/WO2006103932A1/en active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0450751A (en) * | 1990-06-18 | 1992-02-19 | Nikken Syst Kk | Measuring instrument for turbidity, chromaticity, or the like |
JPH0815157A (en) * | 1994-07-01 | 1996-01-19 | Kimoto Denshi Kogyo Kk | Plankton sensor in water |
JPH08261934A (en) * | 1995-03-17 | 1996-10-11 | Aretsuku Denshi Kk | Fluorescence detector |
JPH0933426A (en) * | 1995-07-25 | 1997-02-07 | Denso Corp | Device for detecting particle concentration in liquid |
JP2001527213A (en) * | 1997-12-22 | 2001-12-25 | コミユノテ・ウロペエンヌ | Non-destructive analysis device for vegetation and vehicle equipped with such device on vehicle |
JP2000275135A (en) * | 1999-03-29 | 2000-10-06 | Mitsubishi Heavy Ind Ltd | Apparatus and method for inspection of leakage oil |
JP2001264254A (en) * | 2000-03-15 | 2001-09-26 | Central Res Inst Of Electric Power Ind | Estimating method for chlorophyll content of leaf and estimating device using it |
JP2002181710A (en) * | 2000-12-15 | 2002-06-26 | Toshiba Ceramics Co Ltd | Fluorescence detecting and measuring instrument |
JP2003107003A (en) * | 2001-09-28 | 2003-04-09 | Fuji Photo Film Co Ltd | Imaging apparatus |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013191135A1 (en) * | 2012-06-19 | 2013-12-27 | Jfeアドバンテック株式会社 | Fluorescence detector |
WO2015056862A1 (en) * | 2013-10-15 | 2015-04-23 | 주식회사 한국해양기상기술 | Apparatus for detecting plankton |
WO2015056864A1 (en) * | 2013-10-15 | 2015-04-23 | 주식회사 한국해양기상기술 | Device for examining plankton |
US10126243B2 (en) | 2013-10-15 | 2018-11-13 | Korea Oceanic And Atmospheric System Technology (Koast) | Device for examining plankton |
WO2018105414A1 (en) * | 2016-12-09 | 2018-06-14 | 株式会社サタケ | Method for inspecting microorganisms, and apparatus for said method |
JP2018093758A (en) * | 2016-12-09 | 2018-06-21 | 株式会社サタケ | Microorganism examination method and device therefor |
EP3553164A4 (en) * | 2016-12-09 | 2020-07-15 | Satake Corporation | Method for inspecting microorganisms, and apparatus for said method |
Also Published As
Publication number | Publication date |
---|---|
JPWO2006103932A1 (en) | 2008-09-04 |
JP4904505B2 (en) | 2012-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2813032C (en) | Laser induced breakdown spectroscopy analyser | |
CA2599173C (en) | Fluorescence meter | |
JP4824017B2 (en) | Apparatus and method for inspecting material flow by light scattering inside the material | |
US4876458A (en) | Apparatus for measuring particles in liquid | |
US8208982B2 (en) | Evanescent catheter system | |
US9194785B2 (en) | Sensor system for detecting and specifying individual particles in a fluid | |
US20060188000A1 (en) | Apparatus for measuring temperature using luminescence thermometry | |
RU2005117607A (en) | DEVICE AND METHOD FOR CONTROL OF OBJECT OF INSPECTION | |
WO2017060105A1 (en) | Particle sensor for particle detection | |
WO2006007883A1 (en) | Fluorometer | |
JP4904505B2 (en) | Phytoplankton distribution measuring method and apparatus | |
KR20120013297A (en) | Method and system for analysing solid particles in a medium | |
US10247665B2 (en) | Device for determining a concentration of a chemical substance | |
JP2017536550A (en) | Integration of fluorescence detection function into absorbance measuring device | |
CN109564163A (en) | Method and apparatus for determining the concentration of the substance in liquid medium | |
JP7407160B2 (en) | Flowing nanoparticle measuring device and method for determining nanoparticles using the same | |
EP0890092B1 (en) | Optical instrument | |
EP0791172B1 (en) | A device for detecting fluorescence | |
JP4594810B2 (en) | Method for controlling position of particles in sample liquid and particle measuring apparatus | |
JP2017083394A (en) | Photoprobe and optical measurement method | |
JP5812546B2 (en) | Object detection method, rider device, and environment measurement method | |
WO2017174977A1 (en) | Particle characterisation | |
JP2004251766A (en) | Temperature measuring method, and measuring instrument used therefor | |
JP4621893B2 (en) | Object investigation method and investigation apparatus | |
JP2003307448A (en) | Boundary location detection apparatus and boundary location detection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007510379 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06729163 Country of ref document: EP Kind code of ref document: A1 |