JPH0815086B2 - Method for producing electrolyte plate for molten carbonate fuel cell - Google Patents

Method for producing electrolyte plate for molten carbonate fuel cell

Info

Publication number
JPH0815086B2
JPH0815086B2 JP61159135A JP15913586A JPH0815086B2 JP H0815086 B2 JPH0815086 B2 JP H0815086B2 JP 61159135 A JP61159135 A JP 61159135A JP 15913586 A JP15913586 A JP 15913586A JP H0815086 B2 JPH0815086 B2 JP H0815086B2
Authority
JP
Japan
Prior art keywords
electrolyte plate
electrolyte
fuel cell
molten carbonate
carbonate fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61159135A
Other languages
Japanese (ja)
Other versions
JPS6316566A (en
Inventor
秀行 大図
和夫 篠崎
芳浩 赤坂
章彦 柘植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61159135A priority Critical patent/JPH0815086B2/en
Publication of JPS6316566A publication Critical patent/JPS6316566A/en
Publication of JPH0815086B2 publication Critical patent/JPH0815086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は溶融炭酸塩燃料電池用電解質板の製造方法の
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an improvement in a method for producing an electrolyte plate for a molten carbonate fuel cell.

(従来の技術) 溶融炭酸塩燃料電池は、対向して配置された一対のガ
ス拡散電極、すなわち燃料極と空気極との間に電解質と
して炭酸塩を保持して単位電池とし、通常この単位電池
をインターコネクタを介在させて複数積層して構成され
ている。このような構成の溶融炭酸塩燃料電池は、高温
下で炭酸塩を溶融させ、積層体の燃料極に水素及び一酸
化炭素を含む燃料ガスを、また空気極に炭素及び二酸化
炭素を含む混合ガスをそれぞれ通流させることにより運
転される。
(Prior Art) A molten carbonate fuel cell is a unit cell in which a carbonate is held as an electrolyte between a pair of gas diffusion electrodes arranged opposite to each other, that is, a fuel electrode and an air electrode. Are laminated by interposing an interconnector. The molten carbonate fuel cell having such a configuration melts carbonate at a high temperature, and a fuel gas containing hydrogen and carbon monoxide is contained in the fuel electrode of the laminate, and a mixed gas containing carbon and carbon dioxide is contained in the air electrode. It is operated by letting each flow.

通常、溶融炭酸塩燃料電池には、電解質タイルと呼ば
れる電解質板が使用されている。従来、この電解質板
は、炭酸塩の粉末と、炭酸塩を保持するセラミックス微
粉末、セラミックス繊維からなる補強材とを混合し、こ
の混合物を成形用金型に注入して400〜500℃で200〜500
kg/cm2の圧力を加えるというホットプレス法により製造
されている。このホットプレス法で得られる電解質板は
高密度で電解質の保持機能が優れているため、発電特性
が良好である。
Generally, an electrolyte plate called an electrolyte tile is used in a molten carbonate fuel cell. Conventionally, this electrolyte plate is prepared by mixing carbonate powder, ceramic fine powder holding carbonate, and a reinforcing material composed of ceramic fibers, and injecting this mixture into a molding die to obtain 200 at 400 to 500 ° C. ~ 500
It is manufactured by the hot pressing method in which a pressure of kg / cm 2 is applied. Since the electrolyte plate obtained by this hot pressing method has a high density and an excellent electrolyte holding function, it has good power generation characteristics.

ところで、溶融炭酸塩燃料電池用電解質板を製造する
にあたっては、量産化、大型化及び薄層化が要求されて
いる。しかし、従来のホットプレス法は上記のいずれの
点についても問題がある。
By the way, in manufacturing an electrolyte plate for a molten carbonate fuel cell, mass production, upsizing and thinning are required. However, the conventional hot pressing method has problems in any of the above points.

すなわち、ホットプレス法では、炭酸塩が軟化・溶融
を起す400℃以上の高温で金型成形するため、金型の昇
温・降温に時間を要する。特に、降温時に急激な冷却を
行なうと電解質板の破損が生じるので、これを防止する
ためには徐冷する必要があり、製造時間は長くなってし
まう。しかも、高温の溶融炭酸塩は腐食性が強いため、
金型の消耗が助長される。したがって、ホットプレス法
で電解質板の量産化を達成することは極めて困難であ
る。
That is, in the hot pressing method, since the mold is molded at a high temperature of 400 ° C. or higher at which the carbonate softens and melts, it takes time to raise and lower the temperature of the mold. In particular, if rapid cooling is performed when the temperature is lowered, the electrolyte plate may be damaged. Therefore, in order to prevent this, it is necessary to gradually cool the electrolyte plate, which increases the manufacturing time. Moreover, since high temperature molten carbonate is highly corrosive,
The wear of the mold is promoted. Therefore, it is extremely difficult to achieve mass production of electrolyte plates by the hot pressing method.

また、ホットプレス法を用いた場合、電解質板は金型
内部で変形応力を受けるため、製造中に割れを生じやす
い。また、製造中に割れが生じなかった場合でも、製造
時に導入された残留応力が保管中に解放されることによ
って遅れ割れが生じやすい。こうした製造中や保管中に
おける割れの発生は、電解質板の大型化に伴って顕著と
なる。更に、ホットプレス法では、1mm以下の厚さの電
解質板を割れを発生させずに製造することは困難であ
り、特に大型化に伴って薄層化は一層困難となる。しか
も、ホットプレス法により製造された電解質板は可撓性
に乏しく、操作時に外部からの衝撃によって脆性破壊を
生じやすい。このようにホットプレス法は電解質板の大
型化及び薄層化に対しても不利である。
Further, when the hot pressing method is used, the electrolyte plate is subject to a deformation stress inside the mold, and thus cracks are likely to occur during manufacturing. Even if no cracks occur during manufacturing, delayed cracking is likely to occur because the residual stress introduced during manufacturing is released during storage. The occurrence of cracks during manufacturing or storage becomes more remarkable as the size of the electrolyte plate increases. Further, with the hot pressing method, it is difficult to manufacture an electrolyte plate having a thickness of 1 mm or less without causing cracks, and it becomes more difficult to make the layer thinner as the size increases. In addition, the electrolyte plate manufactured by the hot pressing method has poor flexibility, and brittle fracture is likely to occur due to external impact during operation. As described above, the hot pressing method is also disadvantageous in increasing the size and thickness of the electrolyte plate.

そこで、比較的低温でシート状の電解質板を製造する
ために、例えばドクターブレード法を用いることが考え
られる。しかし、本発明者らの研究によれば、ドクター
ブレード法は電解質板の製造方法として不適当であるこ
とが判明した。
Therefore, in order to manufacture a sheet-shaped electrolyte plate at a relatively low temperature, it is possible to use, for example, a doctor blade method. However, studies by the present inventors have revealed that the doctor blade method is unsuitable as a method for producing an electrolyte plate.

すなわち、シート状の電解質板に可撓性を与えるため
には、少なくとも20重量%以上のバインダーを添加する
必要があり、その見掛け密度比は60%以上にならない。
このような電解質板からバインダーが揮散した後には、
50%以上の気孔を含む多孔質体となる。このため、電解
質の保持特性が著しく低下し、しかも薄層であるため、
昇温直後に割れが発生し、クロスオーバーが生じる。し
たがって、短時間の運転で発電が不可能となり、良好な
発電特性が得られないという問題がある。
That is, in order to impart flexibility to the sheet-shaped electrolyte plate, it is necessary to add at least 20% by weight or more of a binder, and the apparent density ratio does not exceed 60%.
After the binder volatilizes from such an electrolyte plate,
It becomes a porous body containing 50% or more of pores. For this reason, the electrolyte retention properties are significantly reduced, and since it is a thin layer,
Immediately after the temperature rises, cracking occurs and crossover occurs. Therefore, there is a problem in that it is impossible to generate power in a short time of operation, and good power generation characteristics cannot be obtained.

(発明が解決しようとする問題点) 本発明は上記問題点を解決するためになされたもので
あり、量産化、大型化及び薄層化が可能な溶融炭酸塩燃
料電池用電解質板の製造方法を提供することを目的とす
る。
(Problems to be Solved by the Invention) The present invention has been made to solve the above problems, and is a method for producing an electrolyte plate for a molten carbonate fuel cell, which can be mass-produced, upsized, and thinned. The purpose is to provide.

[発明の構成] (問題点を解決するための手段) 本発明の溶融炭酸塩燃料電池用電解質板の製造方法
は、混合炭酸塩電解質、セラミック微粉末、セラミック
繊維、並びにオレフィン系共重合樹脂、オレフィン−ア
クリル系共重合樹脂及びオレフィン−ビニルエステル系
共重合樹脂からなる群より選択される少なくとも1種の
100〜200℃においてゴム弾性を有する有機バインダーを
非水溶媒を用いて混合し、乾燥した後、100〜200℃の加
熱ローラーによりシート状に形成することを特徴とする
ものである。
[Structure of the Invention] (Means for Solving the Problems) A method for producing an electrolyte plate for a molten carbonate fuel cell according to the present invention includes a mixed carbonate electrolyte, ceramic fine powder, ceramic fibers, and an olefin-based copolymer resin, At least one selected from the group consisting of olefin-acrylic copolymer resin and olefin-vinyl ester copolymer resin
An organic binder having rubber elasticity at 100 to 200 ° C. is mixed with a non-aqueous solvent, dried, and then formed into a sheet by a heating roller at 100 to 200 ° C.

本発明において、電解質となる混合炭酸塩としてはLi
2CO3/K2CO3等、保持材となるセラミックス微粉末として
は、LiAlO2粉末等、補強材となるセラミックス繊維とし
てはLiAlO2繊維等がそれぞれ用いられる。
In the present invention, Li is used as the mixed carbonate as the electrolyte.
Etc. 2 CO 3 / K 2 CO 3 , as the ceramic powder serving as a holding member, LiAlO 2 powder or the like, used LiAlO 2 fibers each as ceramic fibers as a reinforcing material.

本発明に用いられるバインダーは、ドクターブレード
法の検討結果からも判断できるように、混合炭酸塩、セ
ラミックス微粉末、セラミックス繊維及びバインダーの
混合物中における添加量が20重量%以下で、電解質板に
可撓性を与えることができ、しかも電解質板を緻密化で
きるものが選択される。また、バインダーは電池作動時
において昇温途中に揮散させるので、毒性、腐蝕性を有
する有害な気体を発生しないものが望ましい。このよう
な特性を有するバインダーとしては、例えば、エチレン
−プロピレン共重合樹脂等のオレフィン系共重合樹脂、
エチレン−エチルアクリレート共重合樹脂等のオレフィ
ン−アクリル系共重合樹脂、エチレン−酢酸ビニル共重
合樹脂等のオレフィン−ビニルエステル系共重合樹脂が
挙げられる。特に、ゴム弾性を有するものが望ましい。
なお、バインダーとしては、ドクターブレード法で一般
的に使用されているポリビニルブチラールや可塑材とし
てのジオクチルフタレート系等の使用も考えられる。し
かし、これらのバインダーでは加熱時に電解質板に可撓
性を与えることが困難であり、加熱ロールを通過させた
際に割れが発生しやすくなるので望ましくない。
The binder used in the present invention, as can be judged from the examination results of the doctor blade method, the mixed carbonate, the ceramic fine powder, the addition amount of 20% by weight or less in the mixture of the ceramic fiber and the binder, it is possible to the electrolyte plate. A material that can give flexibility and can densify the electrolyte plate is selected. Further, since the binder is volatilized during the temperature rise during the operation of the battery, it is desirable that the binder does not generate a harmful gas that is toxic and corrosive. As the binder having such characteristics, for example, ethylene-olefin copolymer resin such as propylene copolymer resin,
Examples thereof include olefin-acrylic copolymer resins such as ethylene-ethyl acrylate copolymer resins and olefin-vinyl ester copolymer resins such as ethylene-vinyl acetate copolymer resins. In particular, those having rubber elasticity are desirable.
As the binder, polyvinyl butyral generally used in the doctor blade method or dioctyl phthalate-based plasticizer may be used. However, these binders are not desirable because it is difficult to give flexibility to the electrolyte plate at the time of heating and cracks easily occur when passing through a heating roll.

本発明において、バインダーは混合炭酸塩、保持材及
び補強材の混合物に粉末として添加してもよいが、非水
溶媒に溶解させるか又はコロイド状に分散させて液体と
して添加することが望ましい。これは、液体として混合
すれば、粉末として混合する場合と比較して、バインダ
ー量を低減しても電解質板に可撓性を与えることがで
き、しかも電解質板の緻密化が容易となり電解質の保持
特性が向上するためである。
In the present invention, the binder may be added as a powder to the mixture of the mixed carbonate, the holding material and the reinforcing material, but it is preferably added as a liquid by being dissolved in a non-aqueous solvent or dispersed in a colloidal form. This is because, when mixed as a liquid, compared to the case of mixing as a powder, flexibility can be given to the electrolyte plate even if the amount of binder is reduced, and the electrolyte plate can be easily densified to retain the electrolyte. This is because the characteristics are improved.

本発明において使用される非水溶媒としては、トルエ
ン、ベンゼン等の一般的な溶媒が用いられる。
As the non-aqueous solvent used in the present invention, general solvents such as toluene and benzene are used.

更に、本発明において、乾燥された混合粉末を加熱ロ
ールによって成形する際、ロール温度は100〜200℃に設
定される。
Further, in the present invention, when the dried mixed powder is molded by the heating roll, the roll temperature is set to 100 to 200 ° C.

(作用) このような方法によれば、従来のホットプレス法と異
なり、加熱ローラーが原料混合物に直線的に接触するこ
とから高い荷重を加える方法であり、また有機バインダ
ーとしてオレフィン系共重合樹脂、オレフィン−アクリ
ル系共重合樹脂及びオレフィン−ビニルエステル系共重
合樹脂からなる群より選択される少なくとも1種の100
〜200℃の低温でゴム弾性を有する材料を用いているの
で、電解質板に可撓性を付与して加熱ローラーの荷重に
耐え、応力を発生させずに結着させることができる。よ
って、100〜200℃の低温で連続的に密度の高い電解質板
を成形することができ、目的とする電解質板が大型の場
合でも加熱温度を低くし、かつ製造時間を大幅に短縮す
ることができ、また見掛け密度比(見掛け密度/理論密
度)が80%以上で電解質の保持特性の良好な電解質板を
得ることができる。この結果、電解質板を大型化、薄層
化しても操作性が良好で、製造中の割れや保管中の遅れ
割れも生じず、しかも密度が高く電解質の保持特性が良
好な電解質板を得ることができる。
(Function) According to such a method, unlike the conventional hot pressing method, the heating roller is in linear contact with the raw material mixture, so that a high load is applied, and an olefin copolymer resin as an organic binder, At least one selected from the group consisting of olefin-acrylic copolymer resin and olefin-vinyl ester copolymer resin;
Since a material having rubber elasticity at a low temperature of up to 200 ° C. is used, it is possible to impart flexibility to the electrolyte plate, withstand the load of the heating roller, and bind without causing stress. Therefore, it is possible to continuously form a dense electrolyte plate at a low temperature of 100 to 200 ° C., and even if the target electrolyte plate is large, the heating temperature can be lowered and the manufacturing time can be significantly shortened. Further, it is possible to obtain an electrolyte plate having an apparent density ratio (apparent density / theoretical density) of 80% or more and having good electrolyte retention characteristics. As a result, it is possible to obtain an electrolyte plate which has good operability even if the electrolyte plate is made large and thin and does not cause cracks during production or delayed cracks during storage, and has high density and good electrolyte retention characteristics. You can

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Hereinafter, the Example of this invention is described with reference to drawings.

最初に、以下の実施例1〜3において用いられた加熱
ロールの概略を第1図を参照して説明する。第1図にお
いて、一対の加熱ロール1a、1bは上下に配置され、これ
らの前後には前方ガイド2a及び後方ガイド2bがそれぞれ
配置されている。これら前方ガイド2a及び後方ガイド2b
上にアルミニウム薄板3が載せられ、更にこのアルミニ
ウム薄板3上に混合粉4aが載せられ、加熱ロール1a、1b
間を通過してシート状の電解質板4bが成形される。
First, an outline of the heating roll used in the following Examples 1 to 3 will be described with reference to FIG. In FIG. 1, a pair of heating rolls 1a and 1b are arranged vertically, and a front guide 2a and a rear guide 2b are arranged in front of and behind them. These front guide 2a and rear guide 2b
The aluminum thin plate 3 is placed on top of this, and the mixed powder 4a is further placed on this aluminum thin plate 3, and the heating rolls 1a, 1b
A sheet-shaped electrolyte plate 4b is formed by passing through the spaces.

実施例1 まず、K2CO329g、Li2CO326g、比表面積15〜25m2/gのL
iAlO2微粉末35g及びLiAlO2繊維5gを秤量してアルミナポ
ットに入れ、アセトンを加えて20時間混合した後、乾燥
した。一方、予めバインダーとなるエチレン−プロピレ
ン共重合樹脂10gを300mlのトルエン中に加熱溶解して用
意しておいた。次に、前記乾燥した混合粉及びバインダ
ーのトルンエン溶液をアルミナポット中に入れ、5時間
混合した後、乾燥して加熱ローラー用原料混合粉を調製
した。
Example 1 First, 29 g of K 2 CO 3 , 26 g of Li 2 CO 3 and L having a specific surface area of 15 to 25 m 2 / g
35 g of iAlO 2 fine powder and 5 g of LiAlO 2 fiber were weighed and placed in an alumina pot, acetone was added and mixed for 20 hours, and then dried. On the other hand, 10 g of an ethylene-propylene copolymer resin as a binder was prepared by heating and dissolving it in 300 ml of toluene. Next, the dried mixed powder and the toluene solution of the binder were put into an alumina pot, mixed for 5 hours, and then dried to prepare a raw material mixed powder for a heating roller.

次いで、この原料混合粉を第1図図示の加熱ローラー
のアルミニウム薄板3上に厚さが5mm程度となるよう
に、10cm×20cmの矩形状して載せ、アルミニウム薄板3
とともに加熱ロール1a、1b間を通過させて10cm×30cmの
電解質板を成形した。なお、成形条件は、ロール間隔0.
8mm、ロール温度140℃、ロール周速20cm/min、加圧2to
n、製造時間1.5分とした。
Next, this raw material mixed powder is placed on the aluminum thin plate 3 of the heating roller shown in FIG. 1 in a rectangular shape of 10 cm × 20 cm so as to have a thickness of about 5 mm.
At the same time, it was passed between the heating rolls 1a and 1b to form a 10 cm × 30 cm electrolyte plate. The molding condition is that the roll interval is 0.
8mm, roll temperature 140 ℃, roll peripheral speed 20cm / min, pressurization 2to
The manufacturing time was 1.5 minutes.

実施例2 バインダーとしてエチレン−エチルアクリレート共重
合樹脂を用いた以外は上記実施例1と全く同様にして10
cm×30cmの電解質板を成形した。
Example 2 Except for using an ethylene-ethyl acrylate copolymer resin as a binder, the same procedure as in Example 1 was performed.
A cm × 30 cm electrolyte plate was formed.

実施例3 バインダーとしてエチレン−酢酸ビニル共重合樹脂を
用いた以外は上記実施例1と全く同様にして10cm×30cm
の電解質板を成形した。
Example 3 10 cm × 30 cm in the same manner as in Example 1 except that an ethylene-vinyl acetate copolymer resin was used as a binder.
The electrolyte plate of was molded.

比較例 比較のために、従来のホットプレス法により電解質板
を製造した。まず、K2CO329g、Li2CO326g、LiAlO2微粉
末35g及びLiAlO2繊維5gを秤量してアルミナポットに入
れ、アセトンを加えて20時間混合した後、乾燥した。次
に、この混合粉40gを10cm角のホットプレス成形用金型
に充填し、3時間かけて460℃まで昇温し、460℃で300k
g/cm2の圧力を加えて1時間保持した後、3時間かけて1
00℃まで降温して成形された電解質板を取出した。
Comparative Example For comparison, an electrolyte plate was manufactured by a conventional hot pressing method. First, 29 g of K 2 CO 3 , 26 g of Li 2 CO 3 , 35 g of LiAlO 2 fine powder and 5 g of LiAlO 2 fiber were weighed and placed in an alumina pot, acetone was added and mixed for 20 hours, and then dried. Next, 40 g of this mixed powder is filled in a 10 cm square hot press molding die, heated to 460 ° C. over 3 hours, and heated to 460 ° C. for 300 k
After applying pressure of g / cm 2 and holding for 1 hour, 1 hour over 3 hours
The temperature was lowered to 00 ° C and the molded electrolyte plate was taken out.

得られた各電解質板の見掛け密度(理論密度2.42g/cm
3)、厚み公差及び破断歪み量を測定した。これらの結
果を製造条件の一部とともに下記表にまとめて示す。な
お、厚み公差は、各電解質板(実施例1〜3では寸法10
cm×30cm、比較例では寸法10cm×10cm)について、幅方
向及び長手方向にそれぞれ3本の直線を引き、これらの
交点合計9箇所で測定された厚みの最大値と最小値との
差である。また、破断歪み量は、各電解質板から長さ30
mm、幅4mmの短冊状試験片を切出し、クロスヘッドスピ
ード0.5mm/min、ゲージ長さ20mmで3点曲げを行ない、
破断に至る歪み量を測定した。
Apparent density of each obtained electrolyte plate (theoretical density 2.42g / cm
3 ), thickness tolerance and breaking strain amount were measured. The results are shown in the table below together with some of the manufacturing conditions. In addition, the thickness tolerance is the size of each electrolyte plate
cm × 30 cm, dimensions of 10 cm × 10 cm in the comparative example), three straight lines are drawn in each of the width direction and the longitudinal direction, and the difference between the maximum value and the minimum value of the thickness measured at a total of 9 points of intersections thereof. . In addition, the amount of strain at break is 30 mm from each electrolyte plate.
mm, 4 mm wide strip-shaped test pieces were cut out and subjected to 3-point bending at a crosshead speed of 0.5 mm / min and a gauge length of 20 mm.
The amount of strain leading to breakage was measured.

上記表から明らかなように、製造時間は実施例1〜3
の方が比較例(ホットプレス法)よりも大幅に短縮する
ことができ、本発明方法は量産化に適している。また、
電解質板の見掛け密度は実施例1〜3の方が比較例より
も小さくなっているが、実施例1〜3でも見掛け密度比
は80%以上であり、電解質の保持特性は十分高い。ま
た、実施例1〜3では厚みの均一な電解質板を製造する
ことができる。更に、実施例1〜3で得られた電解質板
は比較例で得られた電解質板よりも破断歪み量が大き
く、可撓性に優れていることがわかる。
As is clear from the above table, the manufacturing time was
In this case, the method can be significantly shortened as compared with the comparative example (hot pressing method), and the method of the present invention is suitable for mass production. Also,
The apparent density of the electrolyte plate is smaller in Examples 1 to 3 than in the comparative example. However, in Examples 1 to 3, the apparent density ratio is 80% or more, and the electrolyte retention property is sufficiently high. Further, in Examples 1 to 3, it is possible to manufacture an electrolyte plate having a uniform thickness. Furthermore, it can be seen that the electrolyte plates obtained in Examples 1 to 3 have a larger amount of breaking strain than the electrolyte plates obtained in Comparative Examples and are excellent in flexibility.

[発明の効果] 以上詳述したように本発明方法によれば、大型かつ薄
層化された溶融炭酸塩燃料電池用の電解質板を量産でき
る等工業上極めて顕著な効果を奏するものである。
[Effects of the Invention] As described in detail above, the method of the present invention has a very remarkable industrial effect such as mass production of a large-sized and thin-layered electrolyte plate for a molten carbonate fuel cell.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例において用いられた加熱ローラ
ーの概略構成図である。 1a、1b……加熱ロール、2a……前方ガイド、2b……後方
ガイド、3……アルミニウム薄板、4a……原料混合粉、
4b……電解質板。
FIG. 1 is a schematic configuration diagram of a heating roller used in an example of the present invention. 1a, 1b ... heating roll, 2a ... front guide, 2b ... rear guide, 3 ... aluminum thin plate, 4a ... raw material mixed powder,
4b ... Electrolyte plate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柘植 章彦 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝総合研究所内 (56)参考文献 特開 昭60−101876(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akihiko Tsuge No. 1 Komukai Toshiba-cho, Sachi-ku, Kawasaki-shi, Kanagawa Inside the Toshiba Research Institute Co., Ltd. (56)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】混合炭酸塩電解質、セラミック微粉末、セ
ラミック繊維、並びにオレフィン系共重合樹脂、オレフ
ィン−アクリル系共重合樹脂及びオレフィン−ビニルエ
ステル系共重合樹脂からなる群より選択される少なくと
も1種の少なくとも100〜200℃においてゴム弾性を有す
る有機バインダーを非水溶媒を用いて混合し、乾燥した
後、100〜200℃の加熱ローラーによりシート状に成形す
ることを特徴とする溶融炭酸塩燃料電池用電解質板の製
造方法。
1. A mixed carbonate electrolyte, ceramic fine powder, ceramic fibers, and at least one selected from the group consisting of olefin copolymer resins, olefin-acrylic copolymer resins, and olefin-vinyl ester copolymer resins. Of the molten carbonate fuel cell, wherein an organic binder having rubber elasticity at least at 100 to 200 ° C. is mixed using a non-aqueous solvent, dried, and then formed into a sheet by a heating roller at 100 to 200 ° C. For manufacturing electrolyte plate for automobile.
【請求項2】有機バインダーが非水溶媒に溶解するか、
又は非水溶媒との親和性が高いものであること特徴とす
る特許請求の範囲第1項記載の溶融炭酸塩燃料電池用電
解質板の製造方法。
2. An organic binder dissolved in a non-aqueous solvent,
Alternatively, the method for producing an electrolyte plate for a molten carbonate fuel cell according to claim 1, which has a high affinity with a non-aqueous solvent.
JP61159135A 1986-07-07 1986-07-07 Method for producing electrolyte plate for molten carbonate fuel cell Expired - Fee Related JPH0815086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61159135A JPH0815086B2 (en) 1986-07-07 1986-07-07 Method for producing electrolyte plate for molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61159135A JPH0815086B2 (en) 1986-07-07 1986-07-07 Method for producing electrolyte plate for molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS6316566A JPS6316566A (en) 1988-01-23
JPH0815086B2 true JPH0815086B2 (en) 1996-02-14

Family

ID=15687010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61159135A Expired - Fee Related JPH0815086B2 (en) 1986-07-07 1986-07-07 Method for producing electrolyte plate for molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH0815086B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3405918B2 (en) 1998-03-30 2003-05-12 株式会社東芝 Method for manufacturing molten carbonate fuel cell electrolyte plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60101876A (en) * 1983-11-08 1985-06-05 Agency Of Ind Science & Technol Manufacture method of fused carbonate salts type fuel cell

Also Published As

Publication number Publication date
JPS6316566A (en) 1988-01-23

Similar Documents

Publication Publication Date Title
US10164287B2 (en) All-solid battery and manufacturing method therefor
JP5803700B2 (en) Inorganic all-solid secondary battery
EP1916228A1 (en) Method for producing solid electrolyte sheet and solid electrolyte sheet
GB2117746A (en) Fuel cell electrode substrates
EP2657204A1 (en) Heat insulating material and method for producing same
US5453101A (en) Process for producing composite active electrolyte-matrix and laminated component tapes for molten carbonate fuel cells
JP3405918B2 (en) Method for manufacturing molten carbonate fuel cell electrolyte plate
KR20100047703A (en) An electrolyte-filled and reinforced matrix for molten carbonate fuel cell and method for producing the same
KR20180041474A (en) A method of manufacturing solide eflectolyte thin using tape casting
CN100353588C (en) Preparation method of solid oxide fuel battery electrolyte diaphram
JP3971056B2 (en) Manufacturing method of ceramic sheet
CN113698199A (en) Oxide ceramic electrolyte membrane and preparation method thereof
JPH0815086B2 (en) Method for producing electrolyte plate for molten carbonate fuel cell
JPWO2019004001A1 (en) Ion-conductive composite body, all-solid-state battery, and methods for producing the same
JP4653135B2 (en) Ceramic sheet
JPS63224155A (en) Electrolyte plate for molten carbonate fuel cell
JP2001009819A (en) Ceramic sheet and manufacture thereof
CN115784751B (en) Method for preparing high-toughness ceramic based on laser etching technology
EP3670474B1 (en) Ceramic sheet and method for manufacturing the same
JPH0935730A (en) Molten carbonate fuel cell electrolyte matrix sheet and its manufacture
KR101254968B1 (en) Fabricating method of anode for molten carbonate fuel cell
JP3104295B2 (en) Method for producing molten salt fuel cell
JPH0127967B2 (en)
KR20110117780A (en) Anode for molten carbonate fuel cell and preparation method thereof
JPH0650643B2 (en) Method for manufacturing electrolyte plate for molten carbonate fuel cell

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees