JPH0814994A - Method and instrument for measuring magnetic physical quantity of sample using ac electromagnetic induction system, method and instrument for measuring weight, and ac electromagnetic induction sensor - Google Patents

Method and instrument for measuring magnetic physical quantity of sample using ac electromagnetic induction system, method and instrument for measuring weight, and ac electromagnetic induction sensor

Info

Publication number
JPH0814994A
JPH0814994A JP16636694A JP16636694A JPH0814994A JP H0814994 A JPH0814994 A JP H0814994A JP 16636694 A JP16636694 A JP 16636694A JP 16636694 A JP16636694 A JP 16636694A JP H0814994 A JPH0814994 A JP H0814994A
Authority
JP
Japan
Prior art keywords
measurement
magnetic field
measured
signal
external magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16636694A
Other languages
Japanese (ja)
Inventor
Kyukichi Katagiri
久吉 片桐
Makoto Munakata
誠 宗像
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KATAGIRI SEISAKUSHO KK
Original Assignee
KATAGIRI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KATAGIRI SEISAKUSHO KK filed Critical KATAGIRI SEISAKUSHO KK
Priority to JP16636694A priority Critical patent/JPH0814994A/en
Publication of JPH0814994A publication Critical patent/JPH0814994A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To very quickly measure the magnetic physical quantity of a sample to be measured in a non-contacting state with higher accuracy than that of the conventional example. CONSTITUTION:By providing an AC electromagnetic induction sensor 1 composed of an external AC magnetic field impressing coil 5 and measuring coil 6 and moving a sample 7 to be measured along the direction of the magnetic field generated by the coil 5, the phase of an alternating current is changed so as to change the magnetic field and to induce an electromotive force in the measurement coil 6. Then, after a composite signal which is the sum of a signal induced by the external AC magnetic field and the signal of the magnetic physical quantity of the sample is measured as a signal to be measured, the measured signal of the net magnetic physical quantity of the sample is detected by removing the signal induced by the external magnetic field and the detected signal is digitized into a numerical signal as a basic measured signal. Finally, the magnetic physical quantity of the sample is calculated by multiplying the numerical signal by a magnetic physical quantity conversion factor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用範囲】本願発明は、磁性金属、その他の
磁性材で製造した原料や部品や商品などといった被測定
試料の磁気的物理量を電磁誘導の法則により生じる起電
力を測定することにより、非接触にて自動的にしかもス
ピーディに測定せんとする交流電磁誘導方式による被測
定試料の磁気的物理量の測定方法とそのための測定装
置、および重量測定方法とそのための重量測定装置に関
する。このような測定方法や測定装置は、磁気的物理量
から演算できる重量測定や質量測定や選別、磁気的物理
量の変化による形状や寸法の相違、磁性金属などの組成
の相違、熱処理の相違、地金的構造の相違、硬さの相
違、傷の有無などの判別などに利用出来るものである。
INDUSTRIAL APPLICABILITY The present invention is based on measuring the electromotive force generated by the law of electromagnetic induction for the magnetic physical quantity of a sample to be measured such as raw materials, parts and products manufactured from magnetic metals and other magnetic materials. The present invention relates to a method for measuring a magnetic physical quantity of a sample to be measured by an alternating-current electromagnetic induction method that automatically and non-contactly measures quickly, a measuring apparatus therefor, a weight measuring method and a weight measuring apparatus therefor. Such measuring methods and measuring devices include weight measurement, mass measurement and selection that can be calculated from magnetic physical quantities, differences in shape and size due to changes in magnetic physical quantities, differences in composition of magnetic metals, differences in heat treatment, and ingots. It can be used to discriminate between different structures, differences in hardness, scratches, etc.

【0002】[0002]

【従来の技術】従来より磁性金属、その他の磁性材で製
造した被測定試料については、磁束の変化にともない電
磁誘導の法則により起電力を誘起するという特性がある
ことに着目して、これを測定することにより自動的且つ
スピーディに被測定試料の組成相違や寸法相違、傷の発
見などの方法、あるいはこれを具体化した組成判定装置
や、電磁誘導探傷装置、欠陥検出装置などが、各方面で
研究開発されている。
2. Description of the Related Art Conventionally, a sample to be measured made of a magnetic metal or other magnetic material has a characteristic that an electromotive force is induced by the law of electromagnetic induction with a change in magnetic flux. By measuring automatically and speedily by measuring the difference in composition or size of the sample to be measured, the method of finding flaws, etc., or the composition judging device, electromagnetic induction flaw detector, defect detector, etc. Is being researched and developed by.

【0003】しかし、外部磁界の影響や、測定感度のコ
ントロールが困難なうえ、測定した起電力の信号は、一
般に外部磁界により誘起される信号と被測定試料に関す
る磁気物理量の信号との複合信号になっており、これを
区分して被測定試料の正味磁気的物理量だけを抽出して
測定することは技術的に困難とされ、利用されていなか
った。
However, it is difficult to control the influence of the external magnetic field and the measurement sensitivity, and the measured electromotive force signal is generally a composite signal of the signal induced by the external magnetic field and the signal of the magnetic physical quantity related to the sample to be measured. It is technically difficult to separate and measure only the net magnetic physical quantity of the sample to be measured, and it has not been used.

【0004】また、被測定試料の重量や質量の測定法に
は、昔から種々の計りが開発されている。しかし従来の
計りは、重力の加速度に基づく重量すなわち重力を利用
して、既知の質量に作用する重力と直接あるいはテコを
介してつり合わせて計る方式のものである。最近は、測
定精度の高いものとして、電子計り・ロードセルが開発
され、その測定精度は、0.001gまで測れるように
なっている。しかし、一般に計りは、つり合わせるのに
時間がかかり、迅速な重量計測は困難とされていた。た
とえば電子はかりの場合には、計測値が安定するまでに
7秒/個ほど時間がかかり、作業環境の振動に弱いう
え、形状により計測器までの搬送手段が難しいなどとい
った技術的問題点が多く、現在のところ製造業の流れ作
業に組み入れる自動化、省力化が困難であった。そのた
め、工場の重量検査においては、多くの場合、所定のロ
ッド毎に手作業による数個の抜き取り検査方式を採用し
ているのが現状である。
Various methods have been developed for a long time for measuring the weight and mass of a sample to be measured. However, the conventional measuring method is a method of utilizing the weight based on the acceleration of gravity, that is, gravity, and measuring the balance with gravity acting on a known mass directly or through a lever. Recently, an electronic scale / load cell has been developed as a device having high measurement accuracy, and the measurement accuracy can be measured up to 0.001 g. However, in general, it takes time to make a balance and it is difficult to measure the weight quickly. For example, in the case of electronic scales, it takes about 7 seconds / piece to stabilize the measured values, and it is vulnerable to the vibration of the working environment, and there are many technical problems such as the transportation means to the measuring instrument is difficult due to its shape. At present, it has been difficult to automate and save labor in the assembly line work of the manufacturing industry. For this reason, in the weight inspection of factories, in many cases, a manual sampling inspection method is employed for each predetermined rod.

【0005】[0005]

【発明が解決しようとする問題点】そこで本発明者達
は、自動化、省力化、迅速化に適した非接触式の重量測
定方法や装置の研究開発に取り組むことになった。鋭意
研究を進めた結果、「電磁誘導コイルの電圧は、試材の
体積(重量)に比例して変化する。」との技術知見に着
目して、先に電磁誘導方式を利用した重量測定方法と重
量測定装置と筒型電磁誘導センサーについて開発した
(特願平5−176279号)。この開発技術は、非接
触による迅速な重量測定技術として製造業の流れ作業に
組み入れる自動化、省力化が可能な技術として画期的な
ものである。この測定法の基本的方法は、磁界中をその
磁界の方向に沿って被測定磁性材料を通過させることに
より磁界を変化させ、これによって電磁誘導コイルに起
電力を生じさせ、その誘導された起電力の出力電圧を測
定し、そのデジタル化した出力電圧の数値に重量換算係
数を乗じて重量を演算するようにしたことを特徴とする
重量測定方法である。
Therefore, the present inventors decided to research and develop a non-contact type weight measuring method and apparatus suitable for automation, labor saving and speeding up. As a result of earnest research, we focused on the technical knowledge that "the voltage of the electromagnetic induction coil changes in proportion to the volume (weight) of the test material." We have developed a weight measuring device and a cylindrical electromagnetic induction sensor (Japanese Patent Application No. 5-176279). This developed technology is epoch-making as a technology that can be automated and labor-saving to be incorporated into the manufacturing industry's flow work as a non-contact, quick weight measurement technology. The basic method of this measurement method is to change the magnetic field by passing a magnetic material to be measured in the magnetic field along the direction of the magnetic field, thereby generating an electromotive force in the electromagnetic induction coil, and the induced electromotive force. A weight measuring method is characterized in that an output voltage of electric power is measured, and a numerical value of the digitized output voltage is multiplied by a weight conversion coefficient to calculate a weight.

【0006】本発明者は、当初に開発した前記電磁誘導
方式による非接触型重量測定技術でも十分実用性はある
が、より高精度な測定値と、より安定した測定値を目標
とするよりリアリテイの高い新たな被測定試料に関する
磁気的物理量の測定方法の研究開発に鋭意努力した結
果、交流電磁誘導方式による被測定試料の磁気的物理量
の測定方法とその測定装置の技術開発に成功した。
The inventor of the present invention has sufficient practicality with the non-contact weight measurement technology based on the electromagnetic induction method originally developed, but it is more realistic to aim at a more accurate measurement value and a more stable measurement value. As a result of diligent research and development of a method for measuring a magnetic physical quantity of a new sample to be measured, the method of measuring the magnetic physical quantity of the sample to be measured by an alternating current electromagnetic induction method and the technical development of its measuring device were succeeded.

【0007】つまり、当初に開発した電磁誘導方式によ
る非接触型重量測定技術は、測定における外部磁界の打
ち消し機能が充分でなく、安定した高精度測定が困難で
あった。そこで、発明者達は、交流電流によって発生す
る外部磁界を測定信号から除去する測定技術を開発し
た。
That is, the initially developed non-contact type weight measurement technique using the electromagnetic induction method does not have a sufficient function of canceling the external magnetic field in the measurement, and it has been difficult to perform stable high precision measurement. Therefore, the inventors have developed a measurement technique for removing an external magnetic field generated by an alternating current from a measurement signal.

【0008】この方法は、交流電流の位相変化によって
生じる磁束変化によって起電力を誘起させる方式である
ため、磁束変化の均一性が確保されることになるととも
に、高速な計測が可能となる。しかし、交流電流の磁束
変化は、試料に基づく磁界変化だけでなく、外部磁界の
変化をももたらすので、基礎となる測定出力信号の特定
の仕方によってはリアリテイ(正確さ)が悪くなり、実
用性のある測定が困難であるとされている。
Since this method is a method of inducing an electromotive force by a magnetic flux change caused by a phase change of an alternating current, uniformity of the magnetic flux change is ensured and high-speed measurement is possible. However, the change of the magnetic flux of the alternating current not only changes the magnetic field based on the sample but also the change of the external magnetic field. It is said that some measurements are difficult.

【0009】また、交流電流の場合には直流外部磁界の
場合のように2つの測定コイルを直列にしても外部磁界
の測定信号を相殺することが出来ないので、試料の磁界
と外部磁界の複合した磁界を測定するコイルと、外部磁
界だけを測定するコイルとの一対のコイルを用意し、複
合磁界測定値から外部磁界測定値を差し引き、試料磁界
測定値を算出するブリッジ方式しか方法はないとされて
いた。しかし、このブリッジ方式では一対のコイルの基
礎条件や環境条件を常に均一に調整することが困難であ
るとされている。すなわち、温度差によりドリフトして
誤差が生じたり、コイルの巻数のバランス差によって誤
差が生じたり、対象性の誤差や位置の誤差によって計測
値の誤差が生じるなど各種のヒズミや誤差が生じ易いた
め、精度や安定性に限界がある。
Further, in the case of an alternating current, the measurement signal of the external magnetic field cannot be canceled even if two measuring coils are connected in series as in the case of a direct current external magnetic field. There is only a bridge method that prepares a pair of coils, a coil that measures the measured magnetic field and a coil that measures only the external magnetic field, subtracts the external magnetic field measured value from the composite magnetic field measured value, and calculates the sample magnetic field measured value. It had been. However, with this bridge method, it is difficult to always adjust the basic conditions and environmental conditions of the pair of coils uniformly. In other words, various types of strains and errors are likely to occur, such as drifting due to temperature differences and causing errors, differences due to the difference in the number of turns of coils, errors in symmetry, and errors in measurement values. , Accuracy and stability are limited.

【0010】また交流磁界の測定の場合には、常に外部
磁界により誘起される信号と被測定磁性材料に関する磁
気物理量の信号との複合信号を基礎測定出力信号として
比例換算する方式であるため、外部磁界が変化した場合
には、換算係数を調整しないと正確な磁気物理量の換算
できなくなり、測定数値のリアリテイ(正確さ)に欠け
るという問題点もある。
Further, in the case of measuring an AC magnetic field, since it is a system in which a composite signal of a signal induced by an external magnetic field and a signal of a magnetic physical quantity related to a magnetic material to be measured is always proportionally converted as a basic measurement output signal, When the magnetic field changes, accurate conversion of the magnetic physical quantity cannot be performed unless the conversion coefficient is adjusted, and there is a problem in that the measured numerical value lacks reality.

【0011】本発明者は、上記のような技術的課題を解
決し、当初に開発した電磁誘導方式による非接触型重量
測定技術よりも高精度な測定値と、より安定した測定値
を得るべく、研究開発に鋭意努力した結果、交流電磁誘
導方式によりリアリテイの良い被測定試料の正味磁気的
物理量を測定する方法の技術開発に成功するとともに、
この開発技術を利用した磁気的物理量の測定装置、これ
を応用した重量測定方法と重量測定装置を具体的に開発
したものである。
The present inventor intends to solve the above technical problems and obtain a more accurate measurement value and a more stable measurement value than the initially developed non-contact type weight measurement technology by the electromagnetic induction method. As a result of diligent research and development, we succeeded in technological development of a method for measuring the net magnetic physical quantity of a measured sample with good reality by the AC electromagnetic induction method.
This is a concrete development of a magnetic physical quantity measuring device utilizing this developed technique, a weight measuring method and a weight measuring device to which the magnetic physical amount is applied.

【0012】それらの基本原理は、「交流の位相変化に
伴う磁束の変化率、透磁率は、試材の質量に比例する」
との技術知見に着目し、透磁率を測定すれば磁気的物理
量が解ると発想し、被測定試料を所定の測定領域に存在
させた状態で交流外部磁界を発生させ、その交流の位相
変化に伴う磁束の変化によって起電力を誘起させる。そ
の外部磁界により誘起される信号と被測定試料に関する
磁気的物理量の信号との複合信号を測定したうえ、外部
磁界により誘起される信号を除去して、被測定試料に関
する正味の磁気的物理量測定信号を検出し、これを基礎
として被測定試料の磁気的物理量を演算する方式の測定
法である。
The basic principle of them is that "the rate of change of magnetic flux and the permeability due to the phase change of alternating current are proportional to the mass of the test material".
Focusing on the technical knowledge that the magnetic permeability is measured, the idea is that the magnetic physical quantity can be understood, and an AC external magnetic field is generated in the state where the sample to be measured is present in a predetermined measurement area, and the phase change of the AC An electromotive force is induced by the accompanying change in magnetic flux. After measuring the composite signal of the signal induced by the external magnetic field and the signal of the magnetic physical quantity related to the sample to be measured, the signal induced by the external magnetic field is removed to obtain the net magnetic physical quantity measurement signal related to the sample to be measured. Is detected and the magnetic physical quantity of the sample to be measured is calculated based on this.

【0013】即ち、本願発明共通の第1の目的は、被測
定試料の磁気的物理量の測定方法に際して、複合信号か
ら被測定試料に関する正味の磁気物理量の測定信号を抽
出して、ヒズミ易く正確な測定が困難とされている交流
の磁束の変化率測定であっても、高精度でより安定した
測定値を得て、従来に比較してリアリテイの良い磁気的
物理量の測定ができるようにせんとするものである。
That is, the first object common to the present invention is to extract a net measurement signal of the magnetic physical quantity of the sample to be measured from the composite signal in the method of measuring the magnetic physical quantity of the sample to be measured, so that it is easy to cause a flaw and is accurate. Even in the case of measuring the rate of change of the magnetic flux of alternating current, which is considered difficult to measure, it is possible to obtain a more accurate and more stable measurement value, and to measure the magnetic physical quantity with better reality than before. To do.

【0014】本願発明共通の第2の目的は、被測定試料
の磁気的物理量の測定を非接触方式で、従来より高精度
に、しかも非常に迅速に行えるようにしたものである。
A second object common to the present invention is to make it possible to measure the magnetic physical quantity of a sample to be measured by a non-contact method with higher accuracy than ever before and very quickly.

【0015】本願発明に使用する交流式電磁誘導センサ
ーは、いずれも新たに開発した独自の交流型電磁誘導セ
ンサーであり、被測定試料に関する磁気的物理量の信号
と交流外部磁界により誘起される信号との複合信号であ
る被測定信号と、交流外部磁界により誘起される信号を
相殺できる測定信号を同時に得ることができるように設
計して、従来のものより高精度で安定した基礎となる測
定値を迅速に測定できるようにするものである。
The AC type electromagnetic induction sensor used in the present invention is a newly developed unique AC type electromagnetic induction sensor, and has a magnetic physical quantity signal relating to the sample to be measured and a signal induced by an AC external magnetic field. It is designed to be able to simultaneously obtain a measured signal that is a composite signal of and a measurement signal that can cancel the signal induced by an AC external magnetic field, and provide a more accurate and stable base measurement value than the conventional one. It enables quick measurement.

【0016】第2発明は、被測定信号と相殺用測定信号
とを同時に得られる2個のコイルを持った交流式電磁誘
導センサーを用いて、得た被測定信号から交流外部磁界
により誘起される信号を単純に相殺して正味の磁気的物
理量の測定信号を検出し、これを基礎として被測定試料
の磁気的物理量を演算する方式の測定法を具現化せんと
するものである。
A second aspect of the present invention uses an AC electromagnetic induction sensor having two coils capable of simultaneously obtaining a signal under measurement and a canceling measurement signal, and is induced by an AC external magnetic field from the obtained signal under measurement. It is intended to embody a measurement method of a system in which signals are simply canceled to detect a measurement signal of a net magnetic physical quantity, and the magnetic physical quantity of a sample to be measured is calculated on the basis of the detected signal.

【0017】第3発明は、被測定信号を測定する1個の
コイルと相殺用測定信号を測定する2個のコイルとを持
った交流式電磁誘導センサーを用い、得た測定信号から
交流外部磁界により誘起される信号を新規な手法でより
誤差が少なく相殺し、正味の磁気的物理量測定信号を検
出し、これを基礎として被測定試料の磁気的物理量を演
算する方式のリアリティの高い測定法を具現化せんとす
るものである。
A third invention uses an AC electromagnetic induction sensor having one coil for measuring a signal under measurement and two coils for measuring a canceling measurement signal, and an AC external magnetic field is obtained from the obtained measurement signal. A new method is used to cancel the signal induced by the method with less error, detect the net magnetic physical quantity measurement signal, and based on this, a highly realistic measurement method that calculates the magnetic physical quantity of the sample to be measured. It is to be embodied.

【0018】第4発明は、交流式電磁誘導センサーを被
測定信号を測定する2個のコイルと相殺用測定信号を測
定する2個のコイルとからなるように改良し、特に被測
定信号を合成したものとして安定性と高精度化を図り、
あとは第3発明と同じ手法により相殺し、より安定性が
高く高精度の正味磁気的物理量測定信号を検出し、これ
を基礎として被測定試料の磁気的物理量を演算する方式
のよりリアリティの高い測定法を具現化せんとするもの
である。
According to a fourth aspect of the present invention, an AC electromagnetic induction sensor is improved so as to include two coils for measuring a signal under measurement and two coils for measuring a canceling measurement signal, and particularly, the signals under measurement are synthesized. For stability and high accuracy,
After that, the same method as the third invention is used to cancel out, a more stable and highly accurate net magnetic physical quantity measurement signal is detected, and the method of calculating the magnetic physical quantity of the sample to be measured on the basis of this is more realistic. It is intended to embody the measurement method.

【0019】第5発明乃至第7発明は、被測定試料の磁
気的物理量の測定装置であり、第2発明乃至第4発明の
実施に夫々対応出来るようにした測定装置である。第8
発明、第9発明、第10発明は、電磁誘導方式による非
接触型の重量測定方法の発明であり、「磁気的物理量
は、試材の重量に比例して変化する。」との技術知見に
着目して、被測定試料の正味磁気的物理量を高精度で安
定した数値として測定し、重量算出係数を特定したう
え、被測定試料の重量を算出するようにした新規な重量
測定方法を開発し提供せんとするものである。即ち、こ
れは夫々第1発明、第3発明、第4発明を応用したもの
で、高精度の正味磁気的物理量測定信号を基礎として被
測定試料の重量を演算する方式のリアリティの高い重量
測定法を提供するものである。従来の重量測定法に比較
して、非接触型であることと、迅速性、高精度、安定性
のいずれに於ても画期的なものを提供せんとするもので
ある。
The fifth invention to the seventh invention are measuring devices of the magnetic physical quantity of the sample to be measured, and the measuring devices are adapted to the implementation of the second invention to the fourth invention, respectively. 8th
The invention, the ninth invention, and the tenth invention are inventions of a non-contact type weight measuring method by an electromagnetic induction method, and the technical knowledge that "the magnetic physical quantity changes in proportion to the weight of the test material". Focusing attention, we developed a new weight measurement method that measures the net magnetic physical quantity of the measured sample as a highly accurate and stable numerical value, specifies the weight calculation coefficient, and calculates the weight of the measured sample. It is intended to be provided. That is, this is an application of the first invention, the third invention, and the fourth invention, respectively, and a highly realistic weight measurement method of calculating the weight of the sample to be measured based on a highly accurate net magnetic physical quantity measurement signal. Is provided. Compared with the conventional weighing method, it is a non-contact type and provides an epoch-making thing in terms of speediness, high accuracy and stability.

【0020】本願発明の第11発明、第12発明は、前
記第9発明、第10発明の電磁誘導方式による非接触型
の重量測定方法を実施できるように具現化した重量測定
装置である。第6発明、第7発明の測定装置を重量測定
装置に応用したものでもある。従来の重量測定装置が重
力を利用したものがほとんどであるため、非接触型電磁
誘導方式による重量測定装置の具現化は、極めて画期的
なものであり独自性の高いものである。
The eleventh invention and the twelfth invention of the present invention are weight measuring devices embodied so that the non-contact type weight measuring method by the electromagnetic induction method of the ninth invention and the tenth invention can be carried out. The measuring device of the sixth and seventh inventions is also applied to a weight measuring device. Since most conventional weight measuring devices use gravity, the realization of a non-contact electromagnetic induction type weight measuring device is extremely innovative and highly unique.

【0021】本願発明の第13発明、第14発明、第1
5発明は、被測定試料の磁気的物理量を測定するための
交流型電磁誘導センサーである。このセンサーは、基礎
となる被測定試料の正味磁気的物理量の高精度な測定値
を安定的にしかも迅速に測定できるようにしたものであ
る。
13th, 14th and 1st aspects of the present invention
The fifth invention is an AC electromagnetic induction sensor for measuring a magnetic physical quantity of a sample to be measured. This sensor is capable of stably and quickly measuring a highly accurate measurement value of a net magnetic physical quantity of a sample to be measured as a base.

【0022】[0022]

【問題点を解決するための手段】本願発明は、上記のよ
うな目的を達成する手段として次のように構成したもの
である。
The present invention is configured as follows as a means for achieving the above object.

【0023】特許を受けようとする第1発明は、交流外
部磁界印加コイル5と測定コイル6とから構成される交
流式電磁誘導センサー1を用意し、当該交流外部磁界印
加コイル5が造る磁界の方向に沿って被測定試料7を通
過させることにより、交流の位相変化に伴う磁界を変化
させ、これによって測定コイル6に起電力を誘起させ、
交流外部磁界により誘起される信号と、被測定試料に関
する磁気的物理量の信号の和である複合信号を被測定信
号として測定した後、外部磁界により誘起される信号を
除去して、被測定資料に関する正味の磁気的物理量の測
定信号を検出し、これを基礎となる測定信号としてデジ
タル化して数値信号に変換し、当該数値信号に磁気的物
理量換算係数を乗じて磁気的物理量を演算するようにし
たことを特徴とする交流電磁誘導方式による被測定試料
の磁気的物理量の測定方法である。
The first invention to obtain a patent is to prepare an AC electromagnetic induction sensor 1 composed of an AC external magnetic field applying coil 5 and a measuring coil 6, and to generate a magnetic field generated by the AC external magnetic field applying coil 5. By passing the sample 7 to be measured along the direction, the magnetic field associated with the phase change of the alternating current is changed, thereby inducing an electromotive force in the measuring coil 6,
After measuring the composite signal, which is the sum of the signal induced by the AC external magnetic field and the signal of the magnetic physical quantity related to the sample to be measured, as the measured signal, remove the signal induced by the external magnetic field and It detects the measurement signal of the net magnetic physical quantity, digitizes it as the measurement signal which becomes the basis, converts it into a numerical signal, and calculates the magnetic physical quantity by multiplying the numerical signal by the magnetic physical quantity conversion coefficient. A method of measuring a magnetic physical quantity of a sample to be measured by an alternating-current electromagnetic induction method, which is characterized in that

【0024】特許を受けようとする第2発明は、以下第
1手段乃至第6手段を行うようにしたことを特徴とする
交流電磁誘導方式による被測定試料の磁気的物理量の測
定方法である。
A second invention to be patented is a method for measuring a magnetic physical quantity of a sample to be measured by an alternating current electromagnetic induction method, characterized in that the following first means to sixth means are performed.

【0025】第1手段:下記のように構成された交流式
電磁誘導センサー1と交流外部磁界発生手段8と出力信
号測定手段9と演算手段10とを備えたことを特徴とす
る測定装置を用意する。
First means: Prepare a measuring device characterized by including an AC electromagnetic induction sensor 1 configured as follows, an AC external magnetic field generating means 8, an output signal measuring means 9 and a computing means 10. To do.

【0026】当該交流式電磁誘導センサー1は、交流電
流を流したとき発生する交流外部磁界が被測定試料7を
包む大きさの測定領域3およびその周辺領域4に印加さ
れ、しかも当該測定領域3およびその周辺領域4の範囲
内で磁界分布が一様となるように設定されている交流外
部磁界印加コイル5と、当該所定の測定領域3およびそ
の周辺領域4において交流外部磁界によって誘起される
出力信号を測定し得るように配設された測定コイル6と
からなり、当該測定コイル6は、所定の測定領域3内に
被測定試料7があるとき、当該測定領域3において交流
外部磁界によって誘起される出力信号(被測定信号)φ
B(X)を測定し得るようにした主測定コイルBと、当該測
定領域3から所定の間隔±α離れた周辺領域4において
交流外部磁界によって誘起された出力信号(調整測定信
号)φA(X ±a) を測定し得るようにした外部磁界相殺
用測定コイルAとから構成されており、当該交流外部磁
界発生手段8は、前記交流式電磁誘導センサー1に連結
し、交流外部磁界印加コイル5に交流電流を流すことに
より交流外部磁界を測定領域3およびその周辺領域4に
印加することのできるように構成されており、当該出力
信号測定手段9は、前記交流式電磁誘導センサー1に連
結し、交流外部磁界の印加によって測定コイル4に誘起
される起電力の出力信号(被測定信号,調整測定信号)
を測定し、その出力信号(被測定信号,調整測定信号)
から適正なものを選定し、数値化し得るように構成し、
当該演算手段10は、測定され数値化した出力信号(被
測定信号,調整測定信号)を調整し必要に応じて演算す
ることができるように構成されている。
In the AC electromagnetic induction sensor 1, the AC external magnetic field generated when an AC current is applied is applied to the measurement area 3 and its peripheral area 4 which are large enough to wrap the sample 7 to be measured, and the measurement area 3 And an AC external magnetic field applying coil 5 which is set so that the magnetic field distribution is uniform within the range of the peripheral region 4 and an output induced by the AC external magnetic field in the predetermined measurement region 3 and its peripheral region 4. The measurement coil 6 is arranged so as to be able to measure a signal, and the measurement coil 6 is induced by an AC external magnetic field in the measurement region 3 when the sample 7 to be measured is present in the predetermined measurement region 3. Output signal (measured signal) φ
A main measurement coil B capable of measuring B (X), and an output signal (adjustment measurement signal) φ A (adjustment measurement signal) induced by an AC external magnetic field in the peripheral region 4 separated from the measurement region 3 by a predetermined distance ± α. X ± a) and an external magnetic field canceling measurement coil A, and the AC external magnetic field generating means 8 is connected to the AC electromagnetic induction sensor 1 to generate an AC external magnetic field applying coil. 5 is configured so that an AC external magnetic field can be applied to the measurement region 3 and its peripheral region 4 by flowing an AC current, and the output signal measuring means 9 is connected to the AC electromagnetic induction sensor 1. Then, the output signal of the electromotive force induced in the measurement coil 4 by the application of the AC external magnetic field (measured signal, adjustment measurement signal)
Output signal (measured signal, adjusted measurement signal)
Select the appropriate one from the
The calculation means 10 is configured to adjust the measured and digitized output signals (the signal under measurement, the adjusted measurement signal) and calculate as necessary.

【0027】第2手段:前記測定装置の測定系を、あら
かじめ次のが満足するように調整する。前記主測
定コイルBで測定される出力信号(被測定信号)φB(X)
と外部磁界相殺用測定コイルAで測定される出力信号
(調整測定信号)φ(X±a) は、交流外部磁界により誘
起される出力信号W(X) と被測定試料5に関する磁気的
物理量の出力信号M(X) の和としての複合信号として、
次のように認識されるので、 φB(X)=α(WB(X)+MB(X)) φA(X ±a) =δ(WA(X+a) +MA(X+a) ) (但し、α、δは、調整用の定数で、途中に増幅器を入
れた場合の増幅率やコイルの巻数に比例した係数であ
る。) 前記前記測定装置の測定系を、あらかじめ係数α、δを
調整因子として、次のが満足するように調整す
る。 被測定試料7が測定領域3内にあるとき、当該測定領
域3ではその主測定コイルAの測定感度がほぼ一様の空
間となるように調整し、 MB(X)≒constant 被測定試料7が測定領域3内にないとき、主測定コイ
ルBと外部磁界相殺用測定コイルAとで測定された交流
外部磁界によって誘起された信号値WB(X)とWA(X ±
a) が等しくなるように調整し、 αWB(X)=δWA(X ±a) 測定領域3内に被測定試料7があるとき、外部磁界相
殺用測定コイルAで測定された被測定試料7に関する磁
気的物理量の信号値MA(X ±a) が主測定コイルBで測
定された被測定試料7に関する磁気的物理量の信号値M
B(X)よりコンスタントに所定の比率εで小さくなるよう
に調整する。 εMB(X)=MA(X ±a) ,ε<1/Σ
Second means: The measuring system of the measuring apparatus is adjusted in advance so that the following is satisfied. Output signal (signal to be measured) measured by the main measurement coil B φ B (X)
And the output signal (adjustment measurement signal) φ (X ± a) measured by the measuring coil A for canceling the external magnetic field is the output signal W (X) induced by the AC external magnetic field and the magnetic physical quantity of the measured sample 5. As a composite signal as the sum of the output signals M (X),
Since recognized as follows, φ B (X) = α (W B (X) + M B (X)) φ A (X ± a) = δ (W A (X + a) + M A (X + a)) (However, α and δ are constants for adjustment, which are coefficients proportional to the amplification factor and the number of turns of the coil when an amplifier is inserted on the way.) Using α and δ as adjustment factors, adjustment is made so that the following is satisfied. When the sample to be measured 7 is in the measurement region 3, the measurement sensitivity of the main measurement coil A is adjusted to be a substantially uniform space in the measurement region 3, and M B (X) ≈constant Is not in the measurement region 3, the signal values W B (X) and W A (X ±) induced by the AC external magnetic field measured by the main measurement coil B and the external magnetic field cancellation measurement coil A are measured.
aW B (X) = δW A (X ± a) When the sample to be measured 7 is present in the measurement area 3, the sample to be measured measured with the external magnetic field canceling measurement coil A 7. The signal value M A (X ± a) of the magnetic physical quantity related to 7 is measured by the main measurement coil B, and the signal value M of the magnetic physical quantity related to the measured sample 7 is measured.
It is adjusted so that it is constantly smaller than B (X) by a predetermined ratio ε. ε M B (X) = M A (X ± a), ε <1 / Σ

【0028】第3手段:前記交流式電磁誘導センサー1
と交流外部磁界発生手段8と出力信号測定手段9とを用
いて、所定の測定領域3に被測定試料7を存在させたと
き、交流外部磁界印加コイル5に交流電流をながして交
流外部磁界を印加し、このとき当該測定領域3において
交流外部磁界によって誘起される被測定信号(交流外部
磁界により誘起される信号と被測定試料に関する磁気的
物理量の信号の和である複合信号)φB(X)を主測定コイ
ルBで測定するとともに、 φB(X)=α(WB(X)+MB(X)) 当該測定領域3から所定の間隔離れた周辺領域4におい
て交流外部磁界によって誘起された調整測定信号(交流
外部磁界により誘起される信号と被測定試料に関する磁
気的物理量の信号の和である複合信号)φA(X ±a) を
外部磁界相殺用測定コイルAにより測定する。 φA(X ±a) =δ(WA(X ±a) +MA(X ±a) )
Third means: the AC electromagnetic induction sensor 1
When the sample 7 to be measured is present in the predetermined measurement region 3 by using the AC external magnetic field generating means 8 and the output signal measuring means 9, an AC current is passed through the AC external magnetic field applying coil 5 to generate an AC external magnetic field. The signal under measurement induced by the AC external magnetic field in the measurement region 3 at this time (composite signal which is the sum of the signal induced by the AC external magnetic field and the signal of the magnetic physical quantity related to the sample to be measured) φ B (X ) Is measured by the main measurement coil B, and φ B (X) = α (W B (X) + M B (X)) is induced by an AC external magnetic field in the peripheral region 4 separated from the measurement region 3 for a predetermined period. The adjusted measurement signal (composite signal which is the sum of the signal induced by the AC external magnetic field and the signal of the magnetic physical quantity relating to the sample to be measured) φ A (X ± a) is measured by the external magnetic field offsetting measurement coil A. φ A (X ± a) = δ (W A (X ± a) + M A (X ± a))

【0029】第4手段:演算手段10を用いて前記被測
定信号(交流外部磁界により誘起される信号と被測定試
料に関する磁気的物理量の信号の和である複合信号)φ
B(X)から調整測定信号(交流外部磁界により誘起される
信号と被測定試料に関する磁気的物理量の信号の和であ
る複合信号)φA(X ±a) を差し引き、これによって交
流外部磁界により誘起される信号を相殺し、被測定試料
7に関する正味の磁気的物理量の信号を所定の係数θに
比例したの磁気的物理量測定信号φT として検出する。 φT =φB(X)−φA(X ±a) =α(WB(X)+MB(X))−δ(WA(X ±a) +MA(X ±a) ) αWB(X)=δWA(X ±a) に調整されているから、 αWB(X)−δWA(X ±a) =0と相殺されて =αMB(X)−δMA(X ±a) εMB(X)=MA(X ±a) ,ε<1/Σに調整されているから =αMB(X)−δεMB(X) =(α−δε)MB(X) α,δ,εはいずれも所定の係数であるから(α−δε)も所定の 係数θと置換できる。よって、 φT =θMB(X) となり、出力はMB(X)に比例した測定信号として検出さ
れる。
Fourth means: Using the arithmetic means 10, the signal to be measured (composite signal which is the sum of the signal induced by the AC external magnetic field and the signal of the magnetic physical quantity relating to the sample to be measured) φ
The adjusted measurement signal (composite signal that is the sum of the signal induced by the AC external magnetic field and the signal of the magnetic physical quantity related to the sample to be measured) φ A (X ± a) is subtracted from B (X). The induced signals are canceled, and the signal of the net magnetic physical quantity relating to the sample 7 to be measured is detected as the magnetic physical quantity measurement signal φ T proportional to the predetermined coefficient θ. φ T = φ B (X) -φ A (X ± a) = α (W B (X) + M B (X)) - δ (W A (X ± a) + M A (X ± a)) αW B (X) = from being adjusted to δW a (X ± a), αW B (X) -δW a (X ± a) = 0 and are offset = αM B (X) -δM a (X ± a ) εM B (X) = M a (X ± a), ε <1 / from being adjusted to Σ = αM B (X) -δεM B (X) = (α-δε) M B (X) α , Δ, ε are all predetermined coefficients, (α-δε) can be replaced with the predetermined coefficient θ. Therefore, φ T = θM B (X), and the output is detected as a measurement signal proportional to M B (X).

【0030】第5手段:真正磁気的物理量SMB(X)の判
明している標準試料Sの磁気的物理量測定信号SφT
を、前記測定装置を用いて被測定試料7と同じ測定方法
で測定し演算することにより標準試料Sの磁気的物理量
測定信号SφT を検出し、この標準試料Sの磁気的物理
量測定信号SφT と判明している真正磁気的物理量SM
B(X)から当該係数ψを特定する。 ψ=SφT /SMB(X) ( SφT ,SMB(X)の両者は具体的数値化しているの
で、ψも数値化する。)
The fifth means: magnetic physical quantity measurement signal of the standard sample S are found authentic magnetic physical quantity SM B (X) Sφ T
And using said measuring device was measured in the same manner as the sample to be measured 7 detects the magnetic physical quantity measuring signal Esufai T of the standard sample S by computing, magnetic physical quantity measuring signal Esufai T of the standard sample S True magnetic physical quantity SM known to be
The coefficient ψ is specified from B (X). ψ = Sφ T / SM B ( X) (Sφ T, since both the SM B (X) is specifically quantified, also quantify [psi.)

【0031】第6手段:演算手段10を用いて前記第5
手段で検出した被測定試料7に関する磁気的物理量測定
信号φT から前記特定した係数ψを用いて被測定試料7
の磁気的物理量を算出する。 MB(X)=φT /ψ
Sixth means: The fifth means using the calculating means 10
The measured sample 7 using the specified coefficient ψ from the magnetic physical quantity measurement signal φ T relating to the measured sample 7 detected by the means.
Calculate the magnetic physical quantity of. M B (X) = φ T / ψ

【0032】特許を受けようとする第3発明は、以下第
1手段乃至第6手段を行うようにしたことを特徴とする
交流電磁誘導方式による被測定試料の磁気的物理量の測
定方法である。
A third invention to be granted a patent is a method for measuring a magnetic physical quantity of a sample to be measured by an AC electromagnetic induction method, characterized in that the following first to sixth means are performed.

【0033】第1手段:下記のように構成された交流式
電磁誘導センサー1と交流外部磁界発生手段8と出力信
号測定手段9と演算手段10とを備えたことを特徴とす
る測定装置を用意する。
First means: Prepare a measuring device characterized by comprising an AC electromagnetic induction sensor 1 constructed as follows, an AC external magnetic field generating means 8, an output signal measuring means 9 and an arithmetic means 10. To do.

【0034】当該測定装置は、交流電流を流したとき発
生する交流外部磁界が被測定試料7を包む大きさの測定
領域3およびその周辺領域4に印加され、しかも当該測
定領域3およびその周辺領域4の範囲内で磁界分布が一
様となるように設定されている交流外部磁界印加コイル
5と、当該所定の測定領域3およびその周辺領域4にお
いて交流外部磁界によって誘起される出力信号を測定し
得るように配設された測定コイル6とからなり、当該測
定コイル6は、所定の測定領域3内に被測定試料7があ
るとき、当該測定領域3において交流外部磁界によって
誘起される出力信号(被測定信号)φB(X)を測定する主
測定コイルBと、当該測定領域3から所定の間隔離れた
位置±αにおいて交流外部磁界によって誘起された出力
信号(調整測定信号)φAc(X±a) を測定する外部磁界
相殺用測定コイルACとからなり、当該外部磁界相殺用
測定コイルACは、前記測定領域3から磁力線の前方向
に所定の間隔離れた位置+αにおいて交流外部磁界によ
って誘起された出力信号(第1調整測定信号)φA(X+
a) を測定する第1外部磁界相殺用測定コイルAと,前
記測定領域3から磁力線の後方向に所定の間隔離れた位
置−αにおいて交流外部磁界によって誘起された出力信
号(第2調整測定信号)φC(X-a) を測定する第2磁界
相殺用測定コイルCとで構成される電磁誘導センサー1
と、前記交流式電磁誘導センサー1に連結し、交流外部
磁界印加コイル5に交流電流を流すことにより交流外部
磁界を測定領域3およびその周辺領域4に印加すること
のできるように構成された交流外部磁界発生手段8と、
前記交流式電磁誘導センサー1に連結し、交流外部磁界
の印加によって測定コイル4に誘起される起電力の出力
信号(被測定信号,調整測定信号)を測定し、その出力
信号(被測定信号,調整測定信号)から適正なものを選
定し、数値化し得るように構成した出力信号測定手段9
と、測定され数値化した出力信号(被測定信号,調整測
定信号)を調整し必要に応じて演算することができる当
該演算手段10とを少なくとも備えた装置である。
In the measuring apparatus, an AC external magnetic field generated when an AC current is applied is applied to the measurement area 3 and its peripheral area 4 having a size that encloses the sample 7 to be measured, and further, the measurement area 3 and its peripheral area. The AC external magnetic field applying coil 5 set so that the magnetic field distribution is uniform within the range of 4 and the output signal induced by the AC external magnetic field in the predetermined measurement region 3 and its peripheral region 4 are measured. The measuring coil 6 is arranged so as to obtain an output signal () generated by an AC external magnetic field in the measurement area 3 when the sample 7 to be measured is present in the predetermined measurement area 3. the main measuring coil B and the induced output signal by alternating external magnetic field at a position ± alpha from the measurement region 3 spaced a predetermined distance (adjusted measurement signal for measuring the signal to be measured) phi B (X) consists of a φ Ac (X ± a) external magnetic field canceling the measurement coil AC to measure, the external magnetic field canceling measuring coil AC is AC at position + alpha spaced a predetermined distance in the forward direction of the magnetic lines of force from the measuring region 3 Output signal induced by external magnetic field (first adjustment measurement signal) φ A (X +
a) A first external magnetic field canceling measurement coil A for measuring a) and an output signal (second adjustment measurement signal) induced by an AC external magnetic field at a position -α separated from the measurement region 3 by a predetermined distance in the rearward direction of the magnetic field lines. ) An electromagnetic induction sensor 1 including a second magnetic field cancellation measuring coil C for measuring φ C (X-a)
And an AC configured to connect the AC electromagnetic induction sensor 1 and to apply an AC external magnetic field to the measurement region 3 and its peripheral region 4 by causing an AC current to flow through the AC external magnetic field applying coil 5. External magnetic field generating means 8,
The output signal of the electromotive force (measured signal, adjusted measurement signal) which is connected to the AC electromagnetic induction sensor 1 and induced in the measuring coil 4 by the application of an AC external magnetic field is measured, and the output signal (measured signal, Output signal measuring means 9 configured so that a proper one can be selected from the adjusted measurement signals) and digitized.
And an arithmetic means 10 capable of adjusting the measured and digitized output signals (measured signal, adjusted measurement signal) and performing arithmetic operations as necessary.

【0035】第2手段:前記測定装置の測定系を、あら
かじめ次の乃至が満足するように調整する。前記主
測定コイルBで測定される出力信号(被測定信号)φ
B(X)と第1外部磁界相殺用測定コイルAで測定される出
力信号(第1調整測定信号)φA(X+a) と第2外部磁界
相殺用測定コイルCで測定される出力信号(第2調整測
定信号)φC(X-a) は、交流外部磁界により誘起される
出力信号W(X) と被測定試料7に関する磁気的物理量の
出力信号M(X) の複合信号として、次のように表される
ので、 φB(X)=α( WB(X)+MB(X)) φA(X+a) =β( WA(X+a) +MA(X+a) ) φC(X-a) =γ(WC(X-a) +MC(X-a) ) (但し、α、β、γは、調整用の定数で、途中に増幅器
を入れた場合の増幅率やコイルの巻数に比例した係数で
ある。) 調整用の定数α、β、γを調整因子として、測定コイル
6の測定系をあらかじめ次の乃至が満足するように
調整設定しておく。 被測定試料7が所定の測定領域3内に位置する場合に
おいて、所定の測定領域3ではその測定感度がほぼ一様
の空間となるように調整し、 MB(X)≒constant 主測定コイルBで測定された被測定試料に関する磁気
的物理量の出力信号φB(X)は、ほぼ第1外部磁界相殺用
測定コイルAで測定された交流外部磁界によって誘起さ
れた出力信号WA(X+a) の2倍となし、 WB(X)=2WA(X+a) 第1外部磁界相殺用測定コイルAで測定された交流外
部磁界によって誘起された出力信号WA(X+a) と第2外
部磁界相殺用測定コイルCとで測定された交流外部磁界
によって誘起された出力信号WC(X-a) が等しくなるよ
うに調整し、 WA(X+a) =WC(X-a) 第1外部磁界相殺用測定コイルAで測定された被測定
試料7に関する磁気的物理量の出力信号MA(X+a) と第
2外部磁界相殺用測定コイルCとで測定された被測定試
料7に関する磁気的物理量の出力信号MC(X-a) が等し
くなるように調整し、 MA(X+a) =MC(X-a) 測定領域3に被測定試料7があるとき、第1外部磁界
相殺用測定コイルAで測定された被測定試料に関する磁
気的物理量の出力信号MA(X+a) は、主測定コイルBで
測定された被測定試料に関する磁気的物理量の出力信号
B(X)に比較して、コンスタントに所定の比率εで小さ
くなるように調整する。 εMB(X)=MA(X+a) ,ε<1/Σ
Second means: The measuring system of the measuring device is adjusted in advance so as to satisfy the following items. Output signal (signal to be measured) φ measured by the main measurement coil B
B (X) and output signal measured by the first external magnetic field offset measuring coil A (first adjustment measurement signal) φ A (X + a) and output signal measured by the second external magnetic field offset measuring coil C (Second adjusted measurement signal) φ C (X-a) is a composite signal of the output signal W (X) induced by the AC external magnetic field and the output signal M (X) of the magnetic physical quantity related to the sample 7 to be measured, because it represented as follows, φ B (X) = α (W B (X) + M B (X)) φ a (X + a) = β (W a (X + a) + M a (X + a)) φ C (X-a) = γ (W C (X-a) + M C (X-a)) (where α, β, γ are constants for adjustment, and an amplifier is inserted in the middle In this case, it is a coefficient that is proportional to the amplification factor and the number of turns of the coil.) Using the adjustment constants α, β, and γ as adjustment factors, the measurement system of the measurement coil 6 is adjusted and set in advance so that deep. When the sample 7 to be measured is located in the predetermined measurement region 3, the measurement sensitivity is adjusted to be a substantially uniform space in the predetermined measurement region 3, and M B (X) ≈constant main measurement coil B The output signal φ B (X) of the magnetic physical quantity related to the sample to be measured measured in 1. is almost the output signal W A (X + a) induced by the AC external magnetic field measured by the first external magnetic field offsetting measurement coil A. ), And W B (X) = 2W A (X + a) and the output signal W A (X + a) induced by the AC external magnetic field measured by the first external magnetic field cancellation measuring coil A The output signal W C (X-a) induced by the AC external magnetic field measured by the second external magnetic field offsetting measurement coil C is adjusted to be equal, and W A (X + a) = W C (X -a) Output signal of the magnetic physical quantity related to the sample to be measured 7 measured by the first measuring coil A for canceling the external magnetic field Adjusted to A (X + a) and the second external output signal of the magnetic field canceling measuring coil C and magnetically physical quantity related to the measurement sample 7 measured in M C (X-a) are equal, M A ( X + a) = M C (X-a) When the measured sample 7 is present in the measurement region 3, the output signal M A (of the magnetic physical quantity relating to the measured sample measured by the first external magnetic field cancellation measuring coil A ) X + a) is adjusted so as to be constantly reduced by a predetermined ratio ε compared with the output signal M B (X) of the magnetic physical quantity related to the sample to be measured measured by the main measurement coil B. εM B (X) = M A (X + a), ε <1 / Σ

【0036】第3手段:前記交流式電磁誘導センサー1
と交流外部磁界発生手段8と出力信号測定手段9とを用
いて、所定の測定領域3に被測定試料7を存在させたと
き、交流外部磁界印加コイル3に交流電流をながして交
流外部磁界を印加し、主測定コイルBにより被測定信号
φB(X)を測定し、 φB(X)=α(WB(X)+MB(X)) 第1外部磁界相殺用測定コイルAにより第1調整測定信
号φA(X+a) を測定すると共に、第2外部磁界相殺用測
定コイルCにより第2調整測定信号φC(X-a) を測定す
る。 φA(X+a) =β(WA(X+a) +MA(X+a) ) φC(X-a) =γ(WC(X-a) +MC(X-a) )
Third means: the AC electromagnetic induction sensor 1
When the sample 7 to be measured is present in the predetermined measurement region 3 by using the AC external magnetic field generating means 8 and the output signal measuring means 9, an AC current is passed through the AC external magnetic field applying coil 3 to generate an AC external magnetic field. Apply and measure the measured signal φ B (X) with the main measurement coil B, φ B (X) = α (W B (X) + M B (X)) with the first external magnetic field cancellation measurement coil A The first adjustment measurement signal φ A (X + a) is measured, and the second adjustment measurement signal φ C (X-a) is measured by the second external magnetic field cancellation measurement coil C. φ A (X + a) = β (W A (X + a) + M A (X + a)) φ C (X-a) = γ (W C (X-a) + M C (X-a))

【0037】第4手段:外部磁界相殺用測定コイルA,
Cが出力した第1調整測定信号φA(X+a) と、第2調整
測定信号φC(X-a) を加算して外部磁界相殺用出力信号
φA(X+a) +φC(X-a) 値となし、 φA(X+a) +φC(X-a) =β(WA(X+a) +MA(X+a)
)+γ(WC(X-a) +MC(X-a) ) 当該主測定コイルBで測定した被測定信号φB(X)から、
外部磁界相殺用測定コイルA,Cで測定した前記外部磁
界相殺用出力信号φA(X+a) +φC(X-a) 値を差し引く
ことにより、交流外部磁界により誘起される信号を相殺
し、被測定試料7に関する正味の磁気的物理量を所定の
係数κに比例した磁気的物理量出力信号φT として検出
する。 φT =φB(X)−(φA(X+a) +φC(X-a) ) =α(WB(X)+MB(X))−{β(WA(X+a) +MA(X+a) ) +γ(WC(X-a) +MC(X-a) } =αWB(X)−{β(WA(X+a) +γWC(X-a) } +αMB(X)−{βMA(X+a) +γMC(X-a) } このときWB(X)=2WA(X+a) なのでα≒β+γと調整し、 WA(X+a) =WC(X-a) 及びMA(X+a) =MC(X-a) なので β≒γに調整してあるので、 αWB(X)−{β(WA(X+a) +γ(WC(X-a) }≒0と相殺され、 =αMB(X)−{βMA(X+a) +γMC(X-a) } =αMB(X)−2MA(X+a) =α(MB(X)−2εMB(X)) =α( 1−2ε)MB(X) α(1−2ε)は係数κに置換されるため、 φT =κMB(X) となり、磁気的物理量出力信号φT は、MB(X)に比例し
た信号として検出される。
Fourth means: measuring coil A for canceling the external magnetic field,
The first adjustment measurement signal φ A (X + a) output by C and the second adjustment measurement signal φ C (X-a) are added to output signal for external magnetic field cancellation φ A (X + a) + φ C ( X-a) values and without, φ A (X + a) + φ C (X-a) = β (W A (X + a) + M A (X + a)
) + Γ (W C (X-a) + M C (X-a)) From the measured signal φ B (X) measured by the main measurement coil B,
By subtracting the external magnetic field canceling output signal φ A (X + a) + φ C (X-a) value measured by the external magnetic field canceling measuring coils A and C, the signal induced by the AC external magnetic field is canceled. , The net magnetic physical quantity of the measured sample 7 is detected as a magnetic physical quantity output signal φ T proportional to a predetermined coefficient κ. φ T = φ B (X) - (φ A (X + a) + φ C (X-a)) = α (W B (X) + M B (X)) - {β (W A (X + a) + M A (X + a) ) + γ (W C (X-a) + M C (X-a)} = αW B (X) - {β (W A (X + a) + γW C (X-a)} + ΑM B (X)-{βM A (X + a) + γM C (X-a)} At this time, W B (X) = 2W A (X + a), so α ≈ β + γ is adjusted, and W A (X + Since a) = W C (X-a) and M A (X + a) = M C (X-a), β ≈ γ is adjusted, so αW B (X)-{β (WA (X A + a) + γ (W C (X-a)} ≒ 0 and offset, = αM B (X) - {βM a (X + a) + γM C (X-a)} = αM B (X) -2M a (X + a) = α (M B (X) -2εM B (X)) = α (1-2ε) M B (X) α (1-2ε) because substituted in the coefficient kappa, phi T = ΚM B (X), and the magnetic physical quantity output signal φ T is detected as a signal proportional to M B (X).

【0038】第5手段:真正磁気的物理量SMB(X)の判
明している標準試料Sの磁気的物理量測定信号SφT
を、前記測定装置を用いて被測定試料7と同じ測定方法
で測定し演算することにより標準試料Sの磁気的物理量
測定信号SφT を検出し、この検出された標準試料Sの
磁気的物理量測定信号SφT と判明している真正磁気的
物理量SMB(X)から当該係数λを特定する。 λ=SφT /SMB (X) (SφT ,SMB(X)の両者が具体的数値化しているの
で、λも数値化する。)
The fifth means: magnetic physical quantity measurement signal of the standard sample S are found authentic magnetic physical quantity SM B (X) Sφ T
Is measured by the same measuring method as that of the sample 7 to be measured using the above-mentioned measuring device to calculate the magnetic physical quantity measurement signal Sφ T of the standard sample S, and the magnetic physical quantity of the detected standard sample S is measured. specifying the coefficient λ from genuine magnetically physical quantity SM B (X) are found to signal Sφ T. λ = Sφ T / SM B ( X) (Sφ T, since both the SM B (X) is specifically quantified, also quantify lambda.)

【0039】第6手段:演算手段10を用いて前記第5
手段で検出した被測定試料7に関する磁気的物理量測定
信号φT から前記特定した係数λを用いて被測定試料7
の磁気的物理量を算出する。 MB(X)=φT /λ
Sixth means: The fifth means using the arithmetic means 10
The sample 7 to be measured using the specified coefficient λ from the magnetic physical quantity measurement signal φ T relating to the sample 7 detected by the means.
Calculate the magnetic physical quantity of. M B (X) = φ T / λ

【0040】特許を受けようとする第4発明は、請求項
3の第1手段において記載する交流式電磁誘導センサー
1を下記のように構成した改良型交流式電磁誘導センサ
ー1に置換した測定装置を用意する。当該交流式電磁誘
導センサー1は、交流電流を流したとき誘起する交流外
部磁界が被測定試料7を包む大きさの測定領域3および
その周辺領域4に印加され、しかも当該測定領域3およ
びその周辺領域4の範囲内で磁界分布が一様となるよう
に設定されている交流外部磁界印加コイル5と、当該所
定の測定領域3およびその周辺領域4において交流外部
磁界によって誘起される出力信号を測定し得るように配
設された測定コイル6とからなり、当該測定コイル6
は、測定領域3内に被測定試料7があるとき、測定領域
3内において交流外部磁界によって誘起される被測定信
号φB(X)を測定できる主測定コイルBと当該測定領域3
から所定の間隔離れた位置±αにおいて交流外部磁界に
よって誘起された出力信号(調整測定信号)φAc(X±
a) を測定する外部磁界相殺用測定コイルACとから構
成されており、当該主測定コイルBは、更に測定領域3
内の磁力線の前方に位置する第一主測定コイルB1と、後
方に位置する第二主測定コイルB2とが所定の間隔離れて
配設された構成になっていて、測定領域3内において交
流外部磁界によって誘起される被測定信号φB(X)が、当
該第一主測定コイルB1と第二主測定コイルB2の磁界を合
成した出力信号として測定できるように構成されてお
り、前記外部磁界相殺用測定コイルACは、当該測定領
域3から磁力線の前方向に所定の間隔離れた位置+αに
おいて交流外部磁界によって誘起された出力信号(調整
測定信号)φA(X+a) を測定する第1外部磁界相殺用測
定コイルAと,当該測定領域3から磁力線の後方向に所
定の間隔離れた位置−αにおいて交流外部磁界によって
誘起された出力信号同出力信号(調整測定信号)φC(X-
a) を測定する第2磁界相殺用測定コイルCとから構成
されている。そのうえで、請求項3に記載する第2手段
乃至第6手段を順次行うようにしたことを特徴とする交
流電磁誘導方式による被測定試料の磁気的物理量の測定
方法である。
A fourth invention to be granted a patent is a measuring device in which the AC electromagnetic induction sensor 1 described in the first means of claim 3 is replaced with an improved AC electromagnetic induction sensor 1 configured as follows. To prepare. In the AC electromagnetic induction sensor 1, the AC external magnetic field induced when an AC current is applied is applied to the measurement region 3 and its peripheral region 4 having a size that encloses the sample 7 to be measured, and further, the measurement region 3 and its periphery. An AC external magnetic field applying coil 5 set so that the magnetic field distribution is uniform within the range of the area 4, and an output signal induced by the AC external magnetic field in the predetermined measurement area 3 and its peripheral area 4 is measured. And a measuring coil 6 arranged so that
Is a main measurement coil B capable of measuring a measured signal φ B (X) induced by an AC external magnetic field in the measurement area 3 when the measured sample 7 is present in the measurement area 3 and the measurement area 3
Output signal (adjustment measurement signal) φ Ac (X ±
a) and a measuring coil AC for canceling the external magnetic field for measuring a).
The first main measurement coil B1 located in front of the magnetic field lines in the inside and the second main measurement coil B2 located in the rear are arranged so as to be separated by a predetermined distance. The measured signal φ B (X) induced by the magnetic field is configured so that it can be measured as an output signal obtained by combining the magnetic fields of the first main measurement coil B1 and the second main measurement coil B2, and the external magnetic field cancellation is performed. The measurement coil AC for measurement measures the output signal (adjustment measurement signal) φ A (X + a) induced by the AC external magnetic field at a position + α separated from the measurement region 3 in the forward direction of the magnetic field lines by a predetermined distance. External magnetic field canceling measurement coil A and output signal induced by an AC external magnetic field at a position -α which is separated from the measurement area 3 in the rear direction of the magnetic field lines by a predetermined distance (adjustment measurement signal) φ C (X-
and a second magnetic field cancellation measuring coil C for measuring a). Then, the second to sixth means described in claim 3 are sequentially performed, which is a method for measuring a magnetic physical quantity of a sample to be measured by an AC electromagnetic induction method.

【0041】特許を受けようとする第5発明は、交流電
流を流したとき発生する交流外部磁界が被測定試料7を
包む大きさの測定領域3およびその周辺領域4に印加さ
れ、しかも当該測定領域3およびその周辺領域4の範囲
内で磁界分布が一様となるように設定されている交流外
部磁界印加コイル5と、当該所定の測定領域3およびそ
の周辺領域4において交流外部磁界によって誘起される
出力信号を測定し得るように配設された測定コイル6と
からなり、当該測定コイル6は、所定の測定領域3内に
被測定試料7があるとき、当該測定領域3において交流
外部磁界によって誘起される出力信号(被測定信号)φ
B(X)を測定し得る主測定コイルBと、当該測定領域3か
ら所定の間隔±α離れた位置において交流外部磁界によ
って誘起された出力信号(調整測定信号)φA(X ±a)
を測定し得る外部磁界相殺用測定コイルAとから構成さ
れるようにした交流式電磁誘導センサー1と、前記交流
式電磁誘導センサー1に連結し、交流外部磁界印加コイ
ル5に交流電流を流すことにより交流外部磁界を測定領
域3およびその周辺領域4に印加することができるよう
に構成した交流外部磁界発生手段8と、前記交流式電磁
誘導センサー1に連結し、交流外部磁界の印加によって
測定コイル4に誘起される起電力の出力信号(被測定信
号,調整測定信号)を測定し数値化し得るようにした出
力信号測定手段9と、測定し数値化された出力信号(被
測定信号,調整測定信号)を調整し必要に応じて演算す
ることができるようにした演算手段10と、少なくとも
前記演算手段10で演算された被測定試料の磁気的物理
量を出力できるようにした出力手段11とを、備えたこ
とを特徴とする交流電磁誘導方式による被測定試料の磁
気的物理量の測定装置である。
In the fifth invention to be patented, an AC external magnetic field generated when an AC current is applied is applied to the measurement region 3 and its peripheral region 4 having a size enclosing the sample 7 to be measured, and the measurement is performed. An AC external magnetic field applying coil 5 that is set so that the magnetic field distribution is uniform within the region 3 and its peripheral region 4, and an AC external magnetic field induced in the predetermined measurement region 3 and its peripheral region 4 And a measuring coil 6 arranged so as to measure an output signal, the measuring coil 6 is provided with an AC external magnetic field in the measuring region 3 when the sample 7 to be measured is present in the predetermined measuring region 3. Induced output signal (measured signal) φ
A main measurement coil B capable of measuring B (X) and an output signal (adjustment measurement signal) φ A (X ± a) induced by an AC external magnetic field at a position separated from the measurement area 3 by a predetermined distance ± α.
An AC electromagnetic induction sensor 1 configured to include an external magnetic field offsetting measurement coil A capable of measuring and an AC external magnetic field applying coil 5 connected to the AC electromagnetic induction sensor 1 to flow an AC current. The AC external magnetic field generating means 8 configured to apply the AC external magnetic field to the measurement area 3 and the peripheral area 4 thereof and the AC electromagnetic induction sensor 1 are connected to each other, and the measurement coil is applied by the application of the AC external magnetic field. The output signal measuring means 9 adapted to measure and digitize the output signal (measurement signal, adjustment measurement signal) of the electromotive force induced in 4 and the measured and digitized output signal (measurement signal, adjustment measurement). The calculation means 10 capable of adjusting the signal) and performing the calculation as necessary, and at least the magnetic physical quantity of the measured sample calculated by the calculation means 10 can be output. And output means 11 to a magnetic physical quantity measuring device of the sample by the AC electromagnetic induction, characterized in that it includes.

【0042】特許を受けようとする第6発明は、交流電
流を流したとき誘起する交流外部磁界が被測定試料7を
包む大きさの測定領域3およびその周辺領域4に印加さ
れ、しかも当該測定領域3およびその周辺領域4の範囲
内で磁界分布が一様となるように設定されている交流外
部磁界印加コイル5と、当該所定の測定領域3およびそ
の周辺領域4において交流外部磁界によって誘起される
出力信号を測定し得るように配設された測定コイル6と
からなり、当該測定コイル6は、所定の測定領域3内に
被測定試料7があるとき、当該測定領域3において交流
外部磁界によって誘起される出力信号(被測定信号)φ
B(X)を測定する主測定コイルBと、当該測定領域3から
所定の間隔離れた位置±αにおいて交流外部磁界によっ
て誘起された出力信号(調整測定信号)φAc(X±a) を
測定する外部磁界相殺用測定コイルACとからなり、当
該外部磁界相殺用測定コイルACは、前記測定領域3か
ら磁力線の前方向に所定の間隔離れた位置+αにおいて
交流外部磁界によって誘起された出力信号(第1調整測
定信号)φA(X+a) を測定する第1外部磁界相殺用測定
コイルAと,前記測定領域3から磁力線の後方向に所定
の間隔離れた位置−αにおいて交流外部磁界によって誘
起された出力信号(第2調整測定信号)φC(X-a) を測
定する第2磁界相殺用測定コイルCとで構成される交流
式電磁誘導センサー1と、前記交流式電磁誘導センサー
1に連結し、交流外部磁界印加コイル5に交流電流を流
すことにより交流外部磁界を測定領域3およびその周辺
領域4に印加することができるように構成した交流外部
磁界発生手段8と、前記交流式電磁誘導センサー1に連
結し、交流外部磁界の印加によって測定コイル4に誘起
される起電力の出力信号(被測定信号,調整測定信号)
を測定し数値化し得るようにした出力信号測定手段9
と、測定し数値化された出力信号(被測定信号,調整測
定信号)を調整し必要に応じて演算することができるよ
うにした演算手段10と、少なくとも前記演算手段10
で演算された被測定試料の磁気的物理量を出力できるよ
うにした出力手段11とを、備えたことを特徴とする交
流電磁誘導方式による被測定試料の磁気的物理量の測定
装置である。
In the sixth invention to be patented, an AC external magnetic field induced when an AC current is applied is applied to the measurement region 3 and its peripheral region 4 having a size enclosing the sample 7 to be measured, and the measurement is performed. An AC external magnetic field applying coil 5 that is set so that the magnetic field distribution is uniform within the region 3 and its peripheral region 4, and an AC external magnetic field induced in the predetermined measurement region 3 and its peripheral region 4 And a measuring coil 6 arranged so as to measure an output signal, the measuring coil 6 is provided with an AC external magnetic field in the measuring region 3 when the sample 7 to be measured is present in the predetermined measuring region 3. Induced output signal (measured signal) φ
The main measurement coil B for measuring B (X) and the output signal (adjustment measurement signal) φ Ac (X ± a) induced by the AC external magnetic field at the positions ± α separated from the measurement area 3 by a predetermined distance are measured. And a measuring coil AC for canceling the external magnetic field, the measuring coil AC for canceling the external magnetic field having an output signal () generated by an AC external magnetic field at a position + α separated from the measuring region 3 by a predetermined distance in the forward direction of the magnetic field lines. First adjustment measurement signal) A first external magnetic field offsetting measurement coil A for measuring φ A (X + a), and an AC external magnetic field at a position -α separated from the measurement region 3 by a predetermined distance in the rear direction of the magnetic field lines An AC electromagnetic induction sensor 1 including a second magnetic field offsetting measurement coil C that measures the induced output signal (second adjustment measurement signal) φ C (X-a), and the AC electromagnetic induction sensor 1 AC external magnetic field coupled to An AC external magnetic field generating means 8 configured to apply an AC external magnetic field to the measurement region 3 and its peripheral region 4 by applying an AC current to the applying coil 5 is connected to the AC electromagnetic induction sensor 1. , Output signal of electromotive force induced in measuring coil 4 by application of AC external magnetic field (measured signal, adjusted measurement signal)
Output signal measuring means 9 for measuring and digitizing
And an arithmetic means 10 capable of adjusting the measured and digitized output signals (measured signal, adjusted measurement signal) and performing arithmetic operation as necessary, and at least the arithmetic means 10
And an output means 11 capable of outputting the magnetic physical quantity of the sample to be measured, which is calculated by the above method, and an apparatus for measuring the magnetic physical quantity of the sample to be measured by an alternating current electromagnetic induction method.

【0043】特許を受けようとする第7発明は、交流電
流を流したとき誘起する交流外部磁界が被測定試料7を
包む大きさの測定領域3およびその周辺領域4に印加さ
れ、しかも当該測定領域3およびその周辺領域4の範囲
内で磁界分布が一様となるように設定されている交流外
部磁界印加コイル5と、当該所定の測定領域3およびそ
の周辺領域4において交流外部磁界によって誘起される
出力信号を測定し得るように配設された測定コイル6と
からなり、当該測定コイル6は、測定領域3内に被測定
試料7があるとき、測定領域3内において交流外部磁界
によって誘起される被測定信号φB(X)を測定できる主測
定コイルBと当該測定領域3から所定の間隔離れた位置
±αにおいて交流外部磁界によって誘起された出力信号
(調整測定信号)φAc(X±a) を測定する外部磁界相殺
用測定コイルACとから構成されており、当該主測定コ
イルBは、更に測定領域3内の磁力線の前方に位置する
第一主測定コイルB1と、後方に位置する第二主測定コイ
ルB2とが所定の間隔離れて配設された構成になってい
て、測定領域3内において交流外部磁界によって誘起さ
れる被測定信号φB(X)が、当該第一主測定コイルB1と第
二主測定コイルB2の磁界を合成した出力信号として測定
できるように構成されており、前記外部磁界相殺用測定
コイルACは、当該測定領域3から磁力線の前方向に所
定の間隔離れた位置+αにおいて交流外部磁界によって
誘起された出力信号(調整測定信号)φA(X+a) を測定
する第1外部磁界相殺用測定コイルAと,当該測定領域
3から磁力線の後方向に所定の間隔離れた位置−αにお
いて交流外部磁界によって誘起された出力信号同出力信
号(調整測定信号)φC(X-a) を測定する第2磁界相殺
用測定コイルCとから構成されている改良型交流式電磁
誘導センサー1と、前記改良型交流式電磁誘導センサー
1に連結し、交流外部磁界印加コイル5に交流電流を流
すことにより交流外部磁界を測定領域3およびその周辺
領域4に印加することができるように構成した交流外部
磁界発生手段8と、前記改良型交流式電磁誘導センサー
1に連結し、交流外部磁界の印加によって測定コイル4
に誘起される起電力の出力信号(被測定信号,調整測定
信号)を測定し数値化し得るようにした出力信号測定手
段9と、測定し数値化された出力信号(被測定信号,調
整測定信号)を調整し必要に応じて演算することができ
るようにした演算手段10と、少なくとも前記演算手段
10で演算された被測定試料の磁気的物理量を出力でき
るようにした出力手段11とを、備えたことを特徴とす
る交流電磁誘導方式による被測定試料の磁気的物理量の
測定装置である。
In the seventh invention to be patented, an AC external magnetic field induced when an AC current is applied is applied to the measurement region 3 and its peripheral region 4 having a size enclosing the sample 7 to be measured, and the measurement is performed. An AC external magnetic field applying coil 5 that is set so that the magnetic field distribution is uniform within the region 3 and its peripheral region 4, and an AC external magnetic field induced in the predetermined measurement region 3 and its peripheral region 4 Measuring coil 6 arranged so as to measure the output signal, the measuring coil 6 is induced by an AC external magnetic field in the measuring region 3 when the sample 7 to be measured is present in the measuring region 3. Output signal (adjustment measurement signal) φ A induced by the AC external magnetic field at the main measurement coil B capable of measuring the measured signal φ B (X) and the position ± α separated from the measurement region 3 by a predetermined distance. The main measurement coil B is composed of an external magnetic field cancellation measurement coil AC for measuring c (X ± a), and the main measurement coil B is further located in front of the magnetic field lines in the measurement region 3, and The second main measurement coil B2 located in the rear is arranged so as to be separated from the second main measurement coil by a predetermined distance, and the measured signal φ B (X) induced by the AC external magnetic field in the measurement region 3 is The magnetic field of the first main measurement coil B1 and the second main measurement coil B2 is configured to be able to be measured as an output signal, and the external magnetic field offsetting measurement coil AC is arranged in the forward direction of the magnetic field lines from the measurement region 3. A first external magnetic field offsetting measurement coil A for measuring an output signal (adjustment measurement signal) φ A (X + a) induced by an AC external magnetic field at a position + α separated from a predetermined distance, and a magnetic field line from the measurement area 3 concerned. Position separated backward for a predetermined period − Induced output signal the output signal by an alternating external magnetic field in the (adjusted measurement signal) φ C (X-a) second magnetic field canceling the measurement coil C improved alternating current electromagnetic induction sensor is composed of a 1 to measure And an AC external magnetic field can be applied to the measurement area 3 and its peripheral area 4 by connecting to the improved AC electromagnetic induction sensor 1 and applying an AC current to the AC external magnetic field applying coil 5. The measuring coil 4 is connected to the AC external magnetic field generating means 8 and the improved AC electromagnetic induction sensor 1 by applying an AC external magnetic field.
Output signal measuring means 9 for measuring and quantifying the output signal (measurement signal, adjustment measurement signal) of the electromotive force induced in the sensor, and the measured and quantified output signal (measurement signal, adjustment measurement signal). ) Is adjusted so that calculation can be performed as necessary, and at least output means 11 capable of outputting the magnetic physical quantity of the sample to be measured calculated by the calculation means 10. It is an apparatus for measuring a magnetic physical quantity of a sample to be measured by an alternating-current electromagnetic induction method characterized by the above.

【0044】特許を受けようとする第8発明は、交流外
部磁界印加コイル5と測定コイル6とから構成される交
流式電磁誘導センサー1を用意し、当該交流外部磁界印
加コイル5が造る磁界の方向に沿って被測定試料7を通
過させることにより、交流の位相変化に伴う磁界を変化
させ、これによって測定コイル6に起電力を誘起させ、
交流外部磁界により誘起される信号と、被測定試料に関
する磁気的物理量の信号の和である複合信号を被測定信
号として測定した後、外部磁界により誘起される信号を
除去して、被測定資料に関する正味の磁気的物理量の測
定信号を検出し、これを基礎となる測定信号としてデジ
タル化した数値信号に変換し、当該数値信号に重量算定
係数を乗じて重量を演算するようにしたことを特徴とす
る交流電磁誘導方式による被測定試料の重量の測定方法
である。
The eighth invention to be patented is to prepare an AC electromagnetic induction sensor 1 composed of an AC external magnetic field applying coil 5 and a measuring coil 6, and to generate a magnetic field generated by the AC external magnetic field applying coil 5. By passing the sample 7 to be measured along the direction, the magnetic field associated with the phase change of the alternating current is changed, whereby an electromotive force is induced in the measuring coil 6,
Measure the composite signal, which is the sum of the signal induced by the AC external magnetic field and the signal of the magnetic physical quantity of the sample to be measured, as the signal to be measured, and then remove the signal induced by the external magnetic field to measure the sample material. It is characterized in that it detects the measurement signal of the net magnetic physical quantity, converts it to a digitized numerical signal as a basic measurement signal, and multiplies the numerical signal by a weight calculation coefficient to calculate the weight. Is a method for measuring the weight of a sample to be measured by an alternating current electromagnetic induction method.

【0045】特許を受けようとする第9発明は、以下第
1手段乃至第6手段を行うようにしたことを特徴とする
交流電磁誘導方式による被測定試料の重量測定方法であ
る。
A ninth invention for which a patent is sought is a method for measuring the weight of a sample to be measured by an alternating current electromagnetic induction method, characterized in that the following first to sixth means are performed.

【0046】第1手段:下記のように構成された交流式
電磁誘導センサー1と交流外部磁界発生手段8と出力信
号測定手段9と演算手段10とを備えたことを特徴とす
る重量測定装置を用意する。
First means: A weight measuring device comprising an AC electromagnetic induction sensor 1, an AC external magnetic field generating means 8, an output signal measuring means 9 and a computing means 10 configured as described below. prepare.

【0047】当該重量測定装置は、交流電流を流したと
き発生する交流外部磁界が被測定試料7を包む大きさの
測定領域3およびその周辺領域4に印加され、しかも当
該測定領域3およびその周辺領域4の範囲内で磁界分布
が一様となるように設定されている交流外部磁界印加コ
イル5と、当該所定の測定領域3およびその周辺領域4
において交流外部磁界によって誘起される出力信号を測
定し得るように配設された測定コイル6とからなり、当
該測定コイル6は、所定の測定領域3内に被測定試料7
があるとき、当該測定領域3において交流外部磁界によ
って誘起される出力信号(被測定信号)φB(X)を測定す
る主測定コイルBと、当該測定領域3から磁力線の前方
向に所定の間隔離れた位置+αにおいて交流外部磁界に
よって誘起された出力信号(調整測定信号)φA(X+a)
を測定する第1外部磁界相殺用測定コイルAと,当該測
定領域3から磁力線の後方向に所定の間隔離れた位置−
αにおいて交流外部磁界によって誘起された出力信号同
出力信号(調整測定信号)φC(X-a) を測定する第2磁
界相殺用測定コイルCとからなる外部磁界相殺用測定コ
イルACとで構成される電磁誘導センサー1と、前記交
流式電磁誘導センサー1に連結し、交流外部磁界印加コ
イル5に交流電流を流すことにより交流外部磁界を測定
領域3およびその周辺領域4に印加することのできるよ
うに構成された交流外部磁界発生手段8と、前記交流式
電磁誘導センサー1に連結し、交流外部磁界の印加によ
って測定コイル4に誘起される起電力の出力信号(被測
定信号,調整測定信号)を測定し、その出力信号(被測
定信号,調整測定信号)から適正なものを選定し、数値
化し得るように構成した出力信号測定手段9と、測定さ
れ数値化した出力信号(被測定信号,調整測定信号)を
調整し必要に応じて演算することができる当該演算手段
10とを少なくとも備えた装置である。
In the weight measuring device, an AC external magnetic field generated when an AC current is applied is applied to the measurement region 3 and its peripheral region 4 having a size that encloses the sample 7 to be measured, and further the measurement region 3 and its periphery. An AC external magnetic field applying coil 5 which is set so that the magnetic field distribution is uniform within the range of the region 4, the predetermined measurement region 3 and its peripheral region 4
In the predetermined measurement region 3, the measurement coil 6 is arranged so as to measure the output signal induced by the AC external magnetic field.
When there is a main measurement coil B that measures an output signal (signal to be measured) φ B (X) induced by an AC external magnetic field in the measurement area 3 and a predetermined distance from the measurement area 3 in the front direction of the magnetic field lines. Output signal (adjustment measurement signal) φ A (X + a) induced by AC external magnetic field at remote position + α
Measuring coil A for canceling the external magnetic field and a position separated from the measuring region 3 in the rear direction of the magnetic field line by a predetermined distance.
An output signal induced by an AC external magnetic field at α, and an external magnetic field cancellation measurement coil AC including a second magnetic field cancellation measurement coil C for measuring the same output signal (adjustment measurement signal) φ C (X-a) The electromagnetic induction sensor 1 is connected to the AC electromagnetic induction sensor 1, and an AC external magnetic field can be applied to the measurement area 3 and its peripheral area 4 by passing an AC current through the AC external magnetic field applying coil 5. The AC external magnetic field generating means 8 configured as described above and the AC electromagnetic induction sensor 1 are connected to each other, and the output signal of the electromotive force induced in the measurement coil 4 by the application of the AC external magnetic field (measured signal, adjusted measurement signal). ) Is measured, an appropriate signal is selected from the output signals (the signal under measurement, the adjustment measurement signal), and the output signal measuring means 9 is configured to be quantified, and the measured and digitized output signal. At least provided with a device and the computing means 10 which can be (measured signal, adjusting the measurement signal) adjusted as necessary operations.

【0048】第2手段:前記重量測定装置の測定系を、
あらかじめ次の乃至が満足するように調整する。前
記主測定コイルBで測定される出力信号(被測定信号)
φB(X)と第1外部磁界相殺用測定コイルAで測定される
出力信号(第1調整測定信号)φA(X+a) と第2外部磁
界相殺用測定コイルCで測定される出力信号(第2調整
測定信号)φC(X-a) は、交流外部磁界により誘起され
る出力信号W(X) と被測定試料7に関する磁気的物理量
の出力信号M(X) の複合信号として、次のように表され
るので、 φB(X)=α(WB(X)+MB(X)) φA(X+a)=β(WA(X+a) +MA(X+a) ) φC(X-a)=γ(WC(X-a) +MC(X-a) ) (但し、α、β、γは、調整用の定数で、途中に増幅器
を入れた場合の増幅率やコイルの巻数に比例した係数で
ある。) 調整用の定数α、β、γを調整因子として、測定コイル
6の測定系をあらかじめ次の乃至が満足するように
調整設定しておく。 被測定試料7が所定の測定領域3内に位置する場合に
おいて、所定の測定領域3ではその測定感度がほぼ一様
の空間となるように調整し、 MB(X)≒constant 主測定コイルBで測定された被測定試料に関する磁気
的物理量の出力信号φB (X) は、ほぼ第1外部磁界相殺
用測定コイルAで測定された交流外部磁界によって誘起
された出力信号WA(X+a) の2倍となし、 WB(X)=2WA(X+a) 第1外部磁界相殺用測定コイルAで測定された交流外
部磁界によって誘起された出力信号WA(X+a) と第2外
部磁界相殺用測定コイルCとで測定された交流外部磁界
によって誘起された出力信号WC(X-a) が等しくなるよ
うに調整し、 WA(X+a) =WC(X-a) 第1外部磁界相殺用測定コイルAで測定された被測定
試料7に関する磁気的物理量の出力信号MA(X+a) と第
2外部磁界相殺用測定コイルCとで測定された被測定試
料7に関する磁気的物理量の出力信号MC(X-a) が等し
くなるように調整し、 MA(X+a) =MC(X-a) 測定領域3に被測定試料7があるとき、第1外部磁界
相殺用測定コイルAで測定された被測定試料に関する磁
気的物理量の出力信号MA(X+a) は、主測定コイルBで
測定された被測定試料に関する磁気的物理量の出力信号
B(X)に比較して、コンスタントに所定の比率εで小さ
くなるように調整する。 εMB(X)=MA(X+a) ,ε<1/Σ
Second means: The measuring system of the weight measuring device is
Adjust in advance so that the following items are satisfied. Output signal (measured signal) measured by the main measurement coil B
φ B (X) and output signal measured by the first external magnetic field offset measuring coil A (first adjustment measurement signal) φ A (X + a) and output measured by the second external magnetic field offset measuring coil C The signal (second adjustment measurement signal) φ C (X-a) is a composite signal of the output signal W (X) induced by the AC external magnetic field and the output signal M (X) of the magnetic physical quantity related to the DUT 7. , Φ B (X) = α (W B (X) + M B (X)) φ A (X + a) = β (W A (X + a) + M A (X + a)) φ C (X-a) = γ (W C (X-a) + M C (X-a)) (where α, β and γ are constants for adjustment, and an amplifier is inserted in the middle. In this case, it is a coefficient proportional to the amplification factor and the number of turns of the coil.) Using the adjustment constants α, β, and γ as adjustment factors, the measurement system of the measurement coil 6 is adjusted and set in advance so that Keep it. When the sample 7 to be measured is located in the predetermined measurement region 3, the measurement sensitivity is adjusted to be a substantially uniform space in the predetermined measurement region 3, and M B (X) ≈constant main measurement coil B The output signal φ B (X) of the magnetic physical quantity related to the sample to be measured measured in 1. is almost the output signal W A (X + a) induced by the AC external magnetic field measured by the first external magnetic field offsetting measurement coil A. ), And W B (X) = 2W A (X + a) and the output signal W A (X + a) induced by the AC external magnetic field measured by the first external magnetic field cancellation measuring coil A The output signal W C (X-a) induced by the AC external magnetic field measured by the second external magnetic field offsetting measurement coil C is adjusted to be equal, and W A (X + a) = W C (X -a) Output signal of the magnetic physical quantity related to the sample to be measured 7 measured by the first measuring coil A for external magnetic field cancellation M A (X + a) and adjusted to magnetic physical quantity of the output signal M C (X-a) equals about the measured sample 7 is measured by the second external magnetic field canceling the measurement coil C, M A (X + a) = M C (X-a) When the sample to be measured 7 is present in the measurement region 3, the output signal M A of the magnetic physical quantity related to the sample to be measured measured by the first external magnetic field cancellation measurement coil A (X + a) is adjusted so as to be constantly reduced by a predetermined ratio ε compared with the output signal M B (X) of the magnetic physical quantity related to the sample to be measured measured by the main measurement coil B. εM B (X) = M A (X + a), ε <1 / Σ

【0049】第3手段:前記交流式電磁誘導センサー1
と交流外部磁界発生手段8と出力信号測定手段9とを用
いて、所定の測定領域3に被測定試料7を存在させたと
き、交流外部磁界印加コイル3に交流電流をながして交
流外部磁界を印加し、主測定コイルBにより被測定信号
φB(X)を測定し、 φB(X)=α(WB(X)+MB(X)) 第1外部磁界相殺用測定コイルAにより第1調整測定信
号φA(X+a) を測定すると共に、第2外部磁界相殺用測
定コイルCにより第2調整測定信号φC(X-a) を測定す
る。 φA(X+a) =β(WA(X+a) +MA(X+a) ) φC(X-a) =γ(WC(X-a) +MC(X-a) )
Third means: the AC electromagnetic induction sensor 1
When the sample 7 to be measured is present in the predetermined measurement region 3 by using the AC external magnetic field generating means 8 and the output signal measuring means 9, an AC current is passed through the AC external magnetic field applying coil 3 to generate an AC external magnetic field. Apply and measure the measured signal φ B (X) with the main measurement coil B, φ B (X) = α (W B (X) + M B (X)) with the first external magnetic field cancellation measurement coil A The first adjustment measurement signal φ A (X + a) is measured, and the second adjustment measurement signal φ C (X-a) is measured by the second external magnetic field cancellation measurement coil C. φ A (X + a) = β (W A (X + a) + M A (X + a)) φ C (X-a) = γ (W C (X-a) + M C (X-a))

【0050】第4手段:外部磁界相殺用測定コイルA,
Cが出力した第1調整測定信号φA(X+a) と第2調整測
定信号φC(X-a) を加算して外部磁界相殺用出力信号φ
A(X+a) +φC(X-a) 値となし、 φA(X+a) +φC(X-a) =β(WA(X+a) +MA(X+a)
)+γ(WC(X-a) +MC(X-a) ) 当該主測定コイルBで測定した被測定信号φB(X)から、
外部磁界相殺用測定コイルA,Cで測定した前記外部磁
界相殺用出力信号φA(X+a) +φC(X-a) 値を差し引く
ことにより、交流外部磁界により誘起される信号を相殺
し、被測定試料7に関する正味の磁気的物理量を所定の
係数κに比例した磁気的物理量出力信号φT として検出
する。 φT =φB(X)−(φA(X+a) +φC(X-a) ) =α(WB(X)+MB(X))−{β(WA(X+a) +MA(X+a) ) +γ(φC(X-a) +MC(X-a) } =αWB(X)−{β(WA(X+a) +γWC(X-a) } +αMB(X)−{βMA(X+a) +γMC(X-a) } このときWB(X)=2WA(X+a) なのでα≒β+γと調整し、 WA(X+a) =WC(X-a) 及びMA(X+a) =MC(X-a) なので β≒γに調整してあるので、 αWB(X)−{β(WA(X+a) +γ(WC(X-a) }≒0と相殺され、 =αMB(X)−{βMA(X+a) +γMC(X-a) } =α(MB(X)−2MA(X+a) =α(MB(X)−2εMB(X)) =α(1−2ε)MB(X) α(1−2ε)は係数κに置換されるため、 φT =κMB(X) となり、磁気的物理量出力信号φT は、MB(X)に比例し
た信号として検出される。
Fourth means: measuring coil A for canceling the external magnetic field,
Output signal φ for external magnetic field cancellation by adding the first adjustment measurement signal φ A (X + a) output by C and the second adjustment measurement signal φ C (X-a)
A (X + a) + φ C (X-a) values and without, φ A (X + a) + φ C (X-a) = β (W A (X + a) + M A (X + a)
) + Γ (W C (X-a) + M C (X-a)) From the measured signal φ B (X) measured by the main measurement coil B,
By subtracting the external magnetic field canceling output signal φ A (X + a) + φ C (X-a) value measured by the external magnetic field canceling measuring coils A and C, the signal induced by the AC external magnetic field is canceled. , The net magnetic physical quantity of the measured sample 7 is detected as a magnetic physical quantity output signal φ T proportional to a predetermined coefficient κ. φ T = φ B (X) - (φ A (X + a) + φ C (X-a)) = α (W B (X) + M B (X)) - {β (W A (X + a) + M A (X + a) ) + γ (φ C (X-a) + M C (X-a)} = αW B (X) - {β (W A (X + a) + γW C (X-a)} + ΑM B (X)-{βM A (X + a) + γM C (X-a)} At this time, W B (X) = 2W A (X + a), so α ≈ β + γ is adjusted, and W A (X + Since a) = W C (X-a) and M A (X + a) = M C (X-a), β ≈ γ is adjusted, so αW B (X)-{β (WA (X A + a) + γ (W C (X-a)} ≈ 0, which is offset by: = αM B (X)-{βM A (X + a) + γM C (X-a)} = α (M B (X) -2M a (X + a) = α (M B (X) -2εM B (X)) = α (1-2ε) M B (X) α (1-2ε) because substituted in the coefficient kappa, Since φ T = κM B (X), the magnetic physical quantity output signal φ T is detected as a signal proportional to M B (X).

【0051】第5手段:真正重量SGの判明している標
準試料Sの磁気的物理量測定信号SφT を、前記測定装
置を用いて被測定試料7と同じ測定方法で測定し演算す
ることにより標準試料Sの磁気的物理量測定信号SφT
を検出し、この検出された標準試料Sの磁気的物理量測
定信号SφT と判明している真正重量SGから当該重量
算定係数ηを特定する。 η=SφT /SG (SφT ,SGの両者が具体的数値化しているので、η
も数値化する。)
Fifth means: A standard is obtained by measuring and calculating the magnetic physical quantity measurement signal Sφ T of the standard sample S of which the true weight SG is known by the same measuring method as that of the sample 7 to be measured by using the measuring device. Magnetic physical quantity measurement signal Sφ T of sample S
Is detected and the weight calculation coefficient η is specified from the detected magnetic physical quantity measurement signal Sφ T of the standard sample S and the true weight SG which is known. η = Sφ T / SG (Since both Sφ T and SG are concrete numerical values, η
Also digitize. )

【0052】第6手段:演算手段10を用いて前記第5
手段で検出した被測定試料7に関する磁気的物理量測定
信号φT から前記特定した重量算定係数ηを用いて被測
定試料7の重量を算出する。 MB(X)=φT /η
Sixth means: Using the calculating means 10, the fifth means
The weight of the sample 7 to be measured is calculated from the magnetic physical quantity measurement signal φ T relating to the sample 7 to be measured detected by the means, using the specified weight calculation coefficient η. M B (X) = φ T / η

【0053】特許を受けようとする第10発明は、請求
項9の第1手段において記載する交流式電磁誘導センサ
ー1を下記のように構成した改良型交流式電磁誘導セン
サー1に置換した測定装置を用意する。当該交流式電磁
誘導センサー1は、交流電流を流したとき誘起する交流
外部磁界が被測定試料7を包む大きさの測定領域3およ
びその周辺領域4に印加され、しかも当該測定領域3お
よびその周辺領域4の範囲内で磁界分布が一様となるよ
うに設定されている交流外部磁界印加コイル5と、当該
所定の測定領域3およびその周辺領域4において交流外
部磁界によって誘起される出力信号を測定し得るように
配設された測定コイル6とからなり、当該測定コイル6
は、測定領域3内に被測定試料7があるとき、測定領域
3内において交流外部磁界によって誘起される被測定信
号φB(X)を測定できる主測定コイルBと当該測定領域3
から所定の間隔離れた位置±αにおいて交流外部磁界に
よって誘起された出力信号(調整測定信号)φAc(X±
a) を測定する外部磁界相殺用測定コイルACとから構
成されており、当該主測定コイルBは、更に測定領域3
内の磁力線の前方に位置する第一主測定コイルB1と、後
方に位置する第二主測定コイルB2とが所定の間隔離れて
配設された構成になっていて、測定領域3内において交
流外部磁界によって誘起される被測定信号φB(X)が、当
該第一主測定コイルB1と第二主測定コイルB2の磁界を合
成した出力信号として測定できるように構成されてお
り、前記外部磁界相殺用測定コイルACは、当該測定領
域3から磁力線の前方向に所定の間隔離れた位置+αに
おいて交流外部磁界によって誘起された出力信号(調整
測定信号)φA(X+a) を測定する第1外部磁界相殺用測
定コイルAと,当該測定領域3から磁力線の後方向に所
定の間隔離れた位置−αにおいて交流外部磁界によって
誘起された出力信号同出力信号(調整測定信号)φC(X-
a) を測定する第2磁界相殺用測定コイルCとから構成
されている。そのうえで、請求項9に記載する第2手段
乃至第6手段を順次行うようにしたことを特徴とする交
流電磁誘導方式による被測定試料の磁気的物理量の測定
方法である。
A tenth aspect of the present invention, which intends to receive a patent, is a measuring apparatus in which the AC electromagnetic induction sensor 1 described in the first means of claim 9 is replaced with an improved AC electromagnetic induction sensor 1 configured as follows. To prepare. In the AC electromagnetic induction sensor 1, the AC external magnetic field induced when an AC current is applied is applied to the measurement region 3 and its peripheral region 4 having a size that encloses the sample 7 to be measured, and further, the measurement region 3 and its periphery. An AC external magnetic field applying coil 5 set so that the magnetic field distribution is uniform within the range of the area 4, and an output signal induced by the AC external magnetic field in the predetermined measurement area 3 and its peripheral area 4 is measured. And a measuring coil 6 arranged so that
Is a main measurement coil B capable of measuring a measured signal φ B (X) induced by an AC external magnetic field in the measurement area 3 when the measured sample 7 is present in the measurement area 3 and the measurement area 3
Output signal (adjustment measurement signal) φ Ac (X ±
a) and a measuring coil AC for canceling the external magnetic field for measuring a).
The first main measurement coil B1 located in front of the magnetic field lines in the inside and the second main measurement coil B2 located in the rear are arranged so as to be separated by a predetermined distance. The measured signal φ B (X) induced by the magnetic field is configured so that it can be measured as an output signal obtained by combining the magnetic fields of the first main measurement coil B1 and the second main measurement coil B2, and the external magnetic field cancellation is performed. The measurement coil AC for measurement measures the output signal (adjustment measurement signal) φ A (X + a) induced by the AC external magnetic field at a position + α separated from the measurement region 3 in the forward direction of the magnetic field lines by a predetermined distance. External magnetic field canceling measurement coil A and output signal induced by an AC external magnetic field at a position -α which is separated from the measurement area 3 in the rear direction of the magnetic field lines by a predetermined distance (adjustment measurement signal) φ C (X-
and a second magnetic field cancellation measuring coil C for measuring a). In addition, the second to sixth means described in claim 9 are sequentially performed, which is a method for measuring a magnetic physical quantity of a sample to be measured by an AC electromagnetic induction method.

【0054】特許を受けようとする第11発明は、交流
電流を流したとき誘起する交流外部磁界が被測定試料7
を包む大きさの測定領域3およびその周辺領域4に印加
され、しかも当該測定領域3およびその周辺領域4の範
囲内で磁界分布が一様となるように設定されている交流
外部磁界印加コイル5と、当該所定の測定領域3および
その周辺領域4において交流外部磁界によって誘起され
る出力信号を測定し得るように配設された測定コイル6
とからなり、当該測定コイル6は、所定の測定領域3内
に被測定試料7があるとき、当該測定領域3において交
流外部磁界によって誘起される出力信号(被測定信号)
φB(X)を測定する主測定コイルBと、当該測定領域3か
ら磁力線の前方向に所定の間隔離れた位置+αにおいて
交流外部磁界によって誘起された出力信号(調整測定信
号)φA(X+a) を測定する第1外部磁界相殺用測定コイ
ルAと,当該測定領域3から磁力線の後方向に所定の間
隔離れた位置−αにおいて交流外部磁界によって誘起さ
れた出力信号同出力信号(調整測定信号)φC(X-a) を
測定する第2磁界相殺用測定コイルCとからなる外部磁
界相殺用測定コイルACとで構成されるようにしたこと
を特徴とする交流電磁誘導方式による被測定試料の磁気
的物理量の測定用電磁誘導センサー1と、前記交流式電
磁誘導センサー1に連結し、交流外部磁界印加コイル5
に交流電流を流すことにより交流外部磁界を測定領域3
およびその周辺領域4に印加することができるように構
成した交流外部磁界発生手段8と、前記交流式電磁誘導
センサー1に連結し、交流外部磁界の印加によって測定
コイル4に誘起される起電力の出力信号(被測定信号,
調整測定信号)を測定し数値化し得るようにした出力信
号測定手段9と、測定し数値化された出力信号(被測定
信号,調整測定信号)を調整し必要に応じて演算するこ
とができるようにした演算手段10と、少なくとも前記
演算手段10で演算された被測定試料の重量か、或はあ
らかじめ設定された標準重量と測定演算された重量数値
とを比較した評価判定を出力できるようにした出力手段
11と、前記交流式電磁誘導センサー1の所定の測定領
域3に被測定試料7を搬送供給し、重量測定後に搬出す
るようにした被測定試料供給搬出手段12とを、備えた
ことを特徴とする交流電磁誘導方式による被測定試料の
重量測定装置である。
The eleventh invention to be patented is that the AC external magnetic field induced when an AC current is applied is measured sample 7
AC external magnetic field applying coil 5 which is applied to the measurement region 3 and its peripheral region 4 having a size that encloses the magnetic field and is set so that the magnetic field distribution is uniform within the range of the measurement region 3 and its peripheral region 4. And a measuring coil 6 arranged so as to be able to measure an output signal induced by an AC external magnetic field in the predetermined measuring region 3 and its peripheral region 4.
The measurement coil 6 has an output signal (measurement signal) induced by an AC external magnetic field in the measurement area 3 when the measurement sample 7 is present in the predetermined measurement area 3.
a main measuring coil B to measure phi B (X), the induced output signals by alternating external magnetic field at the position + alpha spaced a predetermined distance in the forward direction of the magnetic lines of force from the measuring region 3 (adjusted measurement signal) phi A (X + a) for measuring the first external magnetic field offsetting measurement coil A, and the output signal induced by the AC external magnetic field at the position -α separated from the measurement area 3 in the rearward direction of the magnetic field by a predetermined distance. (Measurement signal) φ C (X-a) for measuring the external magnetic field canceling measuring coil AC including the second magnetic field canceling measuring coil C for measuring An electromagnetic induction sensor 1 for measuring a magnetic physical quantity of a measurement sample and an AC external magnetic field application coil 5 connected to the AC electromagnetic induction sensor 1
AC external magnetic field is measured by applying an AC current to the measurement area 3
And an AC external magnetic field generating means 8 configured to be applied to the peripheral area 4 thereof and the AC electromagnetic induction sensor 1, and the electromotive force induced in the measuring coil 4 by the application of the AC external magnetic field. Output signal (measured signal,
Output signal measuring means 9 for measuring and digitizing the adjusted measurement signal, and for adjusting the measured and digitized output signal (measured signal, adjusted measurement signal) and calculating as necessary. The calculation means 10 described above and at least the weight of the sample to be measured calculated by the calculation means 10, or an evaluation judgment by comparing the preset standard weight with the measured weight value can be output. An output means 11 and a measured sample supply / unload means 12 for transferring and supplying the measured sample 7 to a predetermined measurement region 3 of the AC electromagnetic induction sensor 1 and carrying it out after the weight measurement are provided. It is a characteristic device for measuring the weight of a sample to be measured by an AC electromagnetic induction method.

【0055】特許を受けようとする第12発明は、交流
電流を流したとき誘起する交流外部磁界が被測定試料7
を包む大きさの測定領域3およびその周辺領域4に印加
され、しかも当該測定領域3およびその周辺領域4の範
囲内で磁界分布が一様となるように設定されている交流
外部磁界印加コイル5と、当該所定の測定領域3および
その周辺領域4において交流外部磁界によって誘起され
る出力信号を測定し得るように配設された測定コイル6
とからなり、当該測定コイル6は、測定領域3内に被測
定試料7があるとき、測定領域3内において交流外部磁
界によって誘起される被測定信号φB(X)を測定できる主
測定コイルBと当該測定領域3から所定の間隔離れた位
置±αにおいて交流外部磁界によって誘起された出力信
号(調整測定信号)φAc(X±a) を測定する外部磁界相
殺用測定コイルACとから構成されており、当該主測定
コイルBは、更に測定領域3内の磁力線の前方に位置す
る第一主測定コイルB1と、後方に位置する第二主測定コ
イルB2とが所定の間隔離れて配設された構成になってい
て、測定領域3内において交流外部磁界によって誘起さ
れる被測定信号φB(X)が、当該第一主測定コイルB1と第
二主測定コイルB2の磁界を合成した出力信号として測定
できるように構成されており、前記外部磁界相殺用測定
コイルACは、当該測定領域3から磁力線の前方向に所
定の間隔離れた位置+αにおいて交流外部磁界によって
誘起された出力信号(調整測定信号)φA(X+a) を測定
する第1外部磁界相殺用測定コイルAと,当該測定領域
3から磁力線の後方向に所定の間隔離れた位置−αにお
いて交流外部磁界によって誘起された出力信号同出力信
号(調整測定信号)φC(X-a) を測定する第2磁界相殺
用測定コイルCとから構成されている改良型交流式電磁
誘導センサー1と、前記改良型交流式電磁誘導センサー
1に連結し、交流外部磁界印加コイル5に交流電流を流
すことにより交流外部磁界を測定領域3およびその周辺
領域4に印加することができるように構成した交流外部
磁界発生手段8と、前記改良型交流式電磁誘導センサー
1に連結し、交流外部磁界の印加によって測定コイル4
に誘起される起電力の出力信号(被測定信号,調整測定
信号)を測定し数値化し得るようにした出力信号測定手
段9と、測定し数値化された出力信号(被測定信号,調
整測定信号)を調整し必要に応じて演算することができ
るようにした演算手段10と、少なくとも前記演算手段
10で演算された被測定試料の重量か、或はあらかじめ
設定された標準重量と測定演算された重量数値とを比較
した評価判定を出力できるようにした出力手段11と、
前記交流式電磁誘導センサー1の所定の測定領域3に被
測定試料7を搬送供給し、重量測定後に搬出するように
した被測定試料供給搬出手段12とを、備えたことを特
徴とする交流電磁誘導方式による被測定試料の重量測定
装置である。
In the twelfth aspect of the invention, which is going to receive a patent, the alternating external magnetic field induced when an alternating current is applied is measured sample 7
AC external magnetic field applying coil 5 which is applied to the measurement region 3 and its peripheral region 4 having a size that encloses the magnetic field and is set so that the magnetic field distribution is uniform within the range of the measurement region 3 and its peripheral region 4. And a measuring coil 6 arranged so as to be able to measure an output signal induced by an AC external magnetic field in the predetermined measuring region 3 and its peripheral region 4.
The measurement coil 6 comprises a main measurement coil B capable of measuring a signal under test φ B (X) induced by an AC external magnetic field in the measurement region 3 when the sample 7 under measurement is present in the measurement region 3. And an external magnetic field canceling measuring coil AC for measuring an output signal (adjustment measuring signal) φ Ac (X ± a) induced by an AC external magnetic field at a position ± α separated from the measurement region 3 by a predetermined distance. The main measurement coil B is further provided with a first main measurement coil B1 located in front of the magnetic field lines in the measurement area 3 and a second main measurement coil B2 located behind the magnetic field lines, which are separated by a predetermined distance. The measured signal φ B (X) induced by the AC external magnetic field in the measurement area 3 is an output signal obtained by combining the magnetic fields of the first main measurement coil B1 and the second main measurement coil B2. Is configured to be measured as The external magnetic field canceling measurement coil AC has an output signal (adjustment measurement signal) φ A (X + a) induced by an AC external magnetic field at a position + α separated from the measurement region 3 in the front direction of the magnetic field lines by a predetermined distance. ) Of the first external magnetic field canceling measurement coil A, and the output signal same as the output signal (adjustment measurement signal) induced by the AC external magnetic field at a position -α separated from the measurement region 3 by a predetermined distance in the rear direction of the magnetic field lines. ) An improved AC electromagnetic induction sensor 1 composed of a second magnetic field cancellation measuring coil C for measuring φ C (X-a), and an AC external connected to the improved AC electromagnetic induction sensor 1. An AC external magnetic field generating means 8 configured to apply an AC external magnetic field to the measurement region 3 and its peripheral region 4 by applying an AC current to the magnetic field applying coil 5, and the improved AC electromagnetic induction sensor. Connected to server 1, the measuring coil 4 by application of an AC external magnetic field
Output signal measuring means 9 for measuring and quantifying the output signal (measurement signal, adjustment measurement signal) of the electromotive force induced in the sensor, and the measured and quantified output signal (measurement signal, adjustment measurement signal). ) Is adjusted so that calculation can be performed as necessary, and at least the weight of the sample to be measured calculated by the calculation means 10 or a standard weight set in advance is measured and calculated. Output means 11 capable of outputting an evaluation judgment comparing with a weight value,
An AC electromagnetic wave, comprising: a sample-to-be-measured supply / unloading means 12 configured to carry and supply the sample 7 to be measured to a predetermined measurement region 3 of the AC electromagnetic induction sensor 1 and carry it out after weighing. It is an apparatus for measuring the weight of a sample to be measured by an induction method.

【0056】特許を受けようとする第13発明は、交流
電流を流したとき発生する交流外部磁界が被測定試料7
を包む大きさの測定領域3およびその周辺領域4に印加
され、しかも当該測定領域3およびその周辺領域4の範
囲内で磁界分布が一様となるように設定されている交流
外部磁界印加コイル5と、当該所定の測定領域3および
その周辺領域4において交流外部磁界によって誘起され
る出力信号を測定し得るように配設された測定コイル6
とからなり、当該測定コイル6は、所定の測定領域3内
に被測定試料7があるとき、当該測定領域3において交
流外部磁界によって誘起される出力信号(被測定信号)
φB(X)を測定し得る主測定コイルBと、当該測定領域3
から所定の間隔±α離れた位置において交流外部磁界に
よって誘起された出力信号(調整測定信号)φA(X ±
a) を測定し得る外部磁界相殺用測定コイルAとから構
成されるようにしたことを特徴とする交流電磁誘導方式
による被測定試料の磁気的物理量の測定用交流式電磁誘
導センサーである。
In the thirteenth aspect of the invention for which a patent is sought, the alternating external magnetic field generated when an alternating current is applied is measured sample 7
AC external magnetic field applying coil 5 which is applied to the measurement region 3 and its peripheral region 4 having a size that encloses the magnetic field and is set so that the magnetic field distribution is uniform within the range of the measurement region 3 and its peripheral region 4. And a measuring coil 6 arranged so as to be able to measure an output signal induced by an AC external magnetic field in the predetermined measuring region 3 and its peripheral region 4.
The measurement coil 6 has an output signal (measurement signal) induced by an AC external magnetic field in the measurement area 3 when the measurement sample 7 is present in the predetermined measurement area 3.
Main measurement coil B capable of measuring φ B (X) and the measurement area 3 concerned
Output signal (adjustment measurement signal) φ A (X ±
It is an AC electromagnetic induction sensor for measuring a magnetic physical quantity of a sample to be measured by an AC electromagnetic induction method, characterized in that it comprises an external magnetic field canceling measurement coil A capable of measuring a).

【0057】特許を受けようとする第14発明は、交流
電流を流したとき誘起する交流外部磁界が被測定試料7
を包む大きさの測定領域3およびその周辺領域4に印加
され、しかも当該測定領域3およびその周辺領域4の範
囲内で磁界分布が一様となるように設定されている交流
外部磁界印加コイル5と、当該所定の測定領域3および
その周辺領域4において交流外部磁界によって誘起され
る出力信号を測定し得るように配設された測定コイル6
とからなり、当該測定コイル6は、所定の測定領域3内
に被測定試料7があるとき、当該測定領域3において交
流外部磁界によって誘起される出力信号(被測定信号)
φB(X)を測定する主測定コイルBと、当該測定領域3か
ら所定の間隔離れた位置±αにおいて交流外部磁界によ
って誘起された出力信号(調整測定信号)φAc(X±a)
を測定する外部磁界相殺用測定コイルACとからなり、
当該外部磁界相殺用測定コイルACは、前記測定領域3
から磁力線の前方向に所定の間隔離れた位置+αにおい
て交流外部磁界によって誘起された出力信号(第1調整
測定信号)φA(X+a) を測定する第1外部磁界相殺用測
定コイルAと,前記測定領域3から磁力線の後方向に所
定の間隔離れた位置−αにおいて交流外部磁界によって
誘起された出力信号(第2調整測定信号)φC(X-a) を
測定する第2磁界相殺用測定コイルCとで構成されるよ
うにしたことを特徴とする交流電磁誘導方式による被測
定試料の磁気的物理量測定用の交流式電磁誘導センサー
である。
The fourteenth invention, which seeks to obtain a patent, is that the AC external magnetic field induced when an AC current is applied is measured sample 7
AC external magnetic field applying coil 5 which is applied to the measurement region 3 and its peripheral region 4 having a size that encloses the magnetic field and is set so that the magnetic field distribution is uniform within the range of the measurement region 3 and its peripheral region 4. And a measuring coil 6 arranged so as to be able to measure an output signal induced by an AC external magnetic field in the predetermined measuring region 3 and its peripheral region 4.
The measurement coil 6 has an output signal (measurement signal) induced by an AC external magnetic field in the measurement area 3 when the measurement sample 7 is present in the predetermined measurement area 3.
A main measurement coil B for measuring φ B (X) and an output signal (adjustment measurement signal) φ Ac (X ± a) induced by an AC external magnetic field at a position ± α separated from the measurement area 3 by a predetermined distance.
And an external magnetic field offset measuring coil AC for measuring
The measurement coil AC for canceling the external magnetic field corresponds to the measurement area 3
A first external magnetic field offsetting measurement coil A for measuring an output signal (first adjustment measurement signal) φ A (X + a) induced by an AC external magnetic field at a position + α that is separated by a predetermined distance in the forward direction of the magnetic field line from , A second magnetic field cancellation for measuring an output signal (second adjustment measurement signal) φ C (X-a) induced by an AC external magnetic field at a position -α which is separated from the measurement region 3 in the rear direction of the magnetic field by a predetermined distance. It is an AC electromagnetic induction sensor for measuring a magnetic physical quantity of a sample to be measured by an AC electromagnetic induction method, which is characterized in that it is configured with a measurement coil C for measurement.

【0058】特許を受けようとする第15発明は、交流
電流を流したとき誘起する交流外部磁界が被測定試料7
を包む大きさの測定領域3およびその周辺領域4に印加
され、しかも当該測定領域3およびその周辺領域4の範
囲内で磁界分布が一様となるように設定されている交流
外部磁界印加コイル5と、当該所定の測定領域3および
その周辺領域4において交流外部磁界によって誘起され
る出力信号を測定し得るように配設された測定コイル6
とからなり、当該測定コイル6は、測定領域3内に被測
定試料7があるとき、測定領域3内において交流外部磁
界によって誘起される被測定信号φB(X)を測定できる主
測定コイルBと当該測定領域3から所定の間隔離れた位
置±αにおいて交流外部磁界によって誘起された出力信
号(調整測定信号)φAc(X±a) を測定する外部磁界相
殺用測定コイルACとから構成されており、当該主測定
コイルBは、更に測定領域3内の磁力線の前方に位置す
る第一主測定コイルB1と、後方に位置する第二主測定コ
イルB2とが所定の間隔離れて配設された構成になってい
て、測定領域3内において交流外部磁界によって誘起さ
れる被測定信号φB(X)が、当該第一主測定コイルB1と第
二主測定コイルB2の磁界を合成した出力信号として測定
できるように構成されており、前記外部磁界相殺用測定
コイルACは、当該測定領域3から磁力線の前方向に所
定の間隔離れた位置+αにおいて交流外部磁界によって
誘起された出力信号(調整測定信号)φA(X+a) を測定
する第1外部磁界相殺用測定コイルAと,当該測定領域
3から磁力線の後方向に所定の間隔離れた位置−αにお
いて交流外部磁界によって誘起された出力信号同出力信
号(調整測定信号)φC(X-a) を測定する第2磁界相殺
用測定コイルCとから構成されるようにしたことを特徴
とする交流電磁誘導方式による被測定試料の磁気的物理
量測定用の改良型交流式電磁誘導センサーである。
In the fifteenth aspect of the invention for which a patent is sought, the alternating external magnetic field induced when an alternating current is applied is measured sample 7
AC external magnetic field applying coil 5 which is applied to the measurement region 3 and its peripheral region 4 having a size that encloses the magnetic field and is set so that the magnetic field distribution is uniform within the range of the measurement region 3 and its peripheral region 4. And a measuring coil 6 arranged so as to be able to measure an output signal induced by an AC external magnetic field in the predetermined measuring region 3 and its peripheral region 4.
The measurement coil 6 comprises a main measurement coil B capable of measuring a signal under test φ B (X) induced by an AC external magnetic field in the measurement region 3 when the sample 7 under measurement is present in the measurement region 3. And an external magnetic field canceling measuring coil AC for measuring an output signal (adjustment measuring signal) φ Ac (X ± a) induced by an AC external magnetic field at a position ± α separated from the measurement region 3 by a predetermined distance. The main measurement coil B is further provided with a first main measurement coil B1 located in front of the magnetic field lines in the measurement area 3 and a second main measurement coil B2 located behind the magnetic field lines, which are separated by a predetermined distance. The measured signal φ B (X) induced by the AC external magnetic field in the measurement area 3 is an output signal obtained by combining the magnetic fields of the first main measurement coil B1 and the second main measurement coil B2. Is configured to be measured as The external magnetic field canceling measurement coil AC has an output signal (adjustment measurement signal) φ A (X + a) induced by an AC external magnetic field at a position + α separated from the measurement region 3 in the forward direction of the magnetic field lines by a predetermined distance. ) Of the first external magnetic field canceling measurement coil A, and the output signal induced by the AC external magnetic field at the position -α separated from the measurement region 3 in the rearward direction of the magnetic field lines by a predetermined distance (adjustment measurement signal). ) An improved AC for measuring the magnetic physical quantity of the sample to be measured by the AC electromagnetic induction method, characterized in that it comprises a second magnetic field cancellation measuring coil C for measuring φ C (X-a) Type electromagnetic induction sensor.

【0059】[0059]

【実施例】本願発明者達は、「交流の位相変化に伴う磁
束の変化率や透磁率は試材の質量に比例する。」との技
術知見に基づき、交流電磁誘導方式による磁気的物理量
の測定方法とその測定装置、およびそれを応用した重量
測定方法とその重量測定装置について具体的に試作し実
施例により実験をおこなった。特に、交流電流によって
発生する外部磁界を測定信号から除去できるような測定
技術を有する具体的な交流式電磁誘導センサー1という
検出コイルの開発と、均一した交流外部磁界を発生させ
る交流外部磁界発生手段10と、測定値の精度向上と安
定化を図った出力信号測定手段11と、その測定信号を
高速で演算する演算手段12と、演算結果や関連する各
種データを出力するようにした出力手段とからなるアン
プコントローラとを独自に開発したものである。以下、
本願発明を図示実施例に基づき詳細に説明する。
EXAMPLES The inventors of the present application, based on the technical knowledge that "the rate of change of magnetic flux and the magnetic permeability due to the phase change of alternating current are proportional to the mass of the test material." A measurement method and its measurement apparatus, and a weight measurement method and a weight measurement apparatus to which the measurement method and its measurement apparatus were concretely manufactured, and an experiment was carried out by the examples. In particular, development of a specific detection coil called an AC electromagnetic induction sensor 1 having a measurement technique capable of removing an external magnetic field generated by an AC current from a measurement signal, and an AC external magnetic field generation means for generating a uniform AC external magnetic field 10, an output signal measuring means 11 for improving and stabilizing the accuracy of the measured value, a calculating means 12 for calculating the measurement signal at high speed, and an outputting means for outputting the calculation result and various related data. It was originally developed with an amplifier controller consisting of. Less than,
The present invention will be described in detail based on the illustrated embodiments.

【0060】図12、図10は、本願発明者が開発した
測定装置の構成を示す説明図である。当該測定装置の技
術的構成は、図12に示したように、交流式電磁誘導セ
ンサー1と交流外部磁界発生手段8と出力信号測定手段
9と演算手段10と出力手段11と被測定試料供給搬出
手段12を備えたものである。これに対し、図10は、
本発明者が実際に作製した測定装置をその具体的構成部
品により記載したものである。尚、図12には、本発明
の技術的構成と図10に示したと具体的構成部品との関
係についても示されている。図7は交流式電磁誘導セン
サー1の一実施例を示した斜視図であり、図13は、交
流式電磁誘導センサー1と被測定試料供給搬出手段12
とを組み合わせた測定装置(磁気的物理量測定装置、重
量測定装置)の一実施例を示す正面図であり、図14
は、同交流式電磁誘導センサー1と被測定試料供給搬出
手段12とを組み合わせた測定装置(磁気的物理量測定
装置、重量測定装置)の一実施例を示す側面図である。
12 and 10 are explanatory views showing the configuration of the measuring device developed by the inventor of the present application. As shown in FIG. 12, the technical configuration of the measuring apparatus is as follows: AC electromagnetic induction sensor 1, AC external magnetic field generating means 8, output signal measuring means 9, computing means 10, output means 11, sample supply and unloading. The means 12 is provided. On the other hand, in FIG.
The measuring device actually manufactured by the present inventor is described by its specific constituent parts. Note that FIG. 12 also shows the relationship between the technical configuration of the present invention and the specific components shown in FIG. FIG. 7 is a perspective view showing an embodiment of the AC electromagnetic induction sensor 1, and FIG. 13 is an AC electromagnetic induction sensor 1 and a measured sample supply / unload means 12.
FIG. 15 is a front view showing an embodiment of a measuring device (a magnetic physical quantity measuring device, a weight measuring device) that is a combination of FIG.
FIG. 3 is a side view showing an embodiment of a measuring device (magnetic physical quantity measuring device, weight measuring device) in which the AC electromagnetic induction sensor 1 and the measured sample supply / unloading means 12 are combined.

【0061】発明者達は、まず先に開発した筒型電磁誘
導センサー(特願平5−176279号)を出発点とし
て、より測定精度が高く安定性のある独自の交流式電磁
誘導センサー1(検出コイル)の研究開発を始めた。先
に開発した重量測定装置に用いた筒型電磁誘導センサー
(特願平5−176279号)は、ミニブリッジ方式の
電磁誘導コイルを改良したもので、その構成は、電磁石
コイルと電磁誘導コイルを同軸上に近接して、直列に配
設して、電磁石コイルがつくる磁束が電磁誘導コイル内
を貫くように構成してなり、前記電磁石コイルに電流を
流すことにより筒型電磁誘導センサーの筒内に磁界を発
生させておき、当該筒型電磁誘導センサーの筒内を所定
の速度で被測定磁性材料を通過させることにより、筒内
の磁界を変化させて電磁誘導コイルに起電力を生じさせ
るようにしたことを特徴とする筒型電磁誘導センサーで
あった。
The inventors of the present invention started with a cylindrical electromagnetic induction sensor (Japanese Patent Application No. 5-176279) developed earlier as a starting point, and developed a unique AC electromagnetic induction sensor 1 ( Research and development of detection coil) started. The cylindrical electromagnetic induction sensor (Japanese Patent Application No. 5-176279) used in the previously developed weight measuring device is an improvement of the mini-bridge type electromagnetic induction coil, and its configuration is composed of an electromagnet coil and an electromagnetic induction coil. The coils are arranged coaxially in close proximity to each other in series so that the magnetic flux created by the electromagnet coil penetrates through the electromagnetic induction coil. A magnetic field is generated in the cylinder, and the magnetic material to be measured is passed through the cylinder of the cylindrical electromagnetic induction sensor at a predetermined speed to change the magnetic field in the cylinder to generate an electromotive force in the electromagnetic induction coil. It was a cylindrical electromagnetic induction sensor characterized in that

【0062】しかし、先に開発した当該筒型電磁誘導セ
ンサーは、ミニブリッジ方式の検出コイルのため、コイ
ルが2個ないと使用できないうえ、未使用コイルの置き
場所によって特性が変化するとか、外部磁界が均一に試
料を包まない等の欠点がある。また、当該筒型電磁誘導
センサーは、外部磁界の影響や、測定感度のコントロー
ルが難しいうえ、測定した起電力の信号は、外部磁界に
より誘起される信号と被測定磁性材料の磁気的物理量の
信号との複合信号になっており、これを区別して被測定
磁性材料の正味磁気的物理量だけを抽出して測定するよ
うなことは出来ない構成になっている。
However, since the tubular electromagnetic induction sensor developed previously is a mini-bridge type detection coil, it cannot be used unless two coils are used, and the characteristics may change depending on the place where the unused coil is placed, or There is a defect that the magnetic field does not uniformly wrap the sample. In addition, the cylindrical electromagnetic induction sensor is difficult to control the influence of the external magnetic field and the measurement sensitivity, and the measured electromotive force signal is the signal induced by the external magnetic field and the signal of the magnetic physical quantity of the magnetic material to be measured. It is a composite signal of the above, and the configuration is such that it is not possible to distinguish between them and extract and measure only the net magnetic physical quantity of the magnetic material to be measured.

【0063】そこで、新たに開発しようとする本発明に
おける交流式電磁誘導センサー1は、〓1個だけで外部
磁界により誘起される信号と被測定試料7の磁気的物理
量の信号とが複合された被測定信号と、外部磁界により
誘起される信号が中心の調整測定信号の両者を測定出来
るようにすること、〓外部磁界が均一に被測定試料を包
むようにすること、〓測定信号が安定して測定出来るよ
うにすること、〓測定された複合信号から外部磁界によ
り誘起される信号が除去できて、正味磁気的物理量測定
信号だけを抽出し得るようにすること、等によって先行
技術より安定的でリアリティの高い磁気的物理量を測定
ができるようにすることを目的に研究開発がなされ、そ
の具体的開発に成功したものである。
Therefore, the AC electromagnetic induction sensor 1 according to the present invention, which is to be newly developed, has a combination of a signal induced by an external magnetic field and a signal of the magnetic physical quantity of the sample 7 to be measured with only one sensor. To be able to measure both the signal under test and the adjustment measurement signal centered on the signal induced by the external magnetic field; 〓 Ensure that the external magnetic field uniformly wraps the sample under test; 〓 The measurement signal is stable. It is more stable than the prior art by enabling measurement, and by removing the signal induced by the external magnetic field from the measured composite signal, and extracting only the net magnetic physical quantity measurement signal. Research and development were carried out for the purpose of making it possible to measure highly realistic magnetic physical quantities, and the specific development was successful.

【0064】本発明に係る交流式電磁誘導センサー1
は、図1、図2、図4、図5、図7に示すように、いず
れも合成樹脂製の円筒型状コイルボビンに細いコイル線
を巻き付けられて形成された交流外部磁界印加コイル5
と測定コイル6との組み合わせからなる。
AC electromagnetic induction sensor 1 according to the present invention
As shown in FIG. 1, FIG. 2, FIG. 4, FIG. 5 and FIG.
And a measuring coil 6.

【0065】前者の交流外部磁界印加コイル5は、ソレ
ノイド型のコイルで、交流電流を流したとき発生する交
流外部磁界が被測定試料7を包む大きさの測定領域3お
よびその周辺領域4に印加され、しかも当該測定領域3
およびその周辺領域4の範囲内で磁界分布が均一で一様
となるようにコイルボビンの長さ、円筒の内径、巻数、
などが設定されている。発明者は、交流外部磁界印加コ
イル5が発生する交流外部磁界をなるべく均一にするた
めに工夫した結果、図8に示すように長いコイルボビン
の長尺方向に長くコイル線を巻く方法と、図9に示すよ
うに交流外部磁界印加コイル5をコイルYとコイルZの
2つのコイルに所定の隙間をあけてコイル線を巻き、そ
の両者のコイルの磁界を合成(Y’+Z’)により中央
部分が均一になるように構成する方法を見出した。尚、
2つのコイルを分離して配置し、両者のコイルの磁界を
合成して中央部分が均一になるようにする手法は、後述
するように測定コイル6にも応用できることを見出し
た。
The former AC external magnetic field applying coil 5 is a solenoid type coil, and the AC external magnetic field generated when an AC current is applied is applied to the measurement region 3 and its peripheral region 4 of a size that wraps the sample 7 to be measured. And the measurement area 3
And the length of the coil bobbin, the inner diameter of the cylinder, the number of turns, so that the magnetic field distribution is uniform within the range of the peripheral region 4.
Are set. The inventor devised a method for making the AC external magnetic field generated by the AC external magnetic field applying coil 5 as uniform as possible, and as a result, as shown in FIG. 8, a method of winding a long coil wire in the longitudinal direction of a long coil bobbin, and As shown in FIG. 2, the AC external magnetic field applying coil 5 is wound around two coils of a coil Y and a coil Z with a predetermined gap, and a coil wire is wound, and the magnetic fields of the two coils are combined (Y ′ + Z ′) to produce a central portion. We have found a way to make it uniform. still,
It has been found that the method of arranging two coils separately and synthesizing the magnetic fields of both coils to make the central portion uniform can be applied to the measuring coil 6 as described later.

【0066】後者の測定コイル6は、当該所定の測定領
域3およびその周辺領域4において交流外部磁界によっ
て誘起される出力信号を測定し得るように配設されてい
る。即ち、測定コイル6は、所定の測定領域3内に被測
定試料7があるとき、当該測定領域3において交流外部
磁界によって誘起される出力信号(被測定信号)を測定
し得るようにした主測定コイルと、当該測定領域3から
所定の間隔±α離れた周辺領域4において交流外部磁界
によって誘起された出力信号(調整測定信号)を測定し
得るようにした外部磁界相殺用測定コイルとから構成さ
れている。しかも、主測定コイルの被測定信号から外部
磁界相殺用測定コイルの調整測定信号を差し引くことに
より外部磁界により誘起される信号が除去されて、被測
定試料7の正味磁気的物理量測定信号だけが抽出できる
ように構成されている。
The latter measuring coil 6 is arranged so as to be able to measure the output signal induced by the AC external magnetic field in the predetermined measuring region 3 and its peripheral region 4. That is, the measurement coil 6 is designed to measure an output signal (measurement signal) induced by an AC external magnetic field in the measurement area 3 when the measurement sample 7 is present in the predetermined measurement area 3. It is composed of a coil and an external magnetic field canceling measuring coil capable of measuring an output signal (adjustment measuring signal) induced by an AC external magnetic field in a peripheral region 4 separated from the measuring region 3 by a predetermined distance ± α. ing. Moreover, the signal induced by the external magnetic field is removed by subtracting the adjustment measurement signal of the measurement coil for external magnetic field cancellation from the measurement signal of the main measurement coil, and only the net magnetic physical quantity measurement signal of the DUT 7 is extracted. It is configured to be able to.

【0067】図1は、第1実施例に係る交流式電磁誘導
センサー1の構成と測定信号を示す説明図で、第1発
明、第2発明、第5発明、第8発明、第13発明に用い
ることができるものである。当該交流式電磁誘導センサ
ー1に交流外部磁界を印加すると、測定コイルA,Bに
誘起される起電力の出力信号は、一方が被測定信号とな
り、他方が調整測定信号となる。当該図1には、測定コ
イルA,Bに誘起される起電力の出力信号A’,B’
と、測定コイルB’内に被測定試料がないとき0Vにな
るように外部磁界により誘起される信号を相殺した測定
出力信号B’−A’のシュミレーションと、実際に製作
した測定コイルA,Bを用いて実測し、外部磁界により
誘起される信号を相殺した測定出力信号B’−A’の実
測データを示すグラフが記載されている。図示のように
シュミレーションと実測データとが一致しており、図1
に示す第1実施例交流式電磁誘導センサー1(第13発
明)を用いれば、複合信号から外部磁界により誘起され
る信号を相殺することができ、被測定試料7の正味磁気
的物理量測定信号だけを抽出できることが確認された。
FIG. 1 is an explanatory view showing the constitution and measurement signal of the AC electromagnetic induction sensor 1 according to the first embodiment. The first invention, the second invention, the fifth invention, the eighth invention and the thirteenth invention are shown in FIG. It can be used. When an AC external magnetic field is applied to the AC electromagnetic induction sensor 1, one of the output signals of the electromotive force induced in the measurement coils A and B becomes the measured signal and the other becomes the adjusted measurement signal. In FIG. 1, the output signals A ′, B ′ of the electromotive force induced in the measurement coils A, B are shown.
And a simulation of the measurement output signal B'-A 'that cancels the signal induced by the external magnetic field so that it becomes 0 V when there is no sample to be measured in the measurement coil B', and the actually manufactured measurement coils A, B A graph showing the measured data of the measured output signal B′-A ′, which is obtained by actually measuring the measured value using the, and cancels the signal induced by the external magnetic field is described. As shown in the figure, the simulation and the measured data are in agreement.
If the AC electromagnetic induction sensor 1 (thirteenth invention) shown in FIG. 1 is used, the signal induced by the external magnetic field can be canceled from the composite signal, and only the net magnetic physical quantity measurement signal of the DUT 7 is measured. It was confirmed that can be extracted.

【0068】図2は、第2実施例に係る交流式電磁誘導
センサー1の構成と測定信号を示す説明図で、第1発
明、第3発明、第6発明、第8発明、第9発明、第14
発明に用いるものである。当該図2には、交流式電磁誘
導センサー1に交流外部磁界を印加することによって測
定コイルA,B,Cに誘起される起電力の出力信号(被
測定信号B’、調整測定信号A’,C’)の結果と、外
部磁界相殺用測定コイルA+Cに誘起される相殺用の調
整測定信号A’+C’と、測定コイル6内に被測定試料
7がなくても0Vになるように外部磁界により誘起され
る信号を相殺した測定出力信号B’−(A’+C’)を
演算した結果のシュミレーションを示すグラフが記載さ
れている。
FIG. 2 is an explanatory view showing the constitution and measurement signal of the AC electromagnetic induction sensor 1 according to the second embodiment. The first invention, the third invention, the sixth invention, the eighth invention, the ninth invention, 14th
It is used in the invention. In FIG. 2, an output signal of the electromotive force induced in the measurement coils A, B, C by applying an AC external magnetic field to the AC electromagnetic induction sensor 1 (measured signal B ′, adjusted measurement signal A ′, C ′), the adjustment measurement signal A ′ + C ′ for canceling induced in the measurement coil A + C for canceling the external magnetic field, and the external magnetic field so that the measurement sample 6 does not have the sample 7 to be measured to be 0V. 7 is a graph showing a simulation result as a result of calculating a measurement output signal B ′ − (A ′ + C ′) that cancels the signal induced by.

【0069】図3は、図2に示した第2実施例に係る交
流式電磁誘導センサー1に交流外部磁界を印加すること
によって測定コイルA,B,Cに誘起される起電力の出
力信号(被測定信号B’、調整測定信号A’,C’)を
実際測定し、外部磁界により誘起される信号を相殺した
測定出力信号B’−(A’+C’)の実測データを示す
グラフである。この場合もシュミレーションと実測デー
タとが一致し、第2実施例交流式電磁誘導センサー1
(第14発明)を用いれば、被測定試料7の正味磁気的
物理量測定信号だけを抽出できることが確認された。
FIG. 3 shows the output signal of the electromotive force induced in the measuring coils A, B, C by applying an AC external magnetic field to the AC electromagnetic induction sensor 1 according to the second embodiment shown in FIG. It is a graph which shows the measured data of the measurement output signal B '-(A' + C ') which actually measured the measured signal B', the adjustment measurement signal A ', C'), and canceled the signal induced by the external magnetic field. . Also in this case, the simulation and the measured data match, and the AC electromagnetic induction sensor 1 according to the second embodiment
It was confirmed that by using (14th invention), only the net magnetic physical quantity measurement signal of the sample 7 to be measured can be extracted.

【0070】当該第2実施例に係る交流式電磁誘導セン
サー1(第14発明)は、調整測定信号を得る外部磁界
相殺用測定コイルA,Cを被測定信号を得る主測定コイ
ルBの前後に2個に分離配設することにより、測定領域
3の周辺領域4において交流外部磁界によって誘起され
る調整測定信号をより正確に測定し得るようにしたもの
である。本発明に係る交流式電磁誘導センサー1(第1
4発明)の基本構成が、同軸筒型であること、被測定試
料7が動いている状態で測定されることが多いこと、磁
力線に方向性があること、等から交流外部磁界によって
誘起される調整測定信号を測定領域3の前後の周辺領域
4で測定するのが交流外部磁界によって誘起される調整
測定信号を最も正確に測定し得る配置であるからであ
る。当該第2実施例にかかる交流式電磁誘導センサー1
の測定コイル6の基本配置構成が、被測定信号から外部
磁界により誘起される信号を除去する方式として最も好
適で実用性のある構成であると考えられる。
In the AC electromagnetic induction sensor 1 according to the second embodiment (the fourteenth invention), the external magnetic field canceling measurement coils A and C for obtaining the adjustment measurement signal are provided before and after the main measurement coil B for obtaining the measured signal. By disposing the two separately, the adjustment measurement signal induced by the AC external magnetic field in the peripheral region 4 of the measurement region 3 can be more accurately measured. AC electromagnetic induction sensor 1 according to the present invention (first
4 invention) is a coaxial cylinder type, is often measured in a state in which the sample 7 to be measured is moving, and has a directional magnetic field line, etc. This is because the adjustment measurement signal is measured in the peripheral areas 4 before and after the measurement area 3 because the arrangement allows the adjustment measurement signal induced by the AC external magnetic field to be measured most accurately. AC electromagnetic induction sensor 1 according to the second embodiment
The basic arrangement configuration of the measurement coil 6 is considered to be the most suitable and practical configuration as a method for removing the signal induced by the external magnetic field from the signal under measurement.

【0071】図4は、図2、図3に示した第2実施例に
係る交流式電磁誘導センサー1の構成と測定コイルA,
B,Cに誘起される起電力の出力信号(被測定信号、調
整測定信号)の各測定信号を分析して表示した説明図で
ある。被測定信号から外部磁界により誘起される信号を
きれいに除去するための測定コイルA,B,Cの測定信
号A’,B’,C’と、その調整条件と、外部磁界相殺
用測定コイルA+Cが誘起した相殺用の調整測定信号
A’+C’の状況と、測定コイル内に被測定試料7がな
いとき外部磁界により誘起される信号が0Vに相殺さ
れ、正味磁気的物理量測定信号B’−(A’+C’)だ
けが抽出できるようになったシュミレーションを示すグ
ラフである。
FIG. 4 shows the configuration of the AC electromagnetic induction sensor 1 according to the second embodiment shown in FIGS. 2 and 3 and the measuring coil A,
It is explanatory drawing which analyzed and displayed each measurement signal of the output signal (measured signal, adjustment measurement signal) of the electromotive force induced by B and C. The measurement signals A ′, B ′, C ′ of the measurement coils A, B, C for cleanly removing the signal induced by the external magnetic field from the signal under measurement, the adjustment conditions thereof, and the measurement coil A + C for canceling the external magnetic field are The state of the induced adjustment measurement signal A '+ C' for cancellation and the signal induced by the external magnetic field when there is no sample 7 to be measured in the measurement coil are canceled to 0 V, and the net magnetic physical quantity measurement signal B '-( 7 is a graph showing a simulation in which only A ′ + C ′) can be extracted.

【0072】図5は、第3実施例に係る交流式電磁誘導
センサー1の構成と測定信号を示す説明図で、第1発
明、第4発明、第7発明、第8発明、第10発明、第1
2発明、第15発明に用いることが出来る。当該図5に
は、交流式電磁誘導センサー1に交流外部磁界を印加す
ることによって測定コイルA,B1,B2,Cに誘起される
起電力の出出力信号を調整して得られた被測定信号B’
(B1’+B2’の合成信号)と、外部磁界相殺用測定コイ
ルA+Cが誘起した相殺用の調整測定信号A’+C’
と、上記の被測定信号B’=B1’+B2’から相殺用の調
整測定信号A’+C’を差し引いた(B1’+B2’)−
(A’+C’)の状況を示すシュミレーションのグラフ
が記載されている。
FIG. 5 is an explanatory view showing the constitution and measurement signal of the AC electromagnetic induction sensor 1 according to the third embodiment. The first invention, the fourth invention, the seventh invention, the eighth invention, the tenth invention, First
It can be used for the second invention and the fifteenth invention. In FIG. 5, the measured signal obtained by adjusting the output / output signal of the electromotive force induced in the measurement coils A, B1, B2, C by applying an AC external magnetic field to the AC electromagnetic induction sensor 1. B '
(Combined signal of B1 '+ B2') and the adjustment measurement signal A '+ C' for cancellation induced by the measurement coil A + C for external magnetic field cancellation
And the adjusted measurement signal for cancellation A '+ C' is subtracted from the signal under measurement B '= B1' + B2 '(B1' + B2 ')-
A simulation graph showing the situation of (A '+ C') is described.

【0073】図6は、図5に示した交流式電磁誘導セン
サー1に交流外部磁界を印加することによって測定コイ
ルA,B1,B2,Cに誘起される起電力の出力信号(被測
定信号B1’+B2’、調整測定信号(A’+C’)を実際
測定し、被測定信号から調整測定信号(A’+C’)を
差し引いて、外部磁界により誘起される信号を相殺し、
残った正味磁気的物理量測定信号(B1’+B2’)−
(A’+C’)の実測データを示すグラフである。この
場合もシュミレーションと実測データとがほぼ一致し、
第3実施例の交流式電磁誘導センサー1(第15発明)
を用いれば、被測定試料7の正味磁気的物理量測定信号
だけを抽出できることが、確認された。
FIG. 6 shows an output signal of the electromotive force induced in the measurement coils A, B1, B2, and C by applying an AC external magnetic field to the AC electromagnetic induction sensor 1 shown in FIG. '+ B2', the adjustment measurement signal (A '+ C') is actually measured, and the adjustment measurement signal (A '+ C') is subtracted from the measured signal to cancel the signal induced by the external magnetic field.
Remaining net magnetic physical quantity measurement signal (B1 '+ B2')-
It is a graph which shows the measured data of (A '+ C'). Also in this case, the simulation and the measured data are almost the same,
AC electromagnetic induction sensor 1 of the third embodiment (15th invention)
It has been confirmed that only the net magnetic physical quantity measurement signal of the sample 7 to be measured can be extracted by using.

【0074】当該第3実施例にかかる交流式電磁誘導セ
ンサー1の測定コイルは、主測定コイルB1,B2と外部磁
界相殺用測定コイルA,Cとの4個からなり、測定コイ
ルの数が増えているが、実質的には第2実施例と同じ方
法で、被測定信号から調整測定信号を差し引き、外部磁
界により誘起される信号を相殺する方式のものである。
つまり、測定コイルの構成は、被測定信号を得る主測定
コイルB1,B2の前後に所定間隔離して調整測定信号を得
る外部磁界相殺用測定コイルA,Cを配設するだけでな
く、被測定信号を得る主測定コイルをB1,B2の2個に分
離し、これらを所定の間隔をおいて配設し、両者の磁界
を合成(B1+B2)して得られる被測定信号B’が測定領
域3で広く均一となって安定するように改良した点にあ
る。この改良は、図9に示すように、2つのコイルを分
離して近くに配置し、両者のコイルの磁界を合成すれば
中央部分が均一になり、選択する出力信号デ−タが安定
することを見出していたので、この手法を主測定コイル
に応用したものである。
The measuring coil of the AC electromagnetic induction sensor 1 according to the third embodiment is composed of four main measuring coils B1 and B2 and external magnetic field canceling measuring coils A and C, and the number of measuring coils is increased. However, substantially the same method as in the second embodiment is used to subtract the adjustment measurement signal from the signal under measurement and cancel the signal induced by the external magnetic field.
In other words, the configuration of the measurement coil is such that the external measurement field canceling measurement coils A and C are provided before and after the main measurement coils B1 and B2 that obtain the measurement signal are separated by a predetermined distance to obtain the adjustment measurement signal. The main measurement coil for obtaining the signal is separated into two, B1 and B2, and these are arranged at a predetermined interval, and the magnetic field of both is combined (B1 + B2) to obtain the measured signal B ', which is the measurement area 3 It has been improved so that it becomes wide and uniform and stable. The improvement is that, as shown in FIG. 9, if the two coils are separated and placed close to each other, and the magnetic fields of the two coils are combined, the central portion becomes uniform and the output signal data to be selected is stable. Therefore, this method is applied to the main measurement coil.

【0075】叙上のように本願発明に係る交流式電磁誘
導センサー1の大きな特徴は、前記各実施例で示したよ
うに交流外部磁界印加コイル5と複数の測定コイル6と
の組み合わせた基本構成にし、その配設位置の関係を特
定することにより、全体として一体となった単独センサ
ーだけで、外部磁界により誘起される信号と被測定試料
7の磁気的物理量の信号が複合された被測定信号と、ほ
ぼ外部磁界により誘起される信号だけの調整測定信号と
の両者を高精度に安定して測定出来るようにしたこと
と、得られた当該複合信号から調整測定信号を除去して
正味磁気的物理量測定信号だけを抽出し得るようにした
点にある。これによって、正味磁気的物理量測定信号を
基礎測定数値として安定的でリアリティの高い磁気的物
理量が換算ができるようになったのである。
As described above, the main characteristic of the AC electromagnetic induction sensor 1 according to the present invention is that the basic structure in which the AC external magnetic field applying coil 5 and the plurality of measuring coils 6 are combined as shown in each of the embodiments. By specifying the relationship of the arrangement positions, the signal to be measured in which the signal induced by the external magnetic field and the signal of the magnetic physical quantity of the sample to be measured 7 are combined by a single sensor integrated as a whole. And the adjustment measurement signal which is almost only the signal induced by the external magnetic field can be stably measured with high accuracy, and the adjustment measurement signal is removed from the obtained composite signal to obtain the net magnetic field. The point is that only the physical quantity measurement signal can be extracted. As a result, a stable and highly realistic magnetic physical quantity can be converted using the net magnetic physical quantity measurement signal as a basic measurement value.

【0076】次に、発明者達は、交流式電磁誘導センサ
ー1を用いて得た測定信号のアンプコントローラを独自
に研究開発した。当該測定信号のアンプコントローラの
開発にあたっては、〓環境温度変化への安定性を図るこ
と、〓測定出力電圧の基点周辺の直線性向上を図るこ
と、〓回路のデジタル化により、温度、磁界影響への対
応を可能とし、補正温度、バラツキ比率の安定化など演
算手法での安定したデータ算出が可能なるようにするこ
と、等を目標とした。
Next, the inventors independently researched and developed an amplifier controller for a measurement signal obtained by using the AC electromagnetic induction sensor 1. In developing an amplifier controller for the measurement signal, the stability of the measurement signal against temperature changes, the linearity around the base point of the measurement output voltage should be improved, and the digitization of the circuit should not affect the temperature and magnetic field. The objective is to enable stable data calculation by a calculation method such as stabilization of the correction temperature and variation ratio.

【0077】本発明の構成要素として認識される測定信
号のアンプコントローラは、図12に示すように、安定
電源を交流外部磁界印加コイル5に与えて交流外部磁界
を発生させる交流外部磁界発生手段8と、測定コイル6
で誘起された交流出力電圧を増幅整流して直流出力電圧
に変換することにより環境温度変化によっても高精度を
維持しながら安定した測定信号を得たうえ、その測定信
号をアナログ・デジタル変換して数値化するようにした
出力信号測定手段9と、当該数値化した測定信号をコン
ピュータ等を用いて高速サンプリングデータ処理(演
算)をする演算手段10と、その演算して得た磁気的物
理量や、重量やその他の関連データを判別したり出力し
たりする出力手段とからなる。
As shown in FIG. 12, the amplifier controller of the measurement signal recognized as a constituent element of the present invention is an AC external magnetic field generating means 8 for applying a stable power source to the AC external magnetic field applying coil 5 to generate an AC external magnetic field. And measuring coil 6
By amplifying and rectifying the AC output voltage induced by, and converting it to a DC output voltage, a stable measurement signal is obtained while maintaining high accuracy even when the environmental temperature changes, and then the measurement signal is converted from analog to digital. Output signal measuring means 9 adapted to be digitized, operation means 10 for performing high-speed sampling data processing (calculation) of the digitized measurement signal by using a computer or the like, magnetic physical quantity obtained by the operation, It comprises an output means for discriminating and outputting the weight and other related data.

【0078】発明者達は、当該測定信号のアンプコント
ローラを具体的に作製した。その具体的な部品構成は、
図10に示すとおりである。それは、独自に設計作製し
たアンプコントローラ本体と市販のACインバーターを
利用した安定化電源部との2物体から構成されている。
前記アンプコントローラ本体は、ACコンバート部と、
システム電源部と、出力信号測定部と、アナログ・デジ
タル変換部(A/D変換部)と、高速サンプリングデー
タ処理部と、演算後データ出力部という部品から構成さ
れている。特に、試作機はアンプコントローラーの回路
をデジタル化したので、温度、磁界影響への対応が可能
となり、更に、温度補正、バラツキ比率の安定化など演
算手段での安定したデータ算出が可能となった。尚、本
発明の基本構成要素と、発明者達が具体的に作製した測
定信号のアンプコントローラの部品構成との関係は、図
12に示したようになっている。以下両者の関係を説明
する。
The inventors specifically made an amplifier controller for the measurement signal. The specific parts composition is
This is as shown in FIG. It is composed of two objects: an amplifier controller body designed and manufactured independently, and a stabilized power supply unit using a commercially available AC inverter.
The amplifier controller body includes an AC conversion unit,
The system power supply unit, the output signal measurement unit, the analog / digital conversion unit (A / D conversion unit), the high-speed sampling data processing unit, and the post-computation data output unit are included. In particular, since the prototype controller has a digital amplifier controller circuit, it has become possible to deal with temperature and magnetic field effects, and it has become possible to perform stable data calculation using arithmetic means such as temperature correction and stabilization of the variation ratio. . Note that the relationship between the basic constituent elements of the present invention and the parts configuration of the amplifier controller of the measurement signal that the inventors have specifically produced is as shown in FIG. The relationship between the two will be described below.

【0079】当該交流外部磁界発生手段8は、前記交流
式電磁誘導センサー1に連結し、交流外部磁界印加コイ
ル5に安定した定電圧定周波電源を介して交流電流を流
すことにより交流外部磁界を測定領域3およびその周辺
領域4に印加することのできるように構成されたもので
ある。図10の具体的実施例では、家庭用のAC100
Vの電源8aからコンセントを繋ぎ、安定化電源部(A
Cインバータ)により定電圧定周波数の安定した交流電
源としたうえ、アンプコントローラ内のACコンバート
部を介して交流外部磁界印加コイル5に電圧印加される
ように構成されている。
The AC external magnetic field generating means 8 is connected to the AC electromagnetic induction sensor 1 and applies an AC current to the AC external magnetic field applying coil 5 through a stable constant voltage constant frequency power source to generate an AC external magnetic field. It is configured so that it can be applied to the measurement region 3 and its peripheral region 4. In the specific example of FIG. 10, a household AC 100 is used.
Connect the outlet from the V power supply 8a to the stabilized power supply (A
A stable AC power source having a constant voltage and a constant frequency is formed by a C inverter), and a voltage is applied to the AC external magnetic field applying coil 5 via an AC converting unit in the amplifier controller.

【0080】当該出力信号測定手段9は、前記交流式電
磁誘導センサー1に連結し、交流外部磁界の印加によっ
て測定コイル4に誘起される起電力の出力信号(被測定
信号、調整測定信号)を測定し、その出力信号(被測定
信号,調整測定信号)を整流して適正で安定した直流信
号に変換したうえ、アナログ・デジタル変換して数値化
し得るように構成したものである。図10の具体的実施
例では、測定コイル6で生じる起電力の交流出力電圧を
測定部で電圧増幅したうえ検波整流し、さらに平滑整流
したうえアナログ・デジタル変換部で測定信号を数値化
するのである。図11は、前記測定部の更に詳しい構成
と処理法を説明した説明図で、電圧増幅部と検波整流部
と平滑整流部とからなり、測定コイル6からの測定交流
信号が直流信号に変換される様子が示されている。尚、
出力信号測定手段9を構成する測定部とアナログ・デジ
タル変換部を作動させる電源は、図10に示したように
前記安定化電源部(ACインバータ)からの安定した交
流電源をシステム電源部で調整したものを使用する。
The output signal measuring means 9 is connected to the AC electromagnetic induction sensor 1 and outputs the output signal (measured signal, adjusted measurement signal) of the electromotive force induced in the measuring coil 4 by the application of the AC external magnetic field. The measurement is performed, and the output signals (the signal under measurement, the adjusted measurement signal) are rectified and converted into a proper and stable DC signal, and the analog / digital conversion is performed to digitize the signal. In the specific example of FIG. 10, since the AC output voltage of the electromotive force generated in the measurement coil 6 is voltage-amplified in the measurement unit, detected and rectified, and further smoothed and rectified, the measurement signal is digitized in the analog / digital conversion unit. is there. FIG. 11 is an explanatory diagram for explaining a more detailed configuration and processing method of the measuring unit, which is composed of a voltage amplifying unit, a detection rectifying unit, and a smoothing rectifying unit, and a measurement AC signal from the measurement coil 6 is converted into a DC signal. Is shown. still,
As shown in FIG. 10, the power source for operating the measuring unit and the analog-digital converting unit that constitute the output signal measuring unit 9 is a system power source unit for adjusting a stable AC power source from the stabilized power source unit (AC inverter). Use what you did.

【0081】当該演算手段10は、前記出力信号測定手
段9で測定されアナログ・デジタル変換して数値化した
出力信号(被測定信号,調整測定信号)を調整したり、
測定された複合信号から外部磁界により誘起される信号
を除去して正味磁気的物理量測定信号だけを抽出するよ
うにしたり、係数を算出するなど、必要に応じて演算す
ることができるように構成されている。具体的実施例で
は、図10に示すように高速サンプリング処理部で、数
値化された出力信号を必要に応じて調整したり換算した
り係数を算出するなど演算をするのである。尚、当該演
算手段10を構成する高速サンプリング処理部を作動さ
せる電源は、図10に示したように前記安定化電源部
(ACインバータ)からの安定した交流電源をシステム
電源部で調整したものを兼用で使用するように設計し
た。
The calculation means 10 adjusts the output signals (measured signal, adjusted measurement signal) measured by the output signal measuring means 9 and converted into analog and digital values, and
It is configured so that signals induced by an external magnetic field can be removed from the measured composite signal to extract only the net magnetic physical quantity measurement signal, or a coefficient can be calculated, etc. ing. In a specific example, as shown in FIG. 10, the high-speed sampling processing section performs calculations such as adjusting or converting the digitized output signal as necessary, calculating a coefficient, and the like. The power source for operating the high-speed sampling processing unit that constitutes the arithmetic means 10 is a stable AC power source from the stabilized power source unit (AC inverter) as shown in FIG. Designed for dual use.

【0082】出力手段11は、少なくとも前記演算手段
10で算出された被測定試料の磁気的物理量や重量等の
結果をデータ出力部で出力できるようにしたものであ
る。具体的な出力手段11としては、CRT表示方式で
もよいし、プリンタで記録する方式でも良いし、計数表
示装置により表示する方式でも良い。また出力内容につ
いては、被測定試料7の磁気的物理量や重量、質量等の
具体的数値の表示だけでなく、各種基準に対応した合否
判別表示をしてもよい。更に、被測定信号、調整測定信
号、係数、磁気的物理量測定信号、印加電圧、重量、測
定サンプル回数、通過時間、温度など、操作や管理に必
要と思われる各種の中間的あるいは部分的要素のデータ
を、選定して出力できるようにするようにしてもよいこ
と勿論である。尚、出力手段11を構成するデータ出力
部を作動させる電源は、図10に示したように前記安定
化電源部(ACインバータ)からの安定した交流電源を
システム電源部で調整したものを使用するように設計し
た。
The output means 11 is such that at least the result of the magnetic physical quantity, weight, etc. of the sample to be measured calculated by the calculation means 10 can be output by the data output section. The specific output means 11 may be a CRT display system, a printer recording system, or a counting display device. Regarding the output content, not only the display of specific numerical values such as the magnetic physical quantity, weight, and mass of the sample 7 to be measured but also pass / fail judgment display corresponding to various standards may be performed. In addition, various intermediate or partial elements such as measured signal, adjusted measurement signal, coefficient, magnetic physical quantity measurement signal, applied voltage, weight, number of measurement samples, passage time, temperature, etc. Of course, the data may be selected and output. As a power source for operating the data output section constituting the output means 11, a stable AC power source from the stabilized power source section (AC inverter), which is adjusted by the system power source section, is used as shown in FIG. Designed to

【0083】被測定試料供給搬出手段12は、前記交流
式電磁誘導センサー1の所定の測定領域3に被測定試料
7を搬送供給し、測定後に搬出するようにするものであ
る。図13は、発明者達が製作した被測定試料供給搬出
手段12と交流式電磁誘導センサー1とを組み合わせた
測定装置の要部を示す正面図であり、図14は同側面図
である。図中13は無端のベルトコンベアで、被測定試
料7を交流式電磁誘導センサー内の測定領域を磁界方向
にそって搬送通過させるようにしたものである。実施例
では図10、図13、図14に示すようにベルトコンベ
ア方式のものを示したが、これに限る必要が無いこと勿
論である。
The sample-to-be-measured supply / unloading means 12 is adapted to carry and supply the sample-to-be-measured 7 to a predetermined measurement region 3 of the AC electromagnetic induction sensor 1 and carry it out after the measurement. FIG. 13 is a front view showing a main part of a measuring apparatus which is a combination of the sample supply / carrying-out means 12 to be measured manufactured by the inventors and the AC electromagnetic induction sensor 1, and FIG. 14 is a side view of the same. In the figure, reference numeral 13 denotes an endless belt conveyor which conveys the sample 7 to be measured along a magnetic field direction through a measurement region in the AC electromagnetic induction sensor. In the embodiment, the belt conveyor type is shown as shown in FIGS. 10, 13 and 14, but needless to say, it is not limited to this.

【0084】発明者達は、次に、具体的に試作した交流
式電磁誘導センサー1やアンプコントローラ、被測定試
料供給搬出手段12などを組み合わせて測定装置を製作
し、これを用いて第1発明、第2発明、第3発明、第4
発明にかかる交流電磁誘導方式による被測定試料の磁気
的物理量の測定方法を実施する実験をおこなった。
Next, the inventors manufactured a measuring device by combining the concretely manufactured AC electromagnetic induction sensor 1, amplifier controller, sample-to-be-measured supply / unload means 12, etc., and used the first invention. , Second invention, third invention, fourth
An experiment was carried out to carry out the method of measuring the magnetic physical quantity of the sample to be measured by the AC electromagnetic induction method according to the invention.

【0085】第1発明は、共通する上位概念の基本発明
なので、具体的には、まず第2発明の実施実験をおこな
った。第2発明の実施に用いる測定装置として、第5発
明にかかる磁気的物理量の測定装置を用意した。即ち、
図10,図12に示した構成の測定装置に第13発明の
交流式電磁誘導センサー(図1参照)を装備したもので
ある。
Since the first invention is a basic invention of a common superordinate concept, specifically, an experiment for carrying out the second invention was first carried out. A magnetic physical quantity measuring device according to the fifth invention was prepared as a measuring device used for carrying out the second invention. That is,
The measuring apparatus having the structure shown in FIGS. 10 and 12 is equipped with the AC electromagnetic induction sensor of the thirteenth invention (see FIG. 1).

【0086】当該実施実験では、12種類のワーク材質
(S30C焼鈍し有り・無し各6種類)を用意し、交流
外部磁界印加コイル5に+9.073V(AC)の印加
電圧をかけ、0.5秒/個の速さにて通過させながら測
定し、数値化したもののピーク値を選定し、この測定数
値を基礎にして演算し、磁気的物理量を算出した。この
ような測定を100回の繰り返しサンプリング試験とし
て行い、その結果測定算出された磁気的物理量の最大値
と最小値をだし、その平均値を求めた、そのバラツキ比
率は焼鈍し無しが1.14%.焼鈍し有りが1.16%
であった。その結果、本発明に係る測定方法は、先に開
発した筒型電磁誘導センサー(特願平5−176279
号)を用いた時のバラツキ比率と比較しても、測定精度
が高精度でしかも安定していることが確認できた。
In the practical experiment, 12 kinds of work materials (6 kinds each with and without S30C annealing) were prepared, and an applied voltage of +9.073 V (AC) was applied to the AC external magnetic field applying coil 5 to obtain 0.5. It was measured while passing it at a speed of second / piece, and the peak value of the digitized one was selected and calculated based on this measured numerical value to calculate the magnetic physical quantity. Such measurement was performed as a repeated sampling test 100 times, the maximum value and the minimum value of the magnetic physical quantity measured and calculated as a result were calculated, and the average value was calculated. The variation ratio was 1.14 in the case without annealing. %. 1.16% with annealing
Met. As a result, the measuring method according to the present invention is based on the previously developed cylindrical electromagnetic induction sensor (Japanese Patent Application No. 5-176279).
It was confirmed that the measurement accuracy was highly accurate and stable even when compared with the variation ratio when using No.).

【0087】次に、発明者達は、下記のような第6発明
に係る測定装置を用意し、これを用いて第3発明に係る
実施実験をおこなった。用意した測定装置は、図10,
図12に示したもので、その交流式電磁誘導センサー1
には、図2,図3に示した第14発明を用いた。具体的
には、交流外部磁界印加コイル5は長さ120mm、直
径80mmのコイルボビンにコイル線を1120回巻い
たものを用い、測定コイル6は長さ120mm、直径6
8mmのコイルボビンの中央部に主測定コイルBとして
40mm幅に1600回巻き、それから25mm手前に
は第1外部磁界相殺用測定コイルAとして15mm幅に
1100回巻き、主測定コイルBから25mm先方には
第2外部磁界相殺用測定コイルCとして1104回巻い
たものを用いた。第3発明の具体的実施実験としては、
12種類のワーク材質(S30C焼鈍し有り・無し各6
種類)を用意し、交流外部磁界印加コイル5に+9.8
88V(AC)の印加電圧をかけ、0.5秒/個の速さ
で通過測定し、ピーク値を選定し数値化したうえ演算
し、正味の磁気的物理量測定信号を得た。このような測
定を500回の繰り返しサンプリングデータとして採用
し、その結果、測定、算出された磁気的物理量測定信号
の最大値と最小値と平均値を出した、そのバラツキ比率
は、焼鈍し無しで0.80%、焼鈍し有りが0.88%
であった。この結果から、本発明に係る測定法による
と、第2発明よりも測定精度が高精度で、しかも測定値
が安定しており、実用性の高いことが確認できた。
Next, the inventors prepared a measuring device according to the sixth aspect of the invention as described below, and carried out a practical experiment according to the third aspect of the invention. The prepared measuring device is shown in FIG.
The AC electromagnetic induction sensor 1 shown in FIG.
The fourteenth invention shown in FIGS. 2 and 3 was used for this. Specifically, the AC external magnetic field applying coil 5 is a coil bobbin having a length of 120 mm and a diameter of 80 mm and a coil wire wound 1120 times, and the measuring coil 6 has a length of 120 mm and a diameter of 6 mm.
At the center of the 8 mm coil bobbin, the main measurement coil B is wound 1600 times in a width of 40 mm, and then 25 mm before, the measurement coil A for the first external magnetic field cancellation is wound 1100 times in a width of 15 mm, and 25 mm ahead from the main measurement coil B. As the measurement coil C for canceling the second external magnetic field, a coil wound 1104 times was used. As a concrete implementation experiment of the third invention,
12 types of work materials (6 each for S30C with and without annealing)
Types), and add +9.8 to the AC external magnetic field applying coil 5.
An applied voltage of 88 V (AC) was applied, passage measurement was performed at a speed of 0.5 seconds / piece, a peak value was selected, digitized, and calculated to obtain a net magnetic physical quantity measurement signal. Such measurement was adopted as the repeated sampling data of 500 times, and as a result, the maximum value, the minimum value and the average value of the measured and calculated magnetic physical quantity measurement signal were obtained. 0.80%, 0.88% with annealing
Met. From these results, it was confirmed that the measurement method according to the present invention had higher measurement accuracy than the second invention, more stable measurement values, and higher practicality.

【0088】上記第3発明の実施実験の結果は、表1
(焼鈍なし)と、表2(焼鈍あり)に示した通りであ
る。また、そのワーク材質における上記データの平均値
図示したのが、図15である。
The results of the experiment for carrying out the third invention are shown in Table 1.
(No annealing) and Table 2 (with annealing). Further, FIG. 15 shows an average value of the above data in the work material.

【0089】[0089]

【表1】 [Table 1]

【0090】[0090]

【表2】 [Table 2]

【0091】次に、発明者達は、下記のような第7発明
に係る測定装置を用意し、これを用いて第4発明に係る
実施実験をおこなった。用意した測定装置は、図10,
図12に示した構成もので、その交流式電磁誘導センサ
ー1には、図5,図6に示した第15発明を用いた。具
体的には、交流外部磁界印加コイル5は長さ140m
m、直径140mmのコイルボビンにコイルを58mm
幅に725回巻を24mm離して2箇所巻き付けたもの
を用いる。測定コイル6は長さ140mm、直径82m
mのコイルボビンに第1外部磁界相殺用測定コイルAと
して20mm幅に1033回巻き、第1主測定コイルB1
として6mm幅に797回巻き、第2主測定コイルB2と
して6mm幅に800回巻き、第2外部磁界相殺用測定
コイルCとして20mm幅に1034回巻いたものを用
いた。第4発明の具体的実施実験としては、12種類の
ワーク材質(S30C焼鈍し有り・無し各6種類)を用
意し、交流外部磁界印加コイル5に704mV(AC)
の印加電圧をかけ、0.5秒/個の速さで測定し、ピー
ク値を選定し数値化したうえ演算し、磁気的物理量測定
信号を算出した。このような測定を500回の繰り返し
サンプリングし、その上位10番の平均を基礎となる測
定データとして採用した。その結果、測定、算出された
磁気的物理量測定信号の最大値と最小値と平均値を出し
た、そのバラツキ比率は、焼鈍し無しが0.14%、焼
鈍しが0.13%であった。測定データのサンプリング
の方法が第2実施実験と変わったのは、テストの結果こ
の方がバラツキ比率が安定することが解ったからであ
る。結果から本発明に係る測定法は、第3発明、第4発
明よりも更に測定精度が高精度でしかも測定値が安定し
ており、実用性の高いことが確認できた。
Next, the inventors prepared a measuring device according to the seventh aspect of the invention as described below, and carried out a practical experiment according to the fourth aspect of the invention. The prepared measuring device is shown in FIG.
The configuration shown in FIG. 12 is used, and the AC type electromagnetic induction sensor 1 uses the fifteenth invention shown in FIGS. 5 and 6. Specifically, the AC external magnetic field applying coil 5 has a length of 140 m.
m, coil is 58 mm on a coil bobbin with a diameter of 140 mm
The width is 725 times and is wound at two places 24 mm apart. The measuring coil 6 has a length of 140 mm and a diameter of 82 m.
m coil bobbin as the first external magnetic field offsetting measurement coil A, wound 1033 times in a width of 20 mm, the first main measurement coil B1
Used as the second main measurement coil B2 having 800 turns of 6 mm width and the second external magnetic field offsetting measurement coil C having 1034 turns of 20 mm width. As a concrete implementation experiment of the fourth invention, 12 kinds of work materials (6 kinds each with and without S30C annealing) were prepared, and 704 mV (AC) was applied to the AC external magnetic field applying coil 5.
The applied voltage was applied, and the measurement was performed at a speed of 0.5 seconds / piece, and the peak value was selected, digitized, and calculated to calculate a magnetic physical quantity measurement signal. Such measurement was repeatedly sampled 500 times, and the average of the top 10 was adopted as the basic measurement data. As a result, the maximum value, the minimum value, and the average value of the measured and calculated magnetic physical quantity measurement signals were obtained. The variation ratios were 0.14% without annealing and 0.13% with annealing. . The method of sampling the measurement data is different from that of the second experiment because the test results show that the variation ratio is more stable. From the results, it was confirmed that the measurement method according to the present invention has higher measurement accuracy than the third and fourth inventions and the measured values are stable, and is highly practical.

【0092】上記第6発明の実施実験の結果は、表3
(焼鈍なし)と、表4(焼鈍あり)に示した通りであ
る。また、各ワーク材質における平均値を図示したのが
図16である。
The results of the experiment of the sixth invention are shown in Table 3.
(No annealing) and Table 4 (with annealing). Further, FIG. 16 shows the average value of each work material.

【0093】[0093]

【表3】 [Table 3]

【0094】[0094]

【表4】 [Table 4]

【0095】次に発明者は、具体的に試作した交流式電
磁誘導センサー1やアンプコントローラとからなる、被
測定試料供給搬出手段12などを組み合わせて製作した
測定装置を利用して第11発明、第12発明の測定装置
となし、これを用いて、第8発明、第9発明、第10発
明にかかる交流電磁誘導方式による被測定試料の磁気的
物理量の測定方法を実施する実験をおこなった。
Next, the inventor uses a measuring device which is made by combining the sample-to-be-measured sample supplying and unloading means 12 and the like, which is made up of a prototype AC electromagnetic induction sensor 1 and an amplifier controller. Using the measuring apparatus of the twelfth invention, an experiment was conducted using the measuring apparatus to measure the magnetic physical quantity of the sample to be measured by the AC electromagnetic induction method according to the eighth invention, the ninth invention, and the tenth invention.

【0096】第8発明は、被測定試料7の重量測定を交
流電磁誘導方式により非接触で迅速におこなおうとする
方法の上位概念の発明であり、第9発明、第10発明
は、それをより具体的にした発明である。この第8発明
は、磁気的物理量と被測定試料7との重量とは、比例し
て変化するとの知見に基づいて、重量の測定をするもの
で、交流電磁誘導方式により正味の磁気的物理量測定信
号を検出し、これを基礎となる数値信号として、重量算
定係数により重量を算出するのである。この方法による
と、非接触方式により測定時間は0.2秒/個ないし
0.5秒/個の短時間で迅速に重量測定が出来るだけで
なく、バラツキ比率は、0.1〜1.14%という高精
度で安定した重量測定が出来る。
The eighth invention is a superordinate invention of the method for rapidly measuring the weight of the sample 7 to be measured by an alternating current electromagnetic induction method in a non-contact manner. The ninth invention and the tenth invention, It is a more specific invention. This eighth invention measures the weight based on the finding that the magnetic physical quantity and the weight of the sample 7 to be measured change in proportion to each other, and the net magnetic physical quantity is measured by the AC electromagnetic induction method. The signal is detected, and the weight is calculated by the weight calculation coefficient using the signal as a basic numerical signal. According to this method, the non-contact method enables quick weight measurement in a short time of 0.2 seconds / piece to 0.5 seconds / piece, and the variation ratio is 0.1 to 1.14. Stable weight measurement with high accuracy of%

【0097】このように、本願発明の重力測定法は、従
来の重力の加速度を利用した重量計測法とは、その利用
する自然法則を全く異にするものである。その特徴は、
重量をを非接触で迅速に測定できる点にある。本願発明
の場合には、0.2秒/個〜0.5秒/個の速さで、
0.4/1000〜2/1000の精度で測定できる。
これは、電子計りに比較して精度では多少及ばないもの
の10倍以上の極めて短時間で重量測定を非接触でおこ
なうことができるものである。従って、本願発明に係る
重量測定法は、流れ作業の途中で、流れを止めることな
く自動的に相当の高精度で製品や材料の重量を計測する
のに好適な測定法である。特に、本願発明は、電磁誘導
方式の技術課題である周辺機器の影響や、温度の影響、
地場の影響などにより起こる起電力のバラツキが生じて
も、測定出力信号からこれらの影響分を相殺することに
よって除き、正味の磁気的物理量測定信号を算出するよ
うにしたので、常に安定した重量の高精度測定ができる
ようにした。この結果、本願発明は高精度で実用性の高
い重量測定法となった。
As described above, the gravity measuring method according to the present invention is completely different from the conventional weight measuring method using the acceleration of gravity in the natural law. The feature is
The point is that the weight can be quickly measured without contact. In the case of the present invention, at a speed of 0.2 seconds / piece to 0.5 seconds / piece,
It can be measured with an accuracy of 0.4 / 1000 to 2/1000.
Although this is slightly less accurate than an electronic scale, the weight measurement can be performed in a non-contact manner in an extremely short time of 10 times or more. Therefore, the weight measuring method according to the present invention is a suitable measuring method for automatically measuring the weight of a product or material with considerably high accuracy without stopping the flow during the flow work. In particular, the present invention, the influence of peripheral devices, which is a technical problem of the electromagnetic induction method, the influence of temperature,
Even if the electromotive force fluctuates due to the influence of the local field, etc., the net magnetic physical quantity measurement signal is calculated by excluding these influences from the measurement output signal, so that a stable weight Made it possible to perform highly accurate measurements. As a result, the present invention has become a highly accurate and highly practical weight measuring method.

【0098】次に、発明者達は、第9発明の実施実験を
おこなった。この実験は、第3発明の実施実験のあと、
同発明と同じ測定装置と同じ12種類のワーク材質を用
いて、AC+9.073Vの電圧をかけ、0.5秒/個
の速さで通過測定してピーク値を選定し、数値化したう
え演算して正味の磁気的物理量測定信号を検出し、これ
をもとにして重量算定係数により重量を算出した。これ
を30回繰り返し、それをサンプリングデータとして採
用し、その結果、測定重量の最大値と最小値と平均値と
をだした。同重量測定のバラツキ比率は焼鈍なしが0.
21%で、焼鈍ありが0.19%であり、精度誤差は、
±0.05gであった。
Next, the inventors conducted an experiment for carrying out the ninth invention. This experiment, after the implementation experiment of the third invention,
Using the same 12 kinds of work materials as the same measuring equipment as the present invention, apply a voltage of AC + 9.073V, measure the passage at a speed of 0.5 seconds / piece, select the peak value, digitize and calculate Then, the net magnetic physical quantity measurement signal was detected, and the weight was calculated by the weight calculation coefficient based on the detected signal. This was repeated 30 times and this was adopted as sampling data, and as a result, the maximum value, the minimum value and the average value of the measured weight were obtained. The variation ratio of the same weight measurement was 0.
21%, 0.19% with annealing, accuracy error is
It was ± 0.05 g.

【0099】次に、発明者達は、第10発明の実施実験
をおこなった。この実験は、第4発明の実施実験のあ
と、同発明と同じ測定装置と同じ12種類のワーク材質
を用意し、AC+9.888Vの電圧をかけ、0.5秒
/個の速さで通過測定してピーク値を選定し、数値化し
たうえ演算して正味の磁気的物理量測定信号を検出し、
これをもとにして重量算定係数により重量を算出した。
これを30回繰り返し、それをサンプリングデータとし
て採用し、その結果、測定重量の最大値と最小値と平均
値とをだした。表5,表6がそれを示したものである。
同重量測定のバラツキ誤差の平均は焼鈍なしが0.21
%で、焼鈍ありが0.19%であり、精度誤差は、±
0.03gであった。
Next, the inventors conducted an experiment for carrying out the tenth invention. In this experiment, after the implementation experiment of the fourth invention, 12 kinds of work materials same as the same measuring device as the same invention were prepared, AC + 9.888V voltage was applied, and passage measurement was performed at a speed of 0.5 seconds / piece. To select the peak value, digitize and calculate to detect the net magnetic physical quantity measurement signal,
Based on this, the weight was calculated by the weight calculation coefficient.
This was repeated 30 times and this was adopted as sampling data, and as a result, the maximum value, the minimum value and the average value of the measured weight were obtained. Table 5 and Table 6 show it.
The average variation error of the same weight measurement is 0.21 without annealing.
%, With annealing 0.19%, accuracy error is ±
It was 0.03 g.

【0100】[0100]

【表5】 [Table 5]

【0101】[0101]

【表6】 [Table 6]

【0102】第11発明、第12発明は、新規な交流電
磁誘導方式による被測定試料の重量測定装置である。具
体的には、図10〜図14に示した測定装置に図2、図
3に示した第14発明に係る電磁誘導センサーを装備し
たのが第11発明に係る重量測定装置となり、同様に、
図10〜図14に示した測定装置に図5、図6に示した
第15発明に係る電磁誘導センサーを装備したのが第1
2発明に係る重量測定装置である。その詳細な構成は既
に説明したのでここでの説明は省略する。
The eleventh invention and the twelfth invention are a weight measuring device for a sample to be measured by a novel AC electromagnetic induction method. Specifically, the weight measuring apparatus according to the eleventh invention is equipped with the electromagnetic induction sensor according to the fourteenth invention shown in FIGS. 2 and 3 in the measuring apparatus shown in FIGS. 10 to 14, and similarly,
It is the first that the measuring apparatus shown in FIGS. 10 to 14 is equipped with the electromagnetic induction sensor according to the fifteenth invention shown in FIGS.
2 is a weight measuring device according to the invention. Since the detailed configuration has already been described, the description thereof is omitted here.

【0103】第13発明、第14発明、第15発明は、
前記磁気的物理量測定装置や重量測定装置に用いる測定
用の交流式電磁誘導センサー1である。その概略構成
は、既に説明したので、ここでの詳細な説明は省略す
る。この交流式電磁誘導センサー1は、交流外部磁界印
加コイル5に対する測定コイルの大きさと幾何学的位置
に特色があるが、本発明のような構成は、数多くの態様
の試作品の中から、その出力信号を確認して、最善のも
のが特定された。
The thirteenth invention, the fourteenth invention, and the fifteenth invention are
This is an alternating-current electromagnetic induction sensor 1 for measurement used in the magnetic physical quantity measuring device and the weight measuring device. Since its schematic configuration has already been described, detailed description thereof is omitted here. The AC electromagnetic induction sensor 1 is characterized by the size and geometrical position of the measuring coil with respect to the AC external magnetic field applying coil 5. Checking the output signal, the best one was identified.

【0104】[0104]

【発明の効果】第1発明、第2発明は、交流式電磁誘導
センサー1と交流外部磁界発生手段8と出力信号測定手
段9と演算手段10とを備えたことを特徴とする交流電
磁誘導方式による被測定試料の磁気的物理量測定装置を
用意し、当該用意した測定装置の測定系をあらかじめ調
整したうえ、交流式電磁誘導センサーの所定の測定領域
3に被測定試料7を存在させた状態で交流外部磁界を印
加し、これによって測定コイル4に誘起される起電力の
出力信号(被測定信号、調整測定信号)を出力信号測定
手段9で測定し数値化したうえ、これを演算手段10で
被測定信号から調整測定信号を差し引いて外部磁界によ
り誘起される信号を除去し、被測定磁性材料に関する正
味の磁気的物理量測定信号を検出し、これを基礎として
被測定試料の磁気的物理量を演算する方式の測定法であ
る。
The first and second aspects of the present invention include an AC electromagnetic induction sensor 1, an AC external magnetic field generating means 8, an output signal measuring means 9 and a computing means 10. A magnetic physical quantity measuring device for the sample to be measured according to is prepared, the measurement system of the prepared measuring device is adjusted in advance, and the sample to be measured 7 is present in a predetermined measurement region 3 of the AC electromagnetic induction sensor. An AC external magnetic field is applied, and the output signal of the electromotive force (measured signal, adjustment measurement signal) induced in the measurement coil 4 by this is measured by the output signal measuring means 9 and digitized, and this is calculated by the computing means 10. The adjustment measurement signal is subtracted from the signal under measurement to remove the signal induced by the external magnetic field, and the net magnetic physical quantity measurement signal for the magnetic material under measurement is detected. It is a measurement method for calculating the physical quantity.

【0105】この測定法は、電磁誘導の法則を利用し、
非接触方式により、被測定試料の磁気的物理量を0.2
秒/個ないし0.5秒/個という極めて迅速に、しかも
高精度に測定出来ることとなった。
This measuring method uses the law of electromagnetic induction,
The non-contact method reduces the magnetic physical quantity of the measured sample to 0.2
It has become possible to measure extremely rapidly with high accuracy, from seconds / piece to 0.5 seconds / piece.

【0106】また、この測定法は、外部磁界により誘起
される信号を除去して被測定試料に関する正味の磁気的
物理量測定信号を検出し、これを基礎として被測定試料
の磁気的物理量を演算する方式であるため、周辺機器の
影響や、温度の影響、地場の影響などにより起こる起電
力のヒズミがあっても、これらの外部磁界による信号を
相殺することによって除くので、常に測定精度が高精度
で安定した測定値を得ることが出来、具体的には、検査
精度は、0.4/1000〜2/1000とリアリティ
の高い安定した被測定試料の磁気的物理量の測定が出来
ることとなった。
In this measuring method, the signal induced by the external magnetic field is removed to detect the net magnetic physical quantity measurement signal for the sample to be measured, and the magnetic physical quantity of the sample to be measured is calculated based on this signal. Since it is a system, even if there is a flaw in the electromotive force caused by the influence of peripheral equipment, the influence of temperature, the influence of the local field, etc., it is excluded by canceling the signal due to these external magnetic fields, so the measurement accuracy is always high. The stable measurement value can be obtained by the method. Specifically, the inspection accuracy is 0.4 / 1000 to 2/1000, and the magnetic physical quantity of the sample to be measured can be stably measured with high reality. .

【0107】また、本発明により被測定試料の正味の磁
気的物理量が判明するが、これによって重量の測定、質
量の測定が算定できるだけでなく、磁性金属の重量や質
量の選別、被測定試料の寸法相違、磁性金属の組成の相
違、熱処理の有無、地金的構造の相違、硬さの相違、傷
の有無、異形材などの判別にも利用でき、実用性が高
い。
Further, according to the present invention, the net magnetic physical quantity of the sample to be measured can be found. This allows not only the measurement of the weight and the measurement of the mass to be calculated but also the selection of the weight and the mass of the magnetic metal, the determination of the sample to be measured. It is highly practical because it can be used to distinguish between dimensional differences, magnetic metal composition differences, heat treatment, metallurgical structure differences, hardness differences, scratches, and profiles.

【0108】以上、第1発明、第2発明の効果は、以下
第2発明乃至第8発明に共通した効果でもある。
The effects of the first and second inventions described above are also common to the second to eighth inventions.

【0109】第3発明は、第1発明と基本原理を同じに
した被測定試料の磁気的物理量の測定法である。本発明
においては、第2発明と相違し、外部磁界相殺用測定コ
イル5を第1、第2の2つに分割し、測定領域の磁力線
に対する前後両方向から測定するようにしてある。この
ように測定領域の磁力線に対する前後両方向から測定す
るようにすると、被測定試料が測定領域3内の位置ズレ
により、多少の誤差が生じた場合でも、両者が平均して
誤差をカバーできることになる。このように、外部磁界
相殺用測定コイルA,Cによる調整測定信号の測定精度
が上り、測定値が安定するだけでなく、交流外部磁界の
相殺が、より完全なものとなるので、最終的に算出され
る磁気的物理量の測定値が従来以上に、更には第2発明
以上にリアリティ(正確さ)のあるものとなる。
The third invention is a method for measuring the magnetic physical quantity of a sample to be measured, which has the same basic principle as the first invention. In the present invention, unlike the second invention, the external magnetic field canceling measurement coil 5 is divided into two, a first coil and a second coil, and the measurement is performed from both front and rear directions with respect to the magnetic field lines in the measurement region. When the measurement is performed from both the front and rear directions with respect to the magnetic field lines in this way, even if some error occurs due to the position shift of the sample to be measured in the measurement region 3, both of them can average and cover the error. . In this way, the measurement accuracy of the adjustment measurement signal by the measurement coils A and C for canceling the external magnetic field is increased, and not only the measured value is stabilized, but also the cancellation of the AC external magnetic field becomes more complete, so that finally The measured value of the calculated magnetic physical quantity is more realistic than the conventional one, and further more realistic than the second invention.

【0110】第4発明は、第3発明、第7発明を応用し
た被測定試料の磁気的物理量の測定方法である。第7発
明を応用した測定装置を用意し、主測定コイルB1+B2で
測定し合成した被測定信号から、外部磁界相殺用測定コ
イルA,Cで測定した前記外部磁界相殺用出力信号を差
し引くことにより、交流外部磁界により誘起される信号
を相殺し、被測定試料7に関する正味の磁気的物理量測
定信号を検出し、これを基礎として被測定試料7に関す
る磁気的物理量を算出する。従って、本発明に係る磁気
的物理量を測定方法は、非接触方式で、測定精度が第3
発明以上に高精度でしかも安定した測定を極めて高速
(0.2秒/個〜0.5秒/個)に行うことができる。
A fourth invention is a method for measuring a magnetic physical quantity of a sample to be measured, to which the third invention and the seventh invention are applied. By preparing a measuring device to which the seventh invention is applied and subtracting the external magnetic field canceling output signal measured by the external magnetic field canceling measuring coils A and C from the measured signal synthesized by measuring with the main measuring coil B1 + B2, The signal induced by the AC external magnetic field is canceled, the net magnetic physical quantity measurement signal for the measured sample 7 is detected, and the magnetic physical quantity for the measured sample 7 is calculated based on this signal. Therefore, the method for measuring a magnetic physical quantity according to the present invention is a non-contact method and has a measurement accuracy of the third level.
It is possible to perform highly accurate and stable measurement at an extremely high speed (0.2 seconds / piece to 0.5 seconds / piece) more than the invention.

【0111】第5発明、第6発明、第7発明は、それぞ
れ第2発明、第4発明、第5発明にかかる測定方法を実
施するための測定装置である。本測定装置は、新規に開
発した交流式電磁誘導センサー1とアンプコントローラ
とからなり、非接触方式で交流電磁誘導方式で、被測定
試料7の磁気的物理量を極めて迅速に安定して、しかも
高精度に測定出来るものであり、利用分野が広い特色が
ある。このような特色は、交流式電磁誘導センサーが、
交流外部磁界印加コイルと測定コイルとを一つにまと
め、しかも測定コイルの構成を、当該測定領域において
交流外部磁界によって誘起される出力信号(被測定信
号)を測定し得るようにした主測定コイルと、当該測定
領域3から所定の間隔離れた周辺領域4において交流外
部磁界によって誘起された出力信号(調整測定信号)を
測定し得るようにした外部磁界相殺用測定コイルとから
なるようにし、当該被測定信号と調整測定信号とを同一
環境条件下で得られるようにした点に特徴がある。しか
もアンプコントローラでは被測定信号を調整測定信号で
相殺することにより、不安定なヒズミをつくる外部磁界
を可及的に除去し、環境温度変化にも影響されずに常に
リアリティの高い磁気的物理量を得ることができるよう
にした。
The fifth, sixth, and seventh inventions are measuring apparatuses for carrying out the measuring methods according to the second, fourth, and fifth inventions, respectively. This measuring device consists of a newly developed AC electromagnetic induction sensor 1 and an amplifier controller. It is a non-contact type AC electromagnetic induction system, and the magnetic physical quantity of the sample 7 to be measured can be stabilized very quickly and high. It can be measured with high accuracy and has a wide range of applications. Such a feature is that the AC electromagnetic induction sensor
A main measuring coil in which an AC external magnetic field applying coil and a measuring coil are integrated, and the output coil (measured signal) induced by the AC external magnetic field is measured in the measuring region. And an external magnetic field canceling measurement coil capable of measuring an output signal (adjustment measurement signal) induced by an AC external magnetic field in a peripheral region 4 separated from the measurement region 3 by a predetermined distance. The feature is that the signal under measurement and the adjusted measurement signal are obtained under the same environmental conditions. Moreover, in the amplifier controller, the measured signal is canceled by the adjusted measurement signal to eliminate the external magnetic field that creates unstable strain as much as possible, and the magnetic physical quantity with high reality is always maintained without being affected by the environmental temperature change. I was able to get it.

【0112】第8発明、第9発明、第10発明は、交流
電磁誘導方式による被測定試料の磁気的物理量の測定方
法を応用した被測定試料の重量測定方法である。それ
は。第11発明第12発明の重量測定装置を用意し、交
流外部磁界により誘起される信号を相殺して、被測定試
料に関する正味の磁気的物理量出力信号を検出し、これ
を基礎にして、特定した重量算定係数を用いて被測定試
料7の重量を算出する方法である。
The eighth invention, the ninth invention, and the tenth invention are weight measurement methods for the sample to be measured to which the method for measuring the magnetic physical quantity of the sample to be measured by the AC electromagnetic induction method is applied. that is. An eleventh invention A twelfth invention is prepared, a signal induced by an AC external magnetic field is offset, a net magnetic physical quantity output signal regarding a sample to be measured is detected, and the weight measurement device is specified based on this. This is a method of calculating the weight of the sample 7 to be measured using the weight calculation coefficient.

【0113】本発明に係る重量測定方法は、第4発明と
同様に非接触方式で、測定精度が高精度(0.4/10
00〜2/1000)でしかも安定した重量測定を極め
て高速(0.2秒/個〜0.5秒/個)に行うことがで
きる。このように、重力を利用した従来の計り方式によ
る重量測定法では考えられなかった高速測定と高精度測
定とを非接触方式で行うことができるようになった点
で、画期的な測定法である。その結果、この重量測定方
法は、従来困難とされていた製造業の流れ作業に組み入
れる自動化、省力化用の重量測定技術として好適であ
り、実用性の高いものである。
The weight measuring method according to the present invention is a non-contact method like the fourth invention, and the measurement accuracy is high (0.4 / 10).
(00 to 2/1000) and stable weight measurement can be performed at extremely high speed (0.2 seconds / piece to 0.5 seconds / piece). In this way, the epoch-making measurement method is capable of performing high-speed measurement and high-accuracy measurement in a non-contact method, which was not possible with the conventional weight measurement method using gravity. Is. As a result, this weight measuring method is suitable as a weight measuring technique for automation and labor saving, which has been considered difficult in the past, to be incorporated into the assembly line work in the manufacturing industry, and is highly practical.

【0114】第11発明、第12発明は、交流電磁誘導
方式による被測定試料の磁気的物理量の測定方法を応用
した被測定試料の重量測定方法をおこなう重量測定装置
である。当該重量測定装置は、非接触型の交流電磁誘導
方式の磁気的物理量の測定装置を利用して完成した装置
であり、高速測定、高精度測定、安定性に優れている測
定が可能である。特に、交流電磁誘導方式の技術課題で
ある周辺機器の影響や、温度の影響、地場の影響などに
より起こる起電力のバラツキがあっても、これらの影響
分を相殺することによって除き、被測定試料の正味磁気
的物理量測定信号を特定でき、これに基づいて重量を測
定するようにしたので、リアリティが高いという点に大
きな特色がある。
The eleventh invention and the twelfth invention are a weight measuring device for carrying out a weight measuring method of a sample to be measured to which a method of measuring a magnetic physical quantity of the sample to be measured by an AC electromagnetic induction method is applied. The weight measuring device is a device completed by using a non-contact type AC electromagnetic induction type magnetic physical quantity measuring device, and is capable of high-speed measurement, high-accuracy measurement, and measurement with excellent stability. In particular, even if there are variations in electromotive force caused by the influence of peripheral devices, temperature influences, local influences, etc., which are technical issues of the AC electromagnetic induction method, the measured sample is excluded by canceling out these influences. Since the net magnetic physical quantity measurement signal of can be specified and the weight is measured based on this, there is a great feature in that the reality is high.

【0115】第13発明、第14発明、第15発明は、
測定用交流式電磁誘導センサーである。この交流式電磁
誘導センサーは、交流外部磁界印加コイルと測定コイル
とを一つの検出コイルにまとめ、しかも測定コイルの構
成を、当該測定領域において交流外部磁界によって誘起
される出力信号(被測定信号)を測定し得るようにした
主測定コイルと、当該測定領域から所定の間隔離れた周
辺領域において交流外部磁界によって誘起された出力信
号(調整測定信号)を測定し得るようにした外部磁界相
殺用測定コイルとからなるようにして、当該被測定信号
と調整測定信号とを同一環境条件下で得られるようにし
た点に特徴がある。
The thirteenth invention, the fourteenth invention, and the fifteenth invention are
AC measuring electromagnetic induction sensor. In this AC electromagnetic induction sensor, an AC external magnetic field applying coil and a measuring coil are integrated into one detecting coil, and the structure of the measuring coil is an output signal (signal to be measured) induced by the AC external magnetic field in the measurement region. And a measurement coil for external magnetic field cancellation, which is capable of measuring an output signal (adjustment measurement signal) induced by an AC external magnetic field in a peripheral region separated from the measurement region by a predetermined distance. It is characterized in that the signal to be measured and the adjusted measurement signal can be obtained under the same environmental conditions by using a coil.

【0116】特に、第14発明、測定用の交流式電磁誘
導センサーは、外部磁界相殺用測定コイルを第1、第2
の2つに分割し、測定領域の前後両方向から測定するよ
うに構成し、これによって、測定領域内での被測定試料
の位置ズレによる誤差がカバーできるなど、外部磁界相
殺用測定コイルによる調整測定信号の測定精度が上り、
測定値が安定するだけでなく、交流外部磁界の相殺がよ
り完全なものとなるので、算出される磁気的物理量測定
信号が従来以上に正確なものとなり、これに基づいて算
出される最終的な磁気的物理量や重量のリアリティが高
いものとなる。
In particular, in the fourteenth aspect of the invention, a measuring AC electromagnetic induction sensor is provided with a measuring coil for canceling the external magnetic field.
It is divided into two and is configured to measure from both the front and back directions of the measurement area, which can cover the error due to the position deviation of the sample to be measured in the measurement area. The measurement accuracy of the signal goes up,
Not only will the measured value be stable, but the cancellation of the AC external magnetic field will be more complete, so the calculated magnetic physical quantity measurement signal will be more accurate than before, and the final calculated based on this. The reality of magnetic physical quantity and weight is high.

【0117】また第15発明は、第14発明を更に改良
した測定用交流式電磁誘導センサーである。この改良型
交流式電磁誘導センサーは、外部磁界相殺用測定コイル
を第1、第2の2つに分割するだけでなく、主測定コイ
ルBについても第1主測定コイルB1、第2主測定コイル
B2の2つに分割してこれをにより生じる磁界を合成する
ことにより高精度に安定した被測定信号を得ることが出
来るように構成したものである。このように、改良型交
流式電磁誘導センサーから得られる被測定信号も調整測
定信号も測定精度が上り、測定値が安定するものとなっ
ている。従って、算出される正味の磁気的物理量測定信
号が従前のセンサーに比較してよりリアリティの高いも
のとなる。
The fifteenth invention is an AC electromagnetic induction sensor for measurement which is a further improvement of the fourteenth invention. This improved AC electromagnetic induction sensor not only divides the external magnetic field canceling measurement coil into the first and second measurement coils, but also the main measurement coil B has the first main measurement coil B1 and the second main measurement coil.
It is configured so that a stable signal to be measured can be obtained with high accuracy by dividing it into two parts B2 and synthesizing the magnetic fields generated by them. As described above, the measurement accuracy of the measured signal and the adjustment measurement signal obtained from the improved AC electromagnetic induction sensor is improved, and the measured value is stable. Therefore, the calculated net magnetic physical quantity measurement signal becomes more realistic than the conventional sensor.

【図面の簡単な説明】[Brief description of drawings]

【図1】第13発明に係る交流式電磁誘導センサーの構
成を示す説明図と、測定コイルに誘起する起電力の出力
信号を測定した被測定信号と調整測定信号と正味の磁気
的物理量測定信号とを示すシュミレーションと実測デー
タのグラフ説明図である。
FIG. 1 is an explanatory view showing a configuration of an AC electromagnetic induction sensor according to a thirteenth invention, a measured signal obtained by measuring an output signal of an electromotive force induced in a measurement coil, an adjustment measurement signal, and a net magnetic physical quantity measurement signal. It is a graph explanatory drawing of the simulation which shows and, and actual measurement data.

【図2】第14発明に係る交流式電磁誘導センサーの構
成を示す説明図と、測定コイルに誘起する起電力の出力
信号を測定した被測定信号と調整測定信号と正味の磁気
的物理量測定信号とを示すシュミレーションのグラフ説
明図である。
FIG. 2 is an explanatory view showing a configuration of an AC electromagnetic induction sensor according to a fourteenth aspect of the present invention, a measured signal obtained by measuring an output signal of an electromotive force induced in a measurement coil, an adjustment measurement signal, and a net magnetic physical quantity measurement signal. It is a graph explanatory drawing of the simulation which shows and.

【図3】第14発明に係る交流式電磁誘導センサーの測
定コイルが測定した正味の磁気的物理量測定信号を示す
実測データのグラフ説明図である。
FIG. 3 is a graph explanatory view of actual measurement data showing a net magnetic physical quantity measurement signal measured by a measurement coil of an AC electromagnetic induction sensor according to a fourteenth invention.

【図4】第14発明に係る交流式電磁誘導センサーの構
成を示す説明図と、測定コイルに誘起する起電力の出力
信号を測定した被測定信号と調整測定信号と正味の磁気
的物理量測定信号とを分析して正味の磁気的物理量測定
信号を得るこどかできる理由を表示したシュミレーショ
ンのグラフ説明図である。
FIG. 4 is an explanatory diagram showing a configuration of an AC electromagnetic induction sensor according to a fourteenth aspect of the present invention, a measured signal obtained by measuring an output signal of an electromotive force induced in a measurement coil, an adjustment measurement signal, and a net magnetic physical quantity measurement signal. It is a graph explanatory view of the simulation which displayed the reason why it is possible to analyze and to obtain a net magnetic physical quantity measurement signal.

【図5】第15発明に係る改良型交流式電磁誘導センサ
ーの構成を示す説明図と、測定コイルに誘起する起電力
の出力信号を測定した被測定信号と調整測定信号と正味
の磁気的物理量測定信号とを示すシュミレーションのグ
ラフ説明図である。
FIG. 5 is an explanatory diagram showing a configuration of an improved AC electromagnetic induction sensor according to a fifteenth aspect of the invention, a measured signal obtained by measuring an output signal of an electromotive force induced in a measurement coil, an adjustment measurement signal, and a net magnetic physical quantity. It is a graph explanatory view of a simulation showing a measurement signal.

【図6】第15発明に係る交流式電磁誘導センサーの測
定コイルが測定した正味の磁気的物理量測定信号を示す
実測データのグラフ説明図である。
FIG. 6 is a graph explanatory view of actual measurement data showing a net magnetic physical quantity measurement signal measured by a measurement coil of the AC electromagnetic induction sensor according to the fifteenth invention.

【図7】本願発明に係る交流式電磁誘導センサーの一実
施例を示す斜視図である。
FIG. 7 is a perspective view showing an embodiment of an AC electromagnetic induction sensor according to the present invention.

【図8】交流外部磁界印加コイルが発生する磁界を測定
領域で均一にするための一実施例を示すコイルの構成と
発生する出力信号を示すシュミレーッションのグラフ説
明図である。
FIG. 8 is a graph explanatory diagram of a simulation showing a configuration of a coil and an output signal generated in order to make a magnetic field generated by an AC external magnetic field applying coil uniform in a measurement region.

【図9】交流外部磁界印加コイルが発生する磁界を測定
領域で均一にするための他実施例を示すコイルの構成と
発生する出力信号を示すシュミレーッションのグラフ説
明図である。
FIG. 9 is a graph explanatory diagram of the simulation showing the configuration of the coil and the output signal generated in another example for making the magnetic field generated by the AC external magnetic field applying coil uniform in the measurement region.

【図10】具体的に製作した測定装置の一実施例におけ
る部品構成を示す説明図である。
FIG. 10 is an explanatory diagram showing a component configuration in an example of a specifically manufactured measuring apparatus.

【図11】図11に示した測定装置の測定部を拡大した
要部説明図である。
FIG. 11 is an explanatory view of a main part in which a measuring section of the measuring device shown in FIG. 11 is enlarged.

【図12】本願発明に係る測定装置の技術構成を示す説
明図である。
FIG. 12 is an explanatory diagram showing a technical configuration of a measuring apparatus according to the present invention.

【図13】本願発明に係る交流式電磁誘導センサーと被
測定試料供給搬出手段とを組み合わせて製作した測定装
置の要部を示す正面図である。
FIG. 13 is a front view showing a main part of a measuring device manufactured by combining an AC electromagnetic induction sensor according to the present invention and a measured sample supply / unloading means.

【図14】本願発明に係る交流式電磁誘導センサーと被
測定試料供給搬出手段とを組み合わせて製作した測定装
置の要部を示す側面図である。
FIG. 14 is a side view showing a main part of a measuring device manufactured by combining an AC electromagnetic induction sensor according to the present invention with a sample supply / carrying means for measurement.

【図15】第14発明に係る交流式電磁誘導センサーの
正味の磁気的物理量測定信号の測定結果を示すグラフ図
である。
FIG. 15 is a graph showing a measurement result of a net magnetic physical quantity measurement signal of the AC electromagnetic induction sensor according to the fourteenth invention.

【図16】第15発明に係る交流式電磁誘導センサーの
正味の磁気的物理量測定信号の測定結果を示すグラフ図
である。
FIG. 16 is a graph showing a measurement result of a net magnetic physical quantity measurement signal of the AC electromagnetic induction sensor according to the fifteenth invention.

【主な符合の説明】[Explanation of main signs]

1:交流式電磁誘導センサー 3:測定領域 4:周辺領域 5:交流外部磁界印加コイル 6:測定コイル A:外部磁界相殺用測定コイル B:主測定コイル C:外部磁界相殺用測定コイル 7:被測定試料 8:交流外部磁界発生手段 9:出力信号測定手段 10:演算手段 11:出力手段 12:被測定試料供給搬出手段 1: AC electromagnetic induction sensor 3: Measuring area 4: Peripheral area 5: AC external magnetic field applying coil 6: Measuring coil A: External magnetic field offset measuring coil B: Main measuring coil C: External magnetic field offset measuring coil 7: Target Measurement sample 8: AC external magnetic field generation means 9: Output signal measurement means 10: Calculation means 11: Output means 12: Measured sample supply / discharge means

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 交流外部磁界印加コイル5と測定コイル
6とから構成される交流式電磁誘導センサー1を用意
し、当該交流外部磁界印加コイル5が造る磁界の方向に
沿って被測定試料7を通過させることにより、交流の位
相変化に伴う磁界を変化させ、これによって測定コイル
6に起電力を誘起させ、交流外部磁界により誘起される
信号と、被測定試料に関する磁気的物理量の信号の和で
ある複合信号を被測定信号として測定した後、外部磁界
により誘起される信号を除去して、被測定資料に関する
正味の磁気的物理量の測定信号を検出し、これを基礎と
なる測定信号としてデジタル化して数値信号に変換し、
当該数値信号に磁気的物理量換算係数を乗じて磁気的物
理量を演算するようにしたことを特徴とする交流電磁誘
導方式による被測定試料の磁気的物理量の測定方法。
1. An AC electromagnetic induction sensor 1 comprising an AC external magnetic field applying coil 5 and a measuring coil 6 is prepared, and a sample 7 to be measured is placed along a direction of a magnetic field produced by the AC external magnetic field applying coil 5. By passing it, the magnetic field associated with the phase change of the alternating current is changed, thereby inducing an electromotive force in the measuring coil 6, and the sum of the signal induced by the alternating external magnetic field and the signal of the magnetic physical quantity related to the sample to be measured. After measuring a composite signal as the signal under test, the signal induced by the external magnetic field is removed, the measurement signal of the net magnetic physical quantity of the material under test is detected, and this is digitized as the underlying measurement signal. Convert it to a numerical signal,
A method for measuring a magnetic physical quantity of a sample to be measured by an AC electromagnetic induction method, wherein the numerical signal is multiplied by a magnetic physical quantity conversion coefficient to calculate a magnetic physical quantity.
【請求項2】 第1手段:下記のように構成された交流
式電磁誘導センサー1と交流外部磁界発生手段8と出力
信号測定手段9と演算手段10とを備えたことを特徴と
する測定装置を用意する。当該交流式電磁誘導センサー
1は、交流電流を流したとき発生する交流外部磁界が被
測定試料7を包む大きさの測定領域3およびその周辺領
域4に印加され、しかも当該測定領域3およびその周辺
領域4の範囲内で磁界分布が一様となるように設定され
ている交流外部磁界印加コイル5と、当該所定の測定領
域3およびその周辺領域4において交流外部磁界によっ
て誘起される出力信号を測定し得るように配設された測
定コイル6とからなり、当該測定コイル6は、所定の測
定領域3内に被測定試料7があるとき、当該測定領域3
において交流外部磁界によって誘起される出力信号(被
測定信号)φB(X)を測定し得るようにした主測定コイル
Bと、当該測定領域3から所定の間隔±α離れた周辺領
域4において交流外部磁界によって誘起された出力信号
(調整測定信号)φA(X ±a) を測定し得るようにした
外部磁界相殺用測定コイルAとから構成されており、当
該交流外部磁界発生手段8は、前記交流式電磁誘導セン
サー1に連結し、交流外部磁界印加コイル5に交流電流
を流すことにより交流外部磁界を測定領域3およびその
周辺領域4に印加することのできるように構成されてお
り、当該出力信号測定手段9は、前記交流式電磁誘導セ
ンサー1に連結し、交流外部磁界の印加によって測定コ
イル4に誘起される起電力の出力信号(被測定信号,調
整測定信号)を測定し、その出力信号(被測定信号,調
整測定信号)から適正なものを選定し、数値化し得るよ
うに構成し、当該演算手段10は、測定され数値化した
出力信号(被測定信号,調整測定信号)を調整し必要に
応じて演算することができるように構成されている。 第2手段:前記測定装置の測定系を、あらかじめ次の
が満足するように調整する。前記主測定コイルBで
測定される出力信号(被測定信号)φB(X)と外部磁界相
殺用測定コイルAで測定される出力信号(調整測定信
号)φ(X±a) は、交流外部磁界により誘起される出力
信号W(X) と被測定試料5に関する磁気的物理量の出力
信号M(X) の和としての複合信号として、次のように認
識されるので、 φB(X)=α(WB(X)+MB(X)) φA(X ±a) =δ(WA(X+a) +MA(X+a) ) (但し、α、δは、調整用の定数で、途中に増幅器を入
れた場合の増幅率やコイルの巻数に比例した係数であ
る。) 前記前記測定装置の測定系を、あらかじめ係数α、δを
調整因子として、次のが満足するように調整す
る。 被測定試料7が測定領域3内にあるとき、当該測定領
域3ではその主測定コイルAの測定感度がほぼ一様の空
間となるように調整し、 MB(X)≒constant 被測定試料7が測定領域3内にないとき、主測定コイ
ルBと外部磁界相殺用測定コイルAとで測定された交流
外部磁界によって誘起された信号値WB(X)とWA(X ±
a) が等しくなるように調整し、 αWB(X)=δWA(X ±a) 測定領域3内に被測定試料7があるとき、外部磁界相
殺用測定コイルAで測定された被測定試料7に関する磁
気的物理量の信号値MA(X ±a) が主測定コイルBで測
定された被測定試料7に関する磁気的物理量の信号値M
B(X)よりコンスタントに所定の比率εで小さくなるよう
に調整する。 εMB(X)=MA(X ±a) ,ε<1/Σ 第3手段:前記交流式電磁誘導センサー1と交流外部磁
界発生手段8と出力信号測定手段9とを用いて、所定の
測定領域3に被測定試料7を存在させたとき、交流外部
磁界印加コイル5に交流電流をながして交流外部磁界を
印加し、このとき当該測定領域3において交流外部磁界
によって誘起される被測定信号(交流外部磁界により誘
起される信号と被測定試料に関する磁気的物理量の信号
の和である複合信号)φB(X)を主測定コイルBで測定す
るとともに、 φB(X)=α(WB(X)+MB(X)) 当該測定領域3から所定の間隔離れた周辺領域4におい
て交流外部磁界によって誘起された調整測定信号(交流
外部磁界により誘起される信号と被測定試料に関する磁
気的物理量の信号の和である複合信号)φA(X ±a) を
外部磁界相殺用測定コイルAにより測定する。 φA(X ±a) =δ(WA(X ±a) +MA(X ±a) ) 第4手段:演算手段10を用いて前記被測定信号(交流
外部磁界により誘起される信号と被測定試料に関する磁
気的物理量の信号の和である複合信号)φB(X)から調整
測定信号(交流外部磁界により誘起される信号と被測定
試料に関する磁気的物理量の信号の和である複合信号)
φA(X ±a) を差し引き、これによって交流外部磁界に
より誘起される信号を相殺し、被測定試料7に関する正
味の磁気的物理量の信号を所定の係数θに比例した磁気
的物理量測定信号φT として検出する。 φT =φB(X)−φA(X ±a) =α(WB(X)+MB(X))−δ(WA(X ±a) +MA(X ±a) ) αWB(X)=δWA(X ±a) に調整されているから、 αWB(X)−δWA(X ±a) =0と相殺されて =αMB(X)−δMA(X ±a) εMB(X)=MA(X ±a) ,ε<1/Σに調整されているから =αMB(X)−δεMB(X) =(α−δε)MB(X) α,δ,εはいずれも所定の係数であるから(α−δε)も所定の 係数θと置換できる。よって、 φT =θMB(X) となり、出力はMB(X)に比例した測定信号として検出さ
れる。第5手段:真正磁気的物理量SMB(X)の判明して
いる標準試料Sの磁気的物理量測定信号SφT を、前記
測定装置を用いて被測定試料7と同じ測定方法で測定し
演算することにより標準試料Sの磁気的物理量測定信号
SφT を検出し、この標準試料Sの磁気的物理量測定信
号SφT と判明している真正磁気的物理量SMB(X)から
当該係数ψを特定する。 ψ=SφT /SMB(X) ( SφT ,SMB(X)の両者は具体的数値化しているの
で、ψも数値化する。) 第6手段:演算手段10を用いて前記第5手段で検出し
た被測定試料7に関する磁気的物理量測定信号φT から
前記特定した係数ψを用いて被測定試料7の磁気的物理
量を算出する。 MB(X)=φT /ψ 以上第1手段乃至第6手段を行うようにしたことを特徴
とする交流電磁誘導方式による被測定試料の磁気的物理
量の測定方法。
2. A first means: a measuring device comprising an AC electromagnetic induction sensor 1, an AC external magnetic field generating means 8, an output signal measuring means 9 and a computing means 10 configured as described below. To prepare. In the AC electromagnetic induction sensor 1, the AC external magnetic field generated when an AC current is applied is applied to the measurement region 3 and its peripheral region 4 having a size that encloses the sample 7 to be measured, and further, the measurement region 3 and its periphery. An AC external magnetic field applying coil 5 set so that the magnetic field distribution is uniform within the range of the area 4, and an output signal induced by the AC external magnetic field in the predetermined measurement area 3 and its peripheral area 4 is measured. And a measurement coil 6 that is arranged so that the measurement coil 6 can measure when the sample 7 to be measured is present in a predetermined measurement region 3.
In the main measurement coil B, which is capable of measuring the output signal (signal to be measured) φ B (X) induced by the AC external magnetic field at, and the AC in the peripheral area 4 separated from the measurement area 3 by a predetermined distance ± α. And an external magnetic field canceling measuring coil A capable of measuring an output signal (adjustment measuring signal) φ A (X ± a) induced by an external magnetic field. The AC external magnetic field is connected to the AC electromagnetic induction sensor 1 and an AC external magnetic field is applied to the measurement region 3 and its peripheral region 4 by passing an AC current through the AC external magnetic field applying coil 5. The output signal measuring means 9 is connected to the AC electromagnetic induction sensor 1 and measures an output signal (measured signal, adjusted measurement signal) of the electromotive force induced in the measurement coil 4 by applying an AC external magnetic field. Appropriate ones are selected from the output signals (measured signal, adjusted measurement signal) and configured so that they can be digitized, and the arithmetic means 10 is the measured and digitized output signal (measured signal, adjusted measurement signal). Can be adjusted and calculated as necessary. Second means: The measuring system of the measuring apparatus is adjusted in advance so that the following is satisfied. The output signal (measured signal) φ B (X) measured by the main measurement coil B and the output signal (adjustment measurement signal) φ (X ± a) measured by the measurement coil A for external magnetic field cancellation are AC external Since it is recognized as a composite signal as the sum of the output signal W (X) induced by the magnetic field and the output signal M (X) of the magnetic physical quantity related to the sample 5 to be measured, φ B (X) = α (W B (X) + M B (X)) φ A (X ± a) = δ (W A (X + a) + M A (X + a)) (where α and δ are constants for adjustment Then, it is a coefficient proportional to the amplification factor and the number of turns of the coil when an amplifier is inserted in the middle.) In the measurement system of the above-mentioned measuring apparatus, the coefficients α and δ are used as adjustment factors in advance so that adjust. When the sample to be measured 7 is in the measurement region 3, the measurement sensitivity of the main measurement coil A is adjusted to be a substantially uniform space in the measurement region 3, and M B (X) ≈constant Is not in the measurement region 3, the signal values W B (X) and W A (X ±) induced by the AC external magnetic field measured by the main measurement coil B and the external magnetic field cancellation measurement coil A are measured.
aW B (X) = δW A (X ± a) When the sample to be measured 7 is present in the measurement area 3, the sample to be measured measured with the external magnetic field canceling measurement coil A 7. The signal value M A (X ± a) of the magnetic physical quantity related to 7 is measured by the main measurement coil B, and the signal value M of the magnetic physical quantity related to the measured sample 7 is measured.
It is adjusted so that it is constantly smaller than B (X) by a predetermined ratio ε. εM B (X) = M A (X ± a), ε <1 / Σ third means: the alternating current using an electromagnetic induction sensor 1 and AC external magnetic field generating means 8 and the output signal measuring unit 9, a predetermined When the sample 7 to be measured is present in the measurement area 3, an AC current is applied to the AC external magnetic field applying coil 5 to apply an AC external magnetic field, and at this time, a signal to be measured induced by the AC external magnetic field in the measurement area 3 (Composite signal, which is the sum of the signal induced by the AC external magnetic field and the signal of the magnetic physical quantity related to the sample to be measured) φ B (X) is measured by the main measurement coil B, and φ B (X) = α (W B (X) + M B (X)) An adjustment measurement signal induced by an AC external magnetic field in a peripheral region 4 separated from the measurement region 3 for a predetermined period (a signal induced by the AC external magnetic field and a magnetic field related to the sample to be measured). Composite signal that is the sum of physical quantity signals) φ A (X ± a) Is measured by the measuring coil A for canceling the external magnetic field. φ A (X ± a) = δ (W A (X ± a) + M A (X ± a)) 4 means: signal and the induced by the measured signal (AC external magnetic field by using an arithmetic unit 10 Adjusted measurement signal from φ B (X) (composite signal that is the sum of the signals of the magnetic physical quantity related to the measurement sample) (composite signal that is the sum of the signal induced by the AC external magnetic field and the signal of the magnetic physical quantity related to the measured sample)
φ A (X ± a) is subtracted to cancel the signal induced by the AC external magnetic field, and the signal of the net magnetic physical quantity related to the sample 7 to be measured is proportional to the predetermined coefficient θ. Detect as T. φ T = φ B (X) -φ A (X ± a) = α (W B (X) + M B (X)) - δ (W A (X ± a) + M A (X ± a)) αW B (X) = from being adjusted to δW a (X ± a), αW B (X) -δW a (X ± a) = 0 and are offset = αM B (X) -δM a (X ± a ) εM B (X) = M a (X ± a), ε <1 / from being adjusted to Σ = αM B (X) -δεM B (X) = (α-δε) M B (X) α , Δ, ε are all predetermined coefficients, (α-δε) can be replaced with the predetermined coefficient θ. Therefore, φ T = θM B (X), and the output is detected as a measurement signal proportional to M B (X). Fifth means: magnetic physical quantity measuring signal Esufai T of Known standard sample S authentic magnetic physical quantity SM B (X), measured and calculated in the same measuring method as the measured sample 7 with the measuring device detecting a magnetic physical quantity measuring signal Esufai T of the standard sample S, for identifying the coefficients ψ from the standard sample S magnetic physical quantity measuring signal Esufai T and Known authentic magnetic physical quantity SM B of (X) by . ψ = Sφ T / SM B ( X) (Sφ T, since both the SM B (X) is specifically quantified, also quantify [psi.) The sixth means: using said operation means 10 5 The magnetic physical quantity of the sample 7 to be measured is calculated from the magnetic physical quantity measurement signal φ T relating to the sample 7 to be measured detected by the means using the specified coefficient ψ. M B (X) = φ T / φ The method for measuring the magnetic physical quantity of the sample to be measured by the alternating-current electromagnetic induction method, characterized in that the above first to sixth means are performed.
【請求項3】 第1手段:下記のように構成された交流
式電磁誘導センサー1と交流外部磁界発生手段8と出力
信号測定手段9と演算手段10とを備えたことを特徴と
する測定装置を用意する。当該測定装置は、交流電流を
流したとき発生する交流外部磁界が被測定試料7を包む
大きさの測定領域3およびその周辺領域4に印加され、
しかも当該測定領域3およびその周辺領域4の範囲内で
磁界分布が一様となるように設定されている交流外部磁
界印加コイル5と、当該所定の測定領域3およびその周
辺領域4において交流外部磁界によって誘起される出力
信号を測定し得るように配設された測定コイル6とから
なり、当該測定コイル6は、所定の測定領域3内に被測
定試料7があるとき、当該測定領域3において交流外部
磁界によって誘起される出力信号(被測定信号)φB(X)
を測定する主測定コイルBと、当該測定領域3から所定
の間隔離れた位置±αにおいて交流外部磁界によって誘
起された出力信号(調整測定信号)φAc(X±a) を測定
する外部磁界相殺用測定コイルACとからなり、当該外
部磁界相殺用測定コイルACは、前記測定領域3から磁
力線の前方向に所定の間隔離れた位置+αにおいて交流
外部磁界によって誘起された出力信号(第1調整測定信
号)φA(X+a) を測定する第1外部磁界相殺用測定コイ
ルAと,前記測定領域3から磁力線の後方向に所定の間
隔離れた位置−αにおいて交流外部磁界によって誘起さ
れた出力信号(第2調整測定信号)φC(X-a) を測定す
る第2磁界相殺用測定コイルCとで構成される電磁誘導
センサー1と、前記交流式電磁誘導センサー1に連結
し、交流外部磁界印加コイル5に交流電流を流すことに
より交流外部磁界を測定領域3およびその周辺領域4に
印加することのできるように構成された交流外部磁界発
生手段8と、前記交流式電磁誘導センサー1に連結し、
交流外部磁界の印加によって測定コイル4に誘起される
起電力の出力信号(被測定信号,調整測定信号)を測定
し、その出力信号(被測定信号,調整測定信号)から適
正なものを選定し、数値化し得るように構成した出力信
号測定手段9と、測定され数値化した出力信号(被測定
信号,調整測定信号)を調整し必要に応じて演算するこ
とができる当該演算手段10とを少なくとも備えた装置
である。 第2手段:前記測定装置の測定系を、あらかじめ次の
乃至が満足するように調整する。前記主測定コイルB
で測定される出力信号(被測定信号)φB(X)と第1外部
磁界相殺用測定コイルAで測定される出力信号(第1調
整測定信号)φA(X+a) と第2外部磁界相殺用測定コイ
ルCで測定される出力信号(第2調整測定信号)φC(X-
a) は、交流外部磁界により誘起される出力信号W(X)
と被測定試料7に関する磁気的物理量の出力信号M(X)
の複合信号として、次のように表されるので、 φB(X)=α( WB(X)+MB(X)) φA(X+a) =β( WA(X+a) +MA(X+a) ) φC(X-a) =γ(WC(X-a) +MC(X-a) ) (但し、α、β、γは、調整用の定数で、途中に増幅器
を入れた場合の増幅率やコイルの巻数に比例した係数で
ある。) 調整用の定数α、β、γを調整因子として、測定コイル
6の測定系をあらかじめ次の乃至が満足するように
調整設定しておく。 被測定試料7が所定の測定領域3内に位置する場合に
おいて、所定の測定領域3ではその測定感度がほぼ一様
の空間となるように調整し、 MB(X)≒constant 主測定コイルBで測定された被測定試料に関する磁気
的物理量の出力信号φB(X)は、ほぼ第1外部磁界相殺用
測定コイルAで測定された交流外部磁界によって誘起さ
れた出力信号WA(X+a) の2倍となし、 WB(X)=2WA(X+a) 第1外部磁界相殺用測定コイルAで測定された交流外
部磁界によって誘起された出力信号WA(X+a) と第2外
部磁界相殺用測定コイルCとで測定された交流外部磁界
によって誘起された出力信号WC(X-a) が等しくなるよ
うに調整し、 WA(X+a) =WC(X-a) 第1外部磁界相殺用測定コイルAで測定された被測定
試料7に関する磁気的物理量の出力信号MA(X+a) と第
2外部磁界相殺用測定コイルCとで測定された被測定試
料7に関する磁気的物理量の出力信号MC(X-a) が等し
くなるように調整し、 MA(X+a) =MC(X-a) 測定領域3に被測定試料7があるとき、第1外部磁界
相殺用測定コイルAで測定された被測定試料に関する磁
気的物理量の出力信号MA(X+a) は、主測定コイルBで
測定された被測定試料に関する磁気的物理量の出力信号
B(X)に比較して、コンスタントに所定の比率εで小さ
くなるように調整する。 εMB(X)=MA(X+a) ,ε<1/Σ 第3手段:前記交流式電磁誘導センサー1と交流外部磁
界発生手段8と出力信号測定手段9とを用いて、所定の
測定領域3に被測定試料7を存在させたとき、交流外部
磁界印加コイル3に交流電流をながして交流外部磁界を
印加し、主測定コイルBにより被測定信号φB(X)を測定
し、φB(X)=α(WB(X)+MB(X)) 第1外部磁界相殺用測定コイルAにより第1調整測定信
号φA(X+a) を測定すると共に、第2外部磁界相殺用測
定コイルCにより第2調整測定信号φC(X-a) を測定す
る。 φA(X+a) =β(WA(X+a) +MA(X+a) ) φC(X-a) =γ(WC(X-a) +MC(X-a) ) 第4手段:外部磁界相殺用測定コイルA,Cが出力した
第1調整測定信号φA(X+a) と、第2調整測定信号φ
C(X-a) を加算して外部磁界相殺用出力信号φA(X+a)
+φC(X-a) 値となし、 φA(X+a) +φC(X-a) =β(WA(X+a) +MA(X+a)
)+γ(WC(X-a) +MC(X-a) ) 当該主測定コイルBで測定した被測定信号φB(X)から、
外部磁界相殺用測定コイルA,Cで測定した前記外部磁
界相殺用出力信号φA(X+a) +φC(X-a) 値を差し引く
ことにより、交流外部磁界により誘起される信号を相殺
し、被測定試料7に関する正味の磁気的物理量を所定の
係数κに比例した磁気的物理量出力信号φT として検出
する。 φT =φB(X)−(φA(X+a) +φC(X-a) ) =α(WB(X)+MB(X))−{β(WA(X+a) +MA(X+a) ) +γ(WC(X-a) +MC(X-a) } =αWB(X)−{β(WA(X+a) +γWC(X-a) } +αMB(X)−{βMA(X+a) +γMC(X-a) } このときWB(X)=2WA(X+a) なのでα≒β+γと調整し、 WA(X+a) =WC(X-a) 及びMA(X+a) =MC(X-a) なので β≒γに調整してあるので、 αWB(X)−{β(WA(X+a) +γ(WC(X-a) }≒0と相殺され、 =αMB(X)−{βMA(X+a) +γMC(X-a) } =αMB(X)−2MA(X+a) =α(MB(X)−2εMB(X)) =α( 1−2ε)MB(X) α(1−2ε)は係数κに置換されるため、 φT =κMB(X) となり、磁気的物理量出力信号φT は、MB(X)に比例し
た信号として検出される。 第5手段:真正磁気的物理量SMB(X)の判明している標
準試料Sの磁気的物理量測定信号SφT を、前記測定装
置を用いて被測定試料7と同じ測定方法で測定し演算す
ることにより標準試料Sの磁気的物理量測定信号SφT
を検出し、この検出された標準試料Sの磁気的物理量測
定信号SφT と判明している真正磁気的物理量SMB(X)
から当該係数λを特定する。 λ=SφT /SMB (X) (SφT ,SMB(X)の両者が具体的数値化しているの
で、λも数値化する。) 第6手段:演算手段10を用いて前記第5手段で検出し
た被測定試料7に関する磁気的物理量測定信号φT から
前記特定した係数λを用いて被測定試料7の磁気的物理
量を算出する。 MB(X)=φT /λ 以上第1手段乃至第6手段を行うようにしたことを特徴
とする交流電磁誘導方式による被測定試料の磁気的物理
量の測定方法。
3. A first means: a measuring device comprising an AC electromagnetic induction sensor 1, an AC external magnetic field generating means 8, an output signal measuring means 9 and a computing means 10 configured as described below. To prepare. In the measurement device, an AC external magnetic field generated when an AC current is applied is applied to a measurement region 3 and its peripheral region 4 having a size that wraps the sample 7 to be measured,
Moreover, the AC external magnetic field applying coil 5 is set so that the magnetic field distribution is uniform within the measurement region 3 and its peripheral region 4, and the AC external magnetic field in the predetermined measurement region 3 and its peripheral region 4. And a measuring coil 6 arranged so as to measure an output signal induced by the measuring coil 6. When the measured sample 7 is present in a predetermined measuring region 3, the measuring coil 6 has an alternating current in the measuring region 3. Output signal induced by external magnetic field (measured signal) φ B (X)
And a main measurement coil B that measures the output signal (adjustment measurement signal) φ Ac (X ± a) induced by an AC external magnetic field at a position ± α separated from the measurement region 3 by a predetermined distance. And a measuring coil AC for canceling the external magnetic field. The measuring coil AC for canceling the external magnetic field is an output signal (first adjustment measurement) induced by an AC external magnetic field at a position + α separated from the measuring region 3 by a predetermined distance in the forward direction of the magnetic field lines. Signal) A first external magnetic field canceling measuring coil A for measuring φ A (X + a), and an output induced by an AC external magnetic field at a position -α which is separated from the measuring region 3 by a predetermined distance in the rear direction of the magnetic field lines. An electromagnetic induction sensor 1 including a second magnetic field offsetting measurement coil C for measuring a signal (second adjustment measurement signal) φ C (X-a) and the AC electromagnetic induction sensor 1, and an AC external Magnetic field application coil An AC external magnetic field generating means 8 configured to apply an AC external magnetic field to the measurement region 3 and its peripheral region 4 by passing an AC current through 5, is connected to the AC electromagnetic induction sensor 1,
The electromotive force output signal (measurement signal, adjustment measurement signal) induced in the measurement coil 4 by the application of the AC external magnetic field is measured, and a proper one is selected from the output signals (measurement signal, adjustment measurement signal). At least the output signal measuring means 9 configured so as to be digitized and the computing means 10 capable of adjusting the measured and digitized output signal (measured signal, adjusted measurement signal) and computing as necessary. It is an equipped device. Second means: The measuring system of the measuring device is adjusted in advance so that the following items (1) to (4) are satisfied. The main measurement coil B
Output signal (measured signal) φ B (X) and the output signal measured by the first external magnetic field cancellation measurement coil A (first adjustment measurement signal) φ A (X + a) and the second external Output signal measured by the measurement coil C for magnetic field cancellation (second adjustment measurement signal) φ C (X-
a) is the output signal W (X) induced by the AC external magnetic field
And the output signal M (X) of the magnetic physical quantity related to the measured sample 7
Is expressed as the following composite signal, φ B (X) = α (W B (X) + M B (X)) φ A (X + a) = β (W A (X + a) + M a (X + a) ) φ C (X-a) = γ (W C (X-a) + M C (X-a)) ( although, alpha, beta, gamma is a constant for adjustment, middle It is a coefficient that is proportional to the amplification factor and the number of turns of the coil when an amplifier is inserted in.) Using the adjustment constants α, β, and γ as adjustment factors, make sure that the measurement system of the measurement coil 6 satisfies the following items in advance. Adjust and set to. When the sample 7 to be measured is located in the predetermined measurement region 3, the measurement sensitivity is adjusted to be a substantially uniform space in the predetermined measurement region 3, and M B (X) ≈constant main measurement coil B The output signal φ B (X) of the magnetic physical quantity related to the sample to be measured measured in 1. is almost the output signal W A (X + a) induced by the AC external magnetic field measured by the first external magnetic field offsetting measurement coil A. ), And W B (X) = 2W A (X + a) and the output signal W A (X + a) induced by the AC external magnetic field measured by the first external magnetic field cancellation measuring coil A The output signal W C (X-a) induced by the AC external magnetic field measured by the second external magnetic field offsetting measurement coil C is adjusted to be equal, and W A (X + a) = W C (X -a) Output signal of the magnetic physical quantity related to the sample to be measured 7 measured by the first measuring coil A for canceling the external magnetic field Adjusted to A (X + a) and the second external output signal of the magnetic field canceling measuring coil C and magnetically physical quantity related to the measurement sample 7 measured in M C (X-a) are equal, M A ( X + a) = M C (X-a) When the measured sample 7 is present in the measurement region 3, the output signal M A (of the magnetic physical quantity relating to the measured sample measured by the first external magnetic field cancellation measuring coil A ) X + a) is adjusted so as to be constantly reduced by a predetermined ratio ε compared with the output signal M B (X) of the magnetic physical quantity related to the sample to be measured measured by the main measurement coil B. εM B (X) = M A (X + a), ε <1 / Σ third means: the alternating current using an electromagnetic induction sensor 1 and AC external magnetic field generating means 8 and the output signal measuring unit 9, a predetermined When the sample 7 to be measured is present in the measurement region 3, an alternating current is applied to the alternating external magnetic field applying coil 3 to apply an alternating external magnetic field, and the main measuring coil B measures the measured signal φ B (X). φ B (X) = α (W B (X) + M B (X)) The first adjustment measurement signal φ A (X + a) is measured by the first external magnetic field canceling measurement coil A, and the second external magnetic field is measured. The second adjustment measurement signal φ C (X-a) is measured by the offset measurement coil C. φ A (X + a) = β (W A (X + a) + M A (X + a)) φ C (X-a) = γ (W C (X-a) + M C (X-a)) Fourth means: the first adjustment measurement signal φ A (X + a) output by the external magnetic field cancellation measurement coils A and C, and the second adjustment measurement signal φ
Output signal φ A (X + a) for external magnetic field cancellation by adding C (X-a)
+ Φ C (X-a) values and without, φ A (X + a) + φ C (X-a) = β (W A (X + a) + M A (X + a)
) + Γ (W C (X-a) + M C (X-a)) From the measured signal φ B (X) measured by the main measurement coil B,
By subtracting the external magnetic field canceling output signal φ A (X + a) + φ C (X-a) value measured by the external magnetic field canceling measuring coils A and C, the signal induced by the AC external magnetic field is canceled. , The net magnetic physical quantity of the measured sample 7 is detected as a magnetic physical quantity output signal φ T proportional to a predetermined coefficient κ. φ T = φ B (X) - (φ A (X + a) + φ C (X-a)) = α (W B (X) + M B (X)) - {β (W A (X + a) + M A (X + a) ) + γ (W C (X-a) + M C (X-a)} = αW B (X) - {β (W A (X + a) + γW C (X-a)} + αM B (X) - { βM a (X + a) + γM C (X-a)} adjust this time W B (X) = 2W a (X + a) Since α ≒ β + γ and, W a (X + Since a) = W C (X-a) and M A (X + a) = M C (X-a), β ≈ γ is adjusted, so αW B (X)-{β (WA (X A + a) + γ (W C (X-a)} ≒ 0 and offset, = αM B (X) - {βM a (X + a) + γM C (X-a)} = αM B (X) -2M a (X + a) = α (M B (X) -2εM B (X)) = α (1-2ε) M B (X) α (1-2ε) because substituted in the coefficient kappa, phi T = κM B (X), and the magnetic physical quantity output signal phi T is detected as a signal proportional to M B (X) fifth means:. it has been found in the authentic magnetic physical quantity SM B (X) The magnetic physical quantity measuring signal Esufai T quasi sample S, the magnetic physical quantity measuring signal Esufai T of the standard sample S by measuring calculated in the same measuring method as the measured sample 7 with the measuring device
The detected, the detected magnetic physical quantity measuring signal Esufai T and Known authentic magnetic physical quantity SM B of the standard sample S (X)
From the above, the coefficient λ is specified. λ = Sφ T / SM B ( X) (Sφ T, since both the SM B (X) is specifically quantified, also quantify lambda.) Sixth means: using said operation means 10 5 The magnetic physical quantity of the sample 7 to be measured is calculated from the magnetic physical quantity measurement signal φ T relating to the sample 7 to be measured detected by the means using the specified coefficient λ. M B (X) = φ T / λ The method for measuring the magnetic physical quantity of the sample to be measured by the AC electromagnetic induction method is characterized in that the first to sixth means are performed.
【請求項4】 請求項3の第1手段において記載する交
流式電磁誘導センサー1を下記のように構成した改良型
交流式電磁誘導センサー1に置換した測定装置を用意す
る。当該改良型交流式電磁誘導センサー1は、交流電流
を流したとき誘起する交流外部磁界が被測定試料7を包
む大きさの測定領域3およびその周辺領域4に印加さ
れ、しかも当該測定領域3およびその周辺領域4の範囲
内で磁界分布が一様となるように設定されている交流外
部磁界印加コイル5と、当該所定の測定領域3およびそ
の周辺領域4において交流外部磁界によって誘起される
出力信号を測定し得るように配設された測定コイル6と
からなり、当該測定コイル6は、測定領域3内に被測定
試料7があるとき、測定領域3内において交流外部磁界
によって誘起される被測定信号φB(X)を測定できる主測
定コイルBと当該測定領域3から所定の間隔離れた位置
±αにおいて交流外部磁界によって誘起された出力信号
(調整測定信号)φAc(X±a) を測定する外部磁界相殺
用測定コイルACとから構成されており、当該主測定コ
イルBは、更に測定領域3内の磁力線の前方に位置する
第一主測定コイルB1と、後方に位置する第二主測定コイ
ルB2とが所定の間隔離れて配設された構成になってい
て、測定領域3内において交流外部磁界によって誘起さ
れる被測定信号φB(X)が、当該第一主測定コイルB1と第
二主測定コイルB2の磁界を合成した出力信号として測定
できるように構成されており、前記外部磁界相殺用測定
コイルACは、当該測定領域3から磁力線の前方向に所
定の間隔離れた位置+αにおいて交流外部磁界によって
誘起された出力信号(調整測定信号)φA(X+a) を測定
する第1外部磁界相殺用測定コイルAと,当該測定領域
3から磁力線の後方向に所定の間隔離れた位置−αにお
いて交流外部磁界によって誘起された出力信号同出力信
号(調整測定信号)φC(X-a) を測定する第2磁界相殺
用測定コイルCとから構成されている。そのうえで、請
求項3に記載する第2手段乃至第6手段を順次行うよう
にしたことを特徴とする交流電磁誘導方式による被測定
試料の磁気的物理量の測定方法。
4. A measuring apparatus is provided in which the AC electromagnetic induction sensor 1 described in the first means of claim 3 is replaced with an improved AC electromagnetic induction sensor 1 configured as follows. In the improved AC electromagnetic induction sensor 1, an AC external magnetic field induced when an AC current is applied is applied to a measurement region 3 and its peripheral region 4 having a size that encloses the sample 7 to be measured, and the measurement region 3 and An AC external magnetic field applying coil 5 whose magnetic field distribution is set to be uniform within the peripheral region 4, and an output signal induced by the AC external magnetic field in the predetermined measurement region 3 and its peripheral region 4. And a measurement coil 6 arranged so as to be able to measure the measurement target. The measurement coil 6 measures the sample 7 to be measured in the measurement region 3 when the sample 7 is measured in the measurement region 3. Output signal (adjustment measurement signal) φ Ac (X ± a) induced by an AC external magnetic field at a position ± α that is separated from the main measurement coil B that can measure the signal φ B (X) and the measurement area 3 by a predetermined distance ) Of the external magnetic field canceling measurement coil AC, and the main measurement coil B further includes a first main measurement coil B1 located in front of the magnetic field lines in the measurement area 3 and a second main measurement coil located in the rear. The two main measurement coils B2 are arranged so as to be separated from each other by a predetermined distance, and the measured signal φ B (X) induced by the AC external magnetic field in the measurement region 3 is the first main measurement coil. The magnetic field of B1 and the second main measuring coil B2 is configured to be able to be measured as an output signal that is combined, and the external magnetic field canceling measuring coil AC is isolated from the measuring region 3 in the front direction of the magnetic field lines for a predetermined period. A first external magnetic field offsetting measurement coil A for measuring an output signal (adjustment measurement signal) φ A (X + a) induced by an AC external magnetic field at a position + α, and a predetermined direction in the backward direction of the magnetic field line from the measurement region 3 concerned. At a position -α And a induced output signal the output signal (adjusted measurement signal) φ C (X-a) and the second magnetic field canceling the measurement coil C to measure the alternating external magnetic field Te. Then, the second means to the sixth means described in claim 3 are sequentially performed, and a method of measuring a magnetic physical quantity of a sample to be measured by an alternating-current electromagnetic induction method.
【請求項5】 交流電流を流したとき発生する交流外部
磁界が被測定試料7を包む大きさの測定領域3およびそ
の周辺領域4に印加され、しかも当該測定領域3および
その周辺領域4の範囲内で磁界分布が一様となるように
設定されている交流外部磁界印加コイル5と、当該所定
の測定領域3およびその周辺領域4において交流外部磁
界によって誘起される出力信号を測定し得るように配設
された測定コイル6とからなり、当該測定コイル6は、
所定の測定領域3内に被測定試料7があるとき、当該測
定領域3において交流外部磁界によって誘起される出力
信号(被測定信号)φB(X)を測定し得る主測定コイルB
と、当該測定領域3から所定の間隔±α離れた位置にお
いて交流外部磁界によって誘起された出力信号(調整測
定信号)φA(X ±a) を測定し得る外部磁界相殺用測定
コイルAとから構成されるようにした交流式電磁誘導セ
ンサー1と、前記交流式電磁誘導センサー1に連結し、
交流外部磁界印加コイル5に交流電流を流すことにより
交流外部磁界を測定領域3およびその周辺領域4に印加
することができるように構成した交流外部磁界発生手段
8と、前記交流式電磁誘導センサー1に連結し、交流外
部磁界の印加によって測定コイル4に誘起される起電力
の出力信号(被測定信号,調整測定信号)を測定し数値
化し得るようにした出力信号測定手段9と、測定し数値
化された出力信号(被測定信号,調整測定信号)を調整
し必要に応じて演算することができるようにした演算手
段10と、少なくとも前記演算手段10で演算された被
測定試料の磁気的物理量を出力できるようにした出力手
段11とを、備えたことを特徴とする交流電磁誘導方式
による被測定試料の磁気的物理量の測定装置。
5. An AC external magnetic field generated when an AC current is applied is applied to a measurement region 3 and its peripheral region 4 having a size that encloses the sample 7 to be measured, and moreover, the range of the measurement region 3 and its peripheral region 4 In order to measure the output signal induced by the AC external magnetic field in the AC external magnetic field applying coil 5 in which the magnetic field distribution is set to be uniform, and in the predetermined measurement area 3 and its peripheral area 4. The measuring coil 6 is provided, and the measuring coil 6 is
When the sample to be measured 7 is present in the predetermined measurement area 3, the main measurement coil B capable of measuring the output signal (signal to be measured) φ B (X) induced by the AC external magnetic field in the measurement area 3
And an external magnetic field canceling measurement coil A capable of measuring an output signal (adjustment measurement signal) φ A (X ± a) induced by an AC external magnetic field at a position separated from the measurement region 3 by a predetermined distance ± α. An alternating current electromagnetic induction sensor 1 configured to be connected to the alternating current electromagnetic induction sensor 1,
An AC external magnetic field generating means 8 configured to apply an AC external magnetic field to the measurement region 3 and its peripheral region 4 by causing an AC current to flow through the AC external magnetic field applying coil 5, and the AC electromagnetic induction sensor 1. And an output signal measuring means 9 for measuring and quantifying the output signal (measured signal, adjustment measurement signal) of the electromotive force induced in the measurement coil 4 by applying an AC external magnetic field. Calculating means 10 capable of adjusting the converted output signal (measured signal, adjusted measurement signal) and calculating as necessary, and at least a magnetic physical quantity of the measured sample calculated by the calculating means 10. And an output means 11 capable of outputting a magnetic physical quantity of the sample to be measured by an AC electromagnetic induction method.
【請求項6】 交流電流を流したとき誘起する交流外部
磁界が被測定試料7を包む大きさの測定領域3およびそ
の周辺領域4に印加され、しかも当該測定領域3および
その周辺領域4の範囲内で磁界分布が一様となるように
設定されている交流外部磁界印加コイル5と、当該所定
の測定領域3およびその周辺領域4において交流外部磁
界によって誘起される出力信号を測定し得るように配設
された測定コイル6とからなり、当該測定コイル6は、
所定の測定領域3内に被測定試料7があるとき、当該測
定領域3において交流外部磁界によって誘起される出力
信号(被測定信号)φB(X)を測定する主測定コイルB
と、当該測定領域3から所定の間隔離れた位置±αにお
いて交流外部磁界によって誘起された出力信号(調整測
定信号)φAc(X±a) を測定する外部磁界相殺用測定コ
イルACとからなり、当該外部磁界相殺用測定コイルA
Cは、前記測定領域3から磁力線の前方向に所定の間隔
離れた位置+αにおいて交流外部磁界によって誘起され
た出力信号(第1調整測定信号)φA(X+a) を測定する
第1外部磁界相殺用測定コイルAと,前記測定領域3か
ら磁力線の後方向に所定の間隔離れた位置−αにおいて
交流外部磁界によって誘起された出力信号(第2調整測
定信号)φC(X-a) を測定する第2磁界相殺用測定コイ
ルCとで構成される交流式電磁誘導センサー1と、前記
交流式電磁誘導センサー1に連結し、交流外部磁界印加
コイル5に交流電流を流すことにより交流外部磁界を測
定領域3およびその周辺領域4に印加することができる
ように構成した交流外部磁界発生手段8と、前記交流式
電磁誘導センサー1に連結し、交流外部磁界の印加によ
って測定コイル4に誘起される起電力の出力信号(被測
定信号,調整測定信号)を測定し数値化し得るようにし
た出力信号測定手段9と、測定し数値化された出力信号
(被測定信号,調整測定信号)を調整し必要に応じて演
算することができるようにした演算手段10と、少なく
とも前記演算手段10で演算された被測定試料の磁気的
物理量を出力できるようにした出力手段11とを、備え
たことを特徴とする交流電磁誘導方式による被測定試料
の磁気的物理量の測定装置。
6. An AC external magnetic field induced when an AC current is applied is applied to a measurement region 3 and its peripheral region 4 having a size that encloses the sample 7 to be measured, and moreover, the range of the measurement region 3 and its peripheral region 4 In order to measure the output signal induced by the AC external magnetic field in the AC external magnetic field applying coil 5 in which the magnetic field distribution is set to be uniform, and in the predetermined measurement area 3 and its peripheral area 4. The measuring coil 6 is provided, and the measuring coil 6 is
When the sample to be measured 7 is present in the predetermined measurement area 3, the main measurement coil B for measuring the output signal (signal to be measured) φ B (X) induced by the AC external magnetic field in the measurement area 3
And an external magnetic field canceling measuring coil AC for measuring an output signal (adjustment measuring signal) φ Ac (X ± a) induced by an AC external magnetic field at a position ± α separated from the measurement region 3 by a predetermined distance. , The measuring coil A for canceling the external magnetic field
C is a first external device that measures an output signal (first adjustment measurement signal) φ A (X + a) induced by an AC external magnetic field at a position + α that is separated from the measurement region 3 in the forward direction of the magnetic field lines by a predetermined distance. An output signal (second adjustment measurement signal) φ C (X-a) induced by an AC external magnetic field at a position −α that is separated from the measurement region 3 in the rear direction of the magnetic field lines by a predetermined distance from the measurement coil A for magnetic field cancellation. AC electromagnetic induction sensor 1 composed of a second magnetic field offsetting measurement coil C for measuring and an AC external magnetic field applying coil 5 by connecting an AC current to the AC external magnetic field applying coil 5. An AC external magnetic field generating means 8 configured to apply a magnetic field to the measurement area 3 and its peripheral area 4 and the AC electromagnetic induction sensor 1 are connected to each other, and the AC external magnetic field is applied to the measurement coil 4. The output signal (measured signal, adjusted measurement signal) of the electromotive force to be measured and digitized, and the measured and digitized output signal (measured signal, adjusted measurement signal). Computation means 10 adjusted so that computation can be performed as needed, and output means 11 capable of outputting at least the magnetic physical quantity of the sample to be measured computed by the computation means 10 were provided. An apparatus for measuring a magnetic physical quantity of a sample to be measured by an alternating-current electromagnetic induction method characterized by the above.
【請求項7】 交流電流を流したとき誘起する交流外部
磁界が被測定試料7を包む大きさの測定領域3およびそ
の周辺領域4に印加され、しかも当該測定領域3および
その周辺領域4の範囲内で磁界分布が一様となるように
設定されている交流外部磁界印加コイル5と、当該所定
の測定領域3およびその周辺領域4において交流外部磁
界によって誘起される出力信号を測定し得るように配設
された測定コイル6とからなり、当該測定コイル6は、
測定領域3内に被測定試料7があるとき、測定領域3内
において交流外部磁界によって誘起される被測定信号φ
B(X)を測定できる主測定コイルBと当該測定領域3から
所定の間隔離れた位置±αにおいて交流外部磁界によっ
て誘起された出力信号(調整測定信号)φAc(X±a) を
測定する外部磁界相殺用測定コイルACとから構成され
ており、当該主測定コイルBは、更に測定領域3内の磁
力線の前方に位置する第一主測定コイルB1と、後方に位
置する第二主測定コイルB2とが所定の間隔離れて配設さ
れた構成になっていて、測定領域3内において交流外部
磁界によって誘起される被測定信号φB(X)が、当該第一
主測定コイルB1と第二主測定コイルB2の磁界を合成した
出力信号として測定できるように構成されており、前記
外部磁界相殺用測定コイルACは、当該測定領域3から
磁力線の前方向に所定の間隔離れた位置+αにおいて交
流外部磁界によって誘起された出力信号(調整測定信
号)φA(X+a) を測定する第1外部磁界相殺用測定コイ
ルAと,当該測定領域3から磁力線の後方向に所定の間
隔離れた位置−αにおいて交流外部磁界によって誘起さ
れた出力信号同出力信号(調整測定信号)φC(X-a) を
測定する第2磁界相殺用測定コイルCとから構成されて
いる改良型交流式電磁誘導センサー1と、前記改良型交
流式電磁誘導センサー1に連結し、交流外部磁界印加コ
イル5に交流電流を流すことにより交流外部磁界を測定
領域3およびその周辺領域4に印加することができるよ
うに構成した交流外部磁界発生手段8と、前記改良型交
流式電磁誘導センサー1に連結し、交流外部磁界の印加
によって測定コイル4に誘起される起電力の出力信号
(被測定信号,調整測定信号)を測定し数値化し得るよ
うにした出力信号測定手段9と、測定し数値化された出
力信号(被測定信号,調整測定信号)を調整し必要に応
じて演算することができるようにした演算手段10と、
少なくとも前記演算手段10で演算された被測定試料の
磁気的物理量を出力できるようにした出力手段11と
を、備えたことを特徴とする交流電磁誘導方式による被
測定試料の磁気的物理量の測定装置。
7. An AC external magnetic field induced when an AC current is applied is applied to a measurement region 3 and its peripheral region 4 having a size enclosing a sample 7 to be measured, and moreover, the range of the measurement region 3 and its peripheral region 4 In order to measure the output signal induced by the AC external magnetic field in the AC external magnetic field applying coil 5 in which the magnetic field distribution is set to be uniform, and in the predetermined measurement area 3 and its peripheral area 4. The measuring coil 6 is provided, and the measuring coil 6 is
When the measured sample 7 is present in the measurement area 3, the measured signal φ induced by the AC external magnetic field in the measurement area 3
The output signal (adjustment measurement signal) φ Ac (X ± a) induced by the AC external magnetic field is measured at a position ± α which is separated from the main measurement coil B capable of measuring B (X) and the measurement area 3 by a predetermined distance. The main measurement coil B is composed of an external magnetic field canceling measurement coil AC, and the main measurement coil B further includes a first main measurement coil B1 located in front of the magnetic field lines in the measurement region 3 and a second main measurement coil located behind. B2 and the second main measurement coil B1 are separated from each other by a predetermined distance, and the measured signal φ B (X) induced by the AC external magnetic field in the measurement region 3 is The external magnetic field canceling measuring coil AC is configured so that it can be measured as an output signal obtained by combining the magnetic fields of the main measuring coil B2. Induced by an external magnetic field Output signal (adjusted measurement signal) φ A (X + a) and the first external magnetic field canceling the measurement coil A of measuring, AC outside in a position -α spaced a predetermined distance in the direction following the magnetic field lines from the measurement area 3 An improved AC electromagnetic induction sensor 1 comprising a second magnetic field offsetting measurement coil C for measuring the output signal (adjustment measurement signal) φ C (X-a) induced by a magnetic field, and An AC external magnetic field connected to the improved AC electromagnetic induction sensor 1 and configured to apply an AC external magnetic field to the measurement region 3 and its peripheral region 4 by passing an AC current through the AC external magnetic field applying coil 5. The output signal (measured signal, adjustment measurement signal) of the electromotive force induced in the measurement coil 4 by the application of the AC external magnetic field is measured and digitized by connecting to the generating means 8 and the improved AC electromagnetic induction sensor 1. obtain Unishi was output signal measuring unit 9, the measured digitized output signal (signal to be measured, adjusting the measurement signal) and calculating means 10 to be able to be adjusted as required operation,
An output device 11 capable of outputting at least the magnetic physical quantity of the sample to be measured calculated by the calculating means 10, and an apparatus for measuring a magnetic physical quantity of a sample to be measured by an AC electromagnetic induction method. .
【請求項8】 交流外部磁界印加コイル5と測定コイル
6とから構成される交流式電磁誘導センサー1を用意
し、当該交流外部磁界印加コイル5が造る磁界の方向に
沿って被測定試料7を通過させることにより、交流の位
相変化に伴う磁界を変化させ、これによって測定コイル
6に起電力を誘起させ、交流外部磁界により誘起される
信号と、被測定試料に関する磁気的物理量の信号の和で
ある複合信号を被測定信号として測定した後、外部磁界
により誘起される信号を除去して、被測定資料に関する
正味の磁気的物理量の測定信号を検出し、これを基礎と
なる測定信号としてデジタル化した数値信号に変換し、
当該数値信号に重量算定係数を乗じて重量を演算するよ
うにしたことを特徴とする交流電磁誘導方式による被測
定試料の重量の測定方法。
8. An AC electromagnetic induction sensor 1 composed of an AC external magnetic field applying coil 5 and a measuring coil 6 is prepared, and a sample 7 to be measured is placed along a direction of a magnetic field produced by the AC external magnetic field applying coil 5. By passing it, the magnetic field associated with the phase change of the alternating current is changed, thereby inducing an electromotive force in the measuring coil 6, and the sum of the signal induced by the alternating external magnetic field and the signal of the magnetic physical quantity related to the sample to be measured. After measuring a composite signal as the signal under test, the signal induced by the external magnetic field is removed, the measurement signal of the net magnetic physical quantity related to the sample under test is detected, and this is digitized as the underlying measurement signal. Converted into a numerical signal
A method for measuring the weight of a sample to be measured by an AC electromagnetic induction method, characterized in that the numerical signal is multiplied by a weight calculation coefficient to calculate the weight.
【請求項9】 第1手段:下記のように構成された交流
式電磁誘導センサー1と交流外部磁界発生手段8と出力
信号測定手段9と演算手段10とを備えたことを特徴と
する重量測定装置を用意する。当該重量測定装置は、交
流電流を流したとき発生する交流外部磁界が被測定試料
7を包む大きさの測定領域3およびその周辺領域4に印
加され、しかも当該測定領域3およびその周辺領域4の
範囲内で磁界分布が一様となるように設定されている交
流外部磁界印加コイル5と、当該所定の測定領域3およ
びその周辺領域4において交流外部磁界によって誘起さ
れる出力信号を測定し得るように配設された測定コイル
6とからなり、当該測定コイル6は、所定の測定領域3
内に被測定試料7があるとき、当該測定領域3において
交流外部磁界によって誘起される出力信号(被測定信
号)φB(X)を測定する主測定コイルBと、当該測定領域
3から磁力線の前方向に所定の間隔離れた位置+αにお
いて交流外部磁界によって誘起された出力信号(調整測
定信号)φA(X+a) を測定する第1外部磁界相殺用測定
コイルAと,当該測定領域3から磁力線の後方向に所定
の間隔離れた位置−αにおいて交流外部磁界によって誘
起された出力信号同出力信号(調整測定信号)φC(X-
a) を測定する第2磁界相殺用測定コイルCとからなる
外部磁界相殺用測定コイルACとで構成される電磁誘導
センサー1と、前記交流式電磁誘導センサー1に連結
し、交流外部磁界印加コイル5に交流電流を流すことに
より交流外部磁界を測定領域3およびその周辺領域4に
印加することのできるように構成された交流外部磁界発
生手段8と、前記交流式電磁誘導センサー1に連結し、
交流外部磁界の印加によって測定コイル4に誘起される
起電力の出力信号(被測定信号,調整測定信号)を測定
し、その出力信号(被測定信号,調整測定信号)から適
正なものを選定し、数値化し得るように構成した出力信
号測定手段9と、測定され数値化した出力信号(被測定
信号,調整測定信号)を調整し必要に応じて演算するこ
とができる当該演算手段10とを少なくとも備えた装置
である。 第2手段:前記重量測定装置の測定系を、あらかじめ次
の乃至が満足するように調整する。前記主測定コイ
ルBで測定される出力信号(被測定信号)φB(X)と第1
外部磁界相殺用測定コイルAで測定される出力信号(第
1調整測定信号)φA(X+a) と第2外部磁界相殺用測定
コイルCで測定される出力信号(第2調整測定信号)φ
C(X-a) は、交流外部磁界により誘起される出力信号W
(X) と被測定試料7に関する磁気的物理量の出力信号M
(X) の複合信号として、次のように表されるので、 φB(X)=α(WB(X)+MB(X)) φA(X+a)=β(WA(X+a) +MA(X+a) ) φC(X-a)=γ(WC(X-a) +MC(X-a) ) (但し、α、β、γは、調整用の定数で、途中に増幅器
を入れた場合の増幅率やコイルの巻数に比例した係数で
ある。) 調整用の定数α、β、γを調整因子として、測定コイル
6の測定系をあらかじめ次の乃至が満足するように
調整設定しておく。 被測定試料7が所定の測定領域3内に位置する場合に
おいて、所定の測定領域3ではその測定感度がほぼ一様
の空間となるように調整し、 MB(X)≒constant 主測定コイルBで測定された被測定試料に関する磁気
的物理量の出力信号φB (X) は、ほぼ第1外部磁界相殺
用測定コイルAで測定された交流外部磁界によって誘起
された出力信号WA(X+a) の2倍となし、 WB(X)=2WA(X+a) 第1外部磁界相殺用測定コイルAで測定された交流外
部磁界によって誘起された出力信号WA(X+a) と第2外
部磁界相殺用測定コイルCとで測定された交流外部磁界
によって誘起された出力信号WC(X-a) が等しくなるよ
うに調整し、 WA(X+a) =WC(X-a) 第1外部磁界相殺用測定コイルAで測定された被測定
試料7に関する磁気的物理量の出力信号MA(X+a) と第
2外部磁界相殺用測定コイルCとで測定された被測定試
料7に関する磁気的物理量の出力信号MC(X-a) が等し
くなるように調整し、 MA(X+a) =MC(X-a) 測定領域3に被測定試料7があるとき、第1外部磁界
相殺用測定コイルAで測定された被測定試料に関する磁
気的物理量の出力信号MA(X+a) は、主測定コイルBで
測定された被測定試料に関する磁気的物理量の出力信号
B(X)に比較して、コンスタントに所定の比率εで小さ
くなるように調整する。 εMB(X)=MA(X+a) ,ε<1/Σ 第3手段:前記交流式電磁誘導センサー1と交流外部磁
界発生手段8と出力信号測定手段9とを用いて、所定の
測定領域3に被測定試料7を存在させたとき、交流外部
磁界印加コイル3に交流電流をながして交流外部磁界を
印加し、主測定コイルBにより被測定信号φB(X)を測定
し、 φB(X)=α(WB(X)+MB(X))第1外部磁界相殺用測定
コイルAにより第1調整測定信号φA(X+a) を測定する
と共に、第2外部磁界相殺用測定コイルCにより第2調
整測定信号φC(X-a) を測定する。 φA(X+a) =β(WA(X+a) +MA(X+a) ) φC(X-a) =γ(WC(X-a) +MC(X-a) ) 第4手段:外部磁界相殺用測定コイルA,Cが出力した
第1調整測定信号φA(X+a) と第2調整測定信号φC(X-
a) を加算して外部磁界相殺用出力信号φA(X+a) +φ
C(X-a) 値となし、 φA(X+a) +φC(X-a) =β(WA(X+a) +MA(X+a)
)+γ(WC(X-a) +MC(X-a) ) 当該主測定コイルBで測定した被測定信号φB(X)から、
外部磁界相殺用測定コイルA,Cで測定した前記外部磁
界相殺用出力信号φA(X+a) +φC(X-a) 値を差し引く
ことにより、交流外部磁界により誘起される信号を相殺
し、被測定試料7に関する正味の磁気的物理量を所定の
係数κに比例した磁気的物理量出力信号φT として検出
する。 φT =φB(X)−(φA(X+a) +φC(X-a) ) =α(WB(X)+MB(X))−{β(WA(X+a) +MA(X+a) ) +γ(φC(X-a) +MC(X-a) } =αWB(X)−{β(WA(X+a) +γWC(X-a) } +αMB(X)−{βMA(X+a) +γMC(X-a) } このときWB(X)=2WA(X+a) なのでα≒β+γと調整し、 WA(X+a) =WC(X-a) 及びMA(X+a) =MC(X-a) なので β≒γに調整してあるので、 αWB(X)−{β(WA(X+a) +γ(WC(X-a) }≒0と相殺され、 =αMB(X)−{βMA(X+a) +γMC(X-a) } =α(MB(X)−2MA(X+a) =α(MB(X)−2εMB(X)) =α(1−2ε)MB(X) α(1−2ε)は係数κに置換されるため、 φT =κMB(X) となり、磁気的物理量出力信号φT は、MB(X)に比例し
た信号として検出される。 第5手段:真正重量SGの判明している標準試料Sの磁
気的物理量測定信号SφT を、前記測定装置を用いて被
測定試料7と同じ測定方法で測定し演算することにより
標準試料Sの磁気的物理量測定信号SφT を検出し、こ
の検出された標準試料Sの磁気的物理量測定信号SφT
と判明している真正重量SGから当該重量算定係数ηを
特定する。 η=SφT /SG (SφT ,SGの両者が具体的数値化しているので、η
も数値化する。) 第6手段:演算手段10を用いて前記第5手段で検出し
た被測定試料7に関する磁気的物理量測定信号φT から
前記特定した重量算定係数ηを用いて被測定試料7の重
量を算出する。 MB(X)=φT /η 以上第1手段乃至第6手段を行うようにしたことを特徴
とする交流電磁誘導方式による被測定試料の重量測定方
法。
9. A first means: a weight measurement comprising an AC electromagnetic induction sensor 1, an AC external magnetic field generating means 8, an output signal measuring means 9 and a computing means 10 configured as described below. Prepare the device. In the weight measuring device, an AC external magnetic field generated when an AC current is applied is applied to the measurement region 3 and its peripheral region 4 having a size that wraps the sample 7 to be measured, and the measurement region 3 and its peripheral region 4 are An AC external magnetic field applying coil 5 whose magnetic field distribution is set to be uniform within the range, and an output signal induced by the AC external magnetic field in the predetermined measurement area 3 and its peripheral area 4 can be measured. The measurement coil 6 is disposed in the predetermined measurement area 3
When the sample to be measured 7 is inside, the main measurement coil B that measures the output signal (signal to be measured) φ B (X) induced by the AC external magnetic field in the measurement region 3 and the magnetic field line from the measurement region 3 are measured. A first external magnetic field offsetting measurement coil A for measuring an output signal (adjustment measurement signal) φ A (X + a) induced by an AC external magnetic field at a position + α separated by a predetermined distance in the forward direction, and the measurement area 3 Output signal (adjustment measurement signal) φ C (X-
An electromagnetic induction sensor 1 including an external magnetic field cancellation measurement coil AC including a second magnetic field cancellation measurement coil C for measuring a) and an AC external magnetic field application coil connected to the AC electromagnetic induction sensor 1. An AC external magnetic field generating means 8 configured to apply an AC external magnetic field to the measurement region 3 and its peripheral region 4 by passing an AC current through 5, is connected to the AC electromagnetic induction sensor 1,
The electromotive force output signal (measurement signal, adjustment measurement signal) induced in the measurement coil 4 by the application of the AC external magnetic field is measured, and a proper one is selected from the output signals (measurement signal, adjustment measurement signal). At least the output signal measuring means 9 configured so as to be digitized and the computing means 10 capable of adjusting the measured and digitized output signal (measured signal, adjusted measurement signal) and computing as necessary. It is an equipped device. Second means: The measurement system of the weight measuring device is adjusted in advance so as to satisfy the following items. The output signal (signal to be measured) φ B (X) measured by the main measurement coil B and the first
Output signal (first adjustment measurement signal) φ A (X + a) measured by the external magnetic field cancellation measurement coil A and output signal (second adjustment measurement signal) measured by the second external magnetic field cancellation measurement coil C φ
C (X-a) is the output signal W induced by the AC external magnetic field
(X) and the output signal M of the magnetic physical quantity related to the measured sample 7
As a composite signal of (X), so is represented as follows, φ B (X) = α (W B (X) + M B (X)) φ A (X + a) = β (W A (X + a) + M a (X + a)) φ C (X-a) = γ (W C (X-a) + M C (X-a)) ( although, alpha, beta, gamma is a constant for adjustment Then, it is a coefficient proportional to the amplification factor and the number of turns of the coil when an amplifier is inserted in the middle.) Using the adjustment constants α, β, and γ as adjustment factors, Adjust and set to satisfy. When the sample 7 to be measured is located in the predetermined measurement region 3, the measurement sensitivity is adjusted to be a substantially uniform space in the predetermined measurement region 3, and M B (X) ≈constant main measurement coil B The output signal φ B (X) of the magnetic physical quantity related to the sample to be measured measured in 1. is almost the output signal W A (X + a) induced by the AC external magnetic field measured by the first external magnetic field offsetting measurement coil A. ), And W B (X) = 2W A (X + a) and the output signal W A (X + a) induced by the AC external magnetic field measured by the first external magnetic field cancellation measuring coil A The output signal W C (X-a) induced by the AC external magnetic field measured by the second external magnetic field offsetting measurement coil C is adjusted to be equal, and W A (X + a) = W C (X -a) Output signal of the magnetic physical quantity related to the sample to be measured 7 measured by the first measuring coil A for external magnetic field cancellation M A (X + a) and adjusted to magnetic physical quantity of the output signal M C (X-a) equals about the measured sample 7 is measured by the second external magnetic field canceling the measurement coil C, M A (X + a) = M C (X-a) When the sample to be measured 7 is present in the measurement region 3, the output signal M A of the magnetic physical quantity related to the sample to be measured measured by the first external magnetic field cancellation measurement coil A (X + a) is adjusted so as to be constantly reduced by a predetermined ratio ε compared with the output signal M B (X) of the magnetic physical quantity related to the sample to be measured measured by the main measurement coil B. εM B (X) = M A (X + a), ε <1 / Σ third means: the alternating current using an electromagnetic induction sensor 1 and AC external magnetic field generating means 8 and the output signal measuring unit 9, a predetermined When the sample 7 to be measured is present in the measurement region 3, an alternating current is applied to the alternating external magnetic field applying coil 3 to apply an alternating external magnetic field, and the main measuring coil B measures the measured signal φ B (X). φ B (X) = α (W B (X) + M B (X)) The first adjustment measurement signal φ A (X + a) is measured by the first external magnetic field canceling measurement coil A, and the second external magnetic field is measured. The second adjustment measurement signal φ C (X-a) is measured by the offset measurement coil C. φ A (X + a) = β (W A (X + a) + M A (X + a)) φ C (X-a) = γ (W C (X-a) + M C (X-a)) Fourth means: First adjustment measurement signal φ A (X + a) and second adjustment measurement signal φ C (X-
a) is added to output signal for external magnetic field cancellation φ A (X + a) + φ
C (X-a) values and without, φ A (X + a) + φ C (X-a) = β (W A (X + a) + M A (X + a)
) + Γ (W C (X-a) + M C (X-a)) From the measured signal φ B (X) measured by the main measurement coil B,
By subtracting the external magnetic field canceling output signal φ A (X + a) + φ C (X-a) value measured by the external magnetic field canceling measuring coils A and C, the signal induced by the AC external magnetic field is canceled. , The net magnetic physical quantity of the measured sample 7 is detected as a magnetic physical quantity output signal φ T proportional to a predetermined coefficient κ. φ T = φ B (X) - (φ A (X + a) + φ C (X-a)) = α (W B (X) + M B (X)) - {β (W A (X + a) + M A (X + a) ) + γ (φ C (X-a) + M C (X-a)} = αW B (X) - {β (W A (X + a) + γW C (X-a)} + αM B (X) - { βM a (X + a) + γM C (X-a)} adjust this time W B (X) = 2W a (X + a) Since α ≒ β + γ and, W a (X + Since a) = W C (X-a) and M A (X + a) = M C (X-a), β ≈ γ is adjusted, so αW B (X)-{β (WA (X A + a) + γ (W C (X-a)} ≈ 0, which is offset by: = αM B (X)-{βM A (X + a) + γM C (X-a)} = α (M B (X) -2M a (X + a) = α (M B (X) -2εM B (X)) = α (1-2ε) M B (X) α (1-2ε) because substituted in the coefficient kappa, φ T = κ M B (X) and the magnetic physical quantity output signal φ T is detected as a signal proportional to M B (X) Fifth means: For the standard sample S of which the true weight SG is known. A magnetic physical quantity measurement signal Sφ T of the standard sample S is detected by measuring and calculating the magnetic physical quantity measurement signal Sφ T by the same measuring method as that of the sample 7 to be measured using the above-described measuring device, and the detected standard is detected. Magnetic physical quantity measurement signal Sφ T of sample S
The weight calculation coefficient η is specified from the true weight SG known to be. η = Sφ T / SG (Since both Sφ T and SG are concrete numerical values, η
Also digitize. ) Sixth means: Calculate the weight of the sample 7 to be measured from the magnetic physical quantity measurement signal φ T relating to the sample 7 detected by the fifth means using the calculating means 10 by using the specified weight calculation coefficient η. . M B (X) = φ T / η The method for measuring the weight of a sample to be measured by the AC electromagnetic induction method is characterized by performing the above first to sixth means.
【請求項10】 請求項9の第1手段において記載する
交流式電磁誘導センサー1を下記のように構成した改良
型交流式電磁誘導センサー1に置換した測定装置を用意
する。当該交流式電磁誘導センサー1は、交流電流を流
したとき誘起する交流外部磁界が被測定試料7を包む大
きさの測定領域3およびその周辺領域4に印加され、し
かも当該測定領域3およびその周辺領域4の範囲内で磁
界分布が一様となるように設定されている交流外部磁界
印加コイル5と、当該所定の測定領域3およびその周辺
領域4において交流外部磁界によって誘起される出力信
号を測定し得るように配設された測定コイル6とからな
り、当該測定コイル6は、測定領域3内に被測定試料7
があるとき、測定領域3内において交流外部磁界によっ
て誘起される被測定信号φB(X)を測定できる主測定コイ
ルBと当該測定領域3から所定の間隔離れた位置±αに
おいて交流外部磁界によって誘起された出力信号(調整
測定信号)φAc(X±a) を測定する外部磁界相殺用測定
コイルACとから構成されており、当該主測定コイルB
は、更に測定領域3内の磁力線の前方に位置する第一主
測定コイルB1と、後方に位置する第二主測定コイルB2と
が所定の間隔離れて配設された構成になっていて、測定
領域3内において交流外部磁界によって誘起される被測
定信号φB(X)が、当該第一主測定コイルB1と第二主測定
コイルB2の磁界を合成した出力信号として測定できるよ
うに構成されており、前記外部磁界相殺用測定コイルA
Cは、当該測定領域3から磁力線の前方向に所定の間隔
離れた位置+αにおいて交流外部磁界によって誘起され
た出力信号(調整測定信号)φA(X+a) を測定する第1
外部磁界相殺用測定コイルAと,当該測定領域3から磁
力線の後方向に所定の間隔離れた位置−αにおいて交流
外部磁界によって誘起された出力信号同出力信号(調整
測定信号)φC(X-a) を測定する第2磁界相殺用測定コ
イルCとから構成されている。そのうえで、請求項9に
記載する第2手段乃至第6手段を順次行うようにしたこ
とを特徴とする交流電磁誘導方式による被測定試料の重
量の測定方法。
10. A measuring apparatus is provided in which the AC electromagnetic induction sensor 1 described in the first means of claim 9 is replaced with an improved AC electromagnetic induction sensor 1 configured as described below. In the AC electromagnetic induction sensor 1, the AC external magnetic field induced when an AC current is applied is applied to the measurement region 3 and its peripheral region 4 having a size that encloses the sample 7 to be measured, and further, the measurement region 3 and its periphery. An AC external magnetic field applying coil 5 set so that the magnetic field distribution is uniform within the range of the area 4, and an output signal induced by the AC external magnetic field in the predetermined measurement area 3 and its peripheral area 4 is measured. And a measurement coil 6 which is arranged so that the measurement sample 6 is placed in the measurement area 3.
, The main measurement coil B capable of measuring the measured signal φ B (X) induced by the AC external magnetic field in the measurement area 3 and the AC external magnetic field at a position ± α separated from the measurement area 3 by a predetermined distance. The measurement coil AC for external magnetic field cancellation for measuring the induced output signal (adjustment measurement signal) φ Ac (X ± a), and the main measurement coil B
Further has a configuration in which a first main measurement coil B1 located in front of the magnetic field lines in the measurement region 3 and a second main measurement coil B2 located in the rear are arranged so as to be separated by a predetermined distance. The signal to be measured φ B (X) induced by the AC external magnetic field in the region 3 is configured to be measured as an output signal obtained by combining the magnetic fields of the first main measurement coil B1 and the second main measurement coil B2. And the measuring coil A for canceling the external magnetic field
C is a first for measuring an output signal (adjustment measurement signal) φ A (X + a) induced by an AC external magnetic field at a position + α that is separated from the measurement region 3 in the forward direction of the magnetic field lines by a predetermined distance.
External magnetic field canceling measurement coil A and output signal induced by an AC external magnetic field at a position -α which is separated from the measurement area 3 in the rear direction of the magnetic field lines by a predetermined distance (adjustment measurement signal) φ C (X- and a second magnetic field cancellation measuring coil C for measuring a). Then, the second means to the sixth means described in claim 9 are sequentially carried out, and a method for measuring the weight of a sample to be measured by an alternating-current electromagnetic induction method is characterized.
【請求項11】 交流電流を流したとき誘起する交流外
部磁界が被測定試料7を包む大きさの測定領域3および
その周辺領域4に印加され、しかも当該測定領域3およ
びその周辺領域4の範囲内で磁界分布が一様となるよう
に設定されている交流外部磁界印加コイル5と、当該所
定の測定領域3およびその周辺領域4において交流外部
磁界によって誘起される出力信号を測定し得るように配
設された測定コイル6とからなり、当該測定コイル6
は、所定の測定領域3内に被測定試料7があるとき、当
該測定領域3において交流外部磁界によって誘起される
出力信号(被測定信号)φB(X)を測定する主測定コイル
Bと、当該測定領域3から磁力線の前方向に所定の間隔
離れた位置+αにおいて交流外部磁界によって誘起され
た出力信号(調整測定信号)φA(X+a) を測定する第1
外部磁界相殺用測定コイルAと,当該測定領域3から磁
力線の後方向に所定の間隔離れた位置−αにおいて交流
外部磁界によって誘起された出力信号同出力信号(調整
測定信号)φC(X-a) を測定する第2磁界相殺用測定コ
イルCとからなる外部磁界相殺用測定コイルACとで構
成されるようにしたことを特徴とする交流電磁誘導方式
による被測定試料の磁気的物理量の測定用電磁誘導セン
サー1と、前記交流式電磁誘導センサー1に連結し、交
流外部磁界印加コイル5に交流電流を流すことにより交
流外部磁界を測定領域3およびその周辺領域4に印加す
ることができるように構成した交流外部磁界発生手段8
と、前記交流式電磁誘導センサー1に連結し、交流外部
磁界の印加によって測定コイル4に誘起される起電力の
出力信号(被測定信号,調整測定信号)を測定し数値化
し得るようにした出力信号測定手段9と、測定し数値化
された出力信号(被測定信号,調整測定信号)を調整し
必要に応じて演算することができるようにした演算手段
10と、少なくとも前記演算手段10で演算された被測
定試料の重量か、或はあらかじめ設定された標準重量と
測定演算された重量数値とを比較した評価判定を出力で
きるようにした出力手段11と、前記交流式電磁誘導セ
ンサー1の所定の測定領域3に被測定試料を搬送供給
し、重量測定後に搬出するようにした被測定試料供給搬
出手段12とを、備えたことを特徴とする交流電磁誘導
方式による被測定試料の重量測定装置。
11. An AC external magnetic field induced when an AC current is applied is applied to a measurement region 3 and its peripheral region 4 having a size that encloses a sample 7 to be measured, and the range of the measurement region 3 and its peripheral region 4 is further affected. In order to measure the output signal induced by the AC external magnetic field in the AC external magnetic field applying coil 5 in which the magnetic field distribution is set to be uniform, and in the predetermined measurement area 3 and its peripheral area 4. The measurement coil 6 is provided, and the measurement coil 6 is provided.
Is a main measurement coil B that measures an output signal (measurement signal) φ B (X) induced by an AC external magnetic field in the measurement region 3 when the measurement sample 7 is present in the predetermined measurement region 3. First to measure an output signal (adjustment measurement signal) φ A (X + a) induced by an AC external magnetic field at a position + α separated from the measurement region 3 in the forward direction of the magnetic field lines by a predetermined distance.
External magnetic field canceling measurement coil A and output signal induced by an AC external magnetic field at a position -α which is separated from the measurement area 3 in the rear direction of the magnetic field lines by a predetermined distance (adjustment measurement signal) φ C (X- The measurement of the magnetic physical quantity of the sample to be measured by the alternating-current electromagnetic induction method, characterized in that it is configured with an external magnetic field cancellation measurement coil AC including a second magnetic field cancellation measurement coil C for measuring a). So that the AC external magnetic field can be applied to the measurement area 3 and its peripheral area 4 by connecting the AC electromagnetic induction sensor 1 to the AC electromagnetic induction sensor 1 and applying an AC current to the AC external magnetic field applying coil 5. AC external magnetic field generating means 8 configured in
And an output that is connected to the AC electromagnetic induction sensor 1 and that can measure and quantify the output signal (measured signal, adjustment measurement signal) of the electromotive force induced in the measurement coil 4 by applying an AC external magnetic field. The signal measuring means 9, the calculating means 10 for adjusting the measured and digitized output signals (the signal under measurement, the adjusted measurement signal) and calculating as necessary, and at least the calculating means 10 calculates Output means 11 capable of outputting an evaluation judgment by comparing the weight value of the measured sample or the preset standard weight with the weight value calculated and calculated, and a predetermined value of the AC electromagnetic induction sensor 1. And a sample-to-be-measured supply / unloading means 12 configured to carry and supply the sample to be measured to and to carry out the sample after the weight measurement. Weight measurement device.
【請求項12】 交流電流を流したとき誘起する交流外
部磁界が被測定試料7を包む大きさの測定領域3および
その周辺領域4に印加され、しかも当該測定領域3およ
びその周辺領域4の範囲内で磁界分布が一様となるよう
に設定されている交流外部磁界印加コイル5と、当該所
定の測定領域3およびその周辺領域4において交流外部
磁界によって誘起される出力信号を測定し得るように配
設された測定コイル6とからなり、当該測定コイル6
は、測定領域3内に被測定試料7があるとき、測定領域
3内において交流外部磁界によって誘起される被測定信
号φB(X)を測定できる主測定コイルBと当該測定領域3
から所定の間隔離れた位置±αにおいて交流外部磁界に
よって誘起された出力信号(調整測定信号)φAc(X±
a) を測定する外部磁界相殺用測定コイルACとから構
成されており、当該主測定コイルBは、更に測定領域3
内の磁力線の前方に位置する第一主測定コイルB1と、後
方に位置する第二主測定コイルB2とが所定の間隔離れて
配設された構成になっていて、測定領域3内において交
流外部磁界によって誘起される被測定信号φB(X)が、当
該第一主測定コイルB1と第二主測定コイルB2の磁界を合
成した出力信号として測定できるように構成されてお
り、前記外部磁界相殺用測定コイルACは、当該測定領
域3から磁力線の前方向に所定の間隔離れた位置+αに
おいて交流外部磁界によって誘起された出力信号(調整
測定信号)φA(X+a) を測定する第1外部磁界相殺用測
定コイルAと,当該測定領域3から磁力線の後方向に所
定の間隔離れた位置−αにおいて交流外部磁界によって
誘起された出力信号同出力信号(調整測定信号)φC(X-
a) を測定する第2磁界相殺用測定コイルCとから構成
されている改良型交流式電磁誘導センサー1と、前記改
良型交流式電磁誘導センサー1に連結し、交流外部磁界
印加コイル5に交流電流を流すことにより交流外部磁界
を測定領域3およびその周辺領域4に印加することがで
きるように構成した交流外部磁界発生手段8と、前記改
良型交流式電磁誘導センサー1に連結し、交流外部磁界
の印加によって測定コイル4に誘起される起電力の出力
信号(被測定信号,調整測定信号)を測定し数値化し得
るようにした出力信号測定手段9と、測定し数値化され
た出力信号(被測定信号,調整測定信号)を調整し必要
に応じて演算することができるようにした演算手段10
と、少なくとも前記演算手段10で演算された被測定試
料の重量か、或はあらかじめ設定された標準重量と測定
演算された重量数値とを比較した評価判定を出力できる
ようにした出力手段11と、前記交流式電磁誘導センサ
ー1の所定の測定領域3に被測定試料7を搬送供給し、
重量測定後に搬出するようにした被測定試料供給搬出手
段12とを、備えたことを特徴とする交流電磁誘導方式
による被測定試料の重量測定装置。
12. An AC external magnetic field induced when an AC current is applied is applied to a measurement region 3 and its peripheral region 4 having a size that encloses a sample 7 to be measured, and moreover, the range of the measurement region 3 and its peripheral region 4 In order to measure the output signal induced by the AC external magnetic field in the AC external magnetic field applying coil 5 in which the magnetic field distribution is set to be uniform, and in the predetermined measurement area 3 and its peripheral area 4. The measurement coil 6 is provided, and the measurement coil 6 is provided.
Is a main measurement coil B capable of measuring a measured signal φ B (X) induced by an AC external magnetic field in the measurement area 3 when the measured sample 7 is present in the measurement area 3 and the measurement area 3
Output signal (adjustment measurement signal) φ Ac (X ±
a) and a measuring coil AC for canceling the external magnetic field for measuring a).
The first main measurement coil B1 located in front of the magnetic field lines in the inside and the second main measurement coil B2 located in the rear are arranged so as to be separated by a predetermined distance. The measured signal φ B (X) induced by the magnetic field is configured so that it can be measured as an output signal obtained by combining the magnetic fields of the first main measurement coil B1 and the second main measurement coil B2, and the external magnetic field cancellation is performed. The measurement coil AC for measurement measures the output signal (adjustment measurement signal) φ A (X + a) induced by the AC external magnetic field at a position + α separated from the measurement region 3 in the forward direction of the magnetic field lines by a predetermined distance. External magnetic field canceling measurement coil A and output signal induced by an AC external magnetic field at a position -α which is separated from the measurement area 3 in the rear direction of the magnetic field lines by a predetermined distance (adjustment measurement signal) φ C (X-
a) an improved AC electromagnetic induction sensor 1 composed of a second magnetic field offsetting measurement coil C for measuring a) and the improved AC electromagnetic induction sensor 1 connected to the AC external magnetic field applying coil 5 An AC external magnetic field generating means 8 configured to apply an AC external magnetic field to the measurement region 3 and its peripheral region 4 by passing an electric current, and the improved AC electromagnetic induction sensor 1 are connected to each other, and Output signal measuring means 9 for measuring and digitizing the output signal (measured signal, adjustment measurement signal) of the electromotive force induced in the measuring coil 4 by applying the magnetic field, and the measured and digitized output signal ( Arithmetic means 10 capable of adjusting (measured signal, adjusted measurement signal) and calculating as necessary
And an output means 11 capable of outputting an evaluation judgment comparing at least the weight of the sample to be measured calculated by the calculating means 10 or a preset standard weight with the measured and calculated weight value. The sample 7 to be measured is conveyed and supplied to a predetermined measurement region 3 of the AC electromagnetic induction sensor 1,
An apparatus for measuring the weight of a sample to be measured by an alternating-current electromagnetic induction method, comprising: a sample-to-be-measured supply / unloading means 12 to be carried out after the weight measurement.
【請求項13】 交流電流を流したとき発生する交流外
部磁界が被測定試料7を包む大きさの測定領域3および
その周辺領域4に印加され、しかも当該測定領域3およ
びその周辺領域4の範囲内で磁界分布が一様となるよう
に設定されている交流外部磁界印加コイル5と、当該所
定の測定領域3およびその周辺領域4において交流外部
磁界によって誘起される出力信号を測定し得るように配
設された測定コイル6とからなり、当該測定コイル6
は、所定の測定領域3内に被測定試料7があるとき、当
該測定領域3において交流外部磁界によって誘起される
出力信号(被測定信号)φB(X)を測定し得る主測定コイ
ルBと、当該測定領域3から所定の間隔±α離れた位置
において交流外部磁界によって誘起された出力信号(調
整測定信号)φA(X ±a) を測定し得る外部磁界相殺用
測定コイルAとから構成されるようにしたことを特徴と
する交流電磁誘導方式による被測定試料の磁気的物理量
の測定用交流式電磁誘導センサー。
13. An alternating external magnetic field generated when an alternating current is applied is applied to a measurement region 3 and its peripheral region 4 having a size that encloses a sample 7 to be measured, and moreover, the range of the measurement region 3 and its peripheral region 4 In order to measure the output signal induced by the AC external magnetic field in the AC external magnetic field applying coil 5 in which the magnetic field distribution is set to be uniform, and in the predetermined measurement area 3 and its peripheral area 4. The measurement coil 6 is provided, and the measurement coil 6 is provided.
Is a main measurement coil B capable of measuring an output signal (measurement signal) φ B (X) induced by an AC external magnetic field in the measurement region 3 when the measurement sample 7 is present in the predetermined measurement region 3. , An external magnetic field canceling measurement coil A capable of measuring an output signal (adjustment measurement signal) φ A (X ± a) induced by an AC external magnetic field at a position separated from the measurement region 3 by a predetermined distance ± α. An AC electromagnetic induction sensor for measuring a magnetic physical quantity of a sample to be measured by an AC electromagnetic induction method characterized by the above.
【請求項14】 交流電流を流したとき誘起する交流外
部磁界が被測定試料7を包む大きさの測定領域3および
その周辺領域4に印加され、しかも当該測定領域3およ
びその周辺領域4の範囲内で磁界分布が一様となるよう
に設定されている交流外部磁界印加コイル5と、当該所
定の測定領域3およびその周辺領域4において交流外部
磁界によって誘起される出力信号を測定し得るように配
設された測定コイル6とからなり、当該測定コイル6
は、所定の測定領域3内に被測定試料7があるとき、当
該測定領域3において交流外部磁界によって誘起される
出力信号(被測定信号)φB(X)を測定する主測定コイル
Bと、当該測定領域3から所定の間隔離れた位置±αに
おいて交流外部磁界によって誘起された出力信号(調整
測定信号)φAc(X±a) を測定する外部磁界相殺用測定
コイルACとからなり、当該外部磁界相殺用測定コイル
ACは、前記測定領域3から磁力線の前方向に所定の間
隔離れた位置+αにおいて交流外部磁界によって誘起さ
れた出力信号(第1調整測定信号)φA(X+a) を測定す
る第1外部磁界相殺用測定コイルAと,前記測定領域3
から磁力線の後方向に所定の間隔離れた位置−αにおい
て交流外部磁界によって誘起された出力信号(第2調整
測定信号)φC(X-a) を測定する第2磁界相殺用測定コ
イルCとで構成されるようにしたことを特徴とする交流
電磁誘導方式による被測定試料の磁気的物理量測定用の
交流式電磁誘導センサー。
14. An AC external magnetic field induced when an AC current is applied is applied to a measurement region 3 and its peripheral region 4 having a size that encloses a sample 7 to be measured, and moreover, the range of the measurement region 3 and its peripheral region 4 In order to measure the output signal induced by the AC external magnetic field in the AC external magnetic field applying coil 5 in which the magnetic field distribution is set to be uniform, and in the predetermined measurement area 3 and its peripheral area 4. The measurement coil 6 is provided, and the measurement coil 6 is provided.
Is a main measurement coil B that measures an output signal (measurement signal) φ B (X) induced by an AC external magnetic field in the measurement region 3 when the measurement sample 7 is present in the predetermined measurement region 3. And a measurement coil AC for canceling the external magnetic field for measuring an output signal (adjustment measurement signal) φ Ac (X ± a) induced by an AC external magnetic field at a position ± α separated from the measurement region 3 by a predetermined distance. The external magnetic field canceling measurement coil AC has an output signal (first adjustment measurement signal) φ A (X + a) induced by an AC external magnetic field at a position + α separated from the measurement region 3 in the front direction of the magnetic field lines by a predetermined distance. Measuring coil A for canceling a first external magnetic field and the measuring area 3
A second magnetic field offsetting measurement coil C for measuring an output signal (second adjustment measurement signal) φ C (X-a) induced by an AC external magnetic field at a position −α which is separated by a predetermined distance in the backward direction from the magnetic field line from An AC electromagnetic induction sensor for measuring a magnetic physical quantity of a sample to be measured by an AC electromagnetic induction method, characterized by being configured as follows.
【請求項15】 交流電流を流したとき誘起する交流外
部磁界が被測定試料7を包む大きさの測定領域3および
その周辺領域4に印加され、しかも当該測定領域3およ
びその周辺領域4の範囲内で磁界分布が一様となるよう
に設定されている交流外部磁界印加コイル5と、当該所
定の測定領域3およびその周辺領域4において交流外部
磁界によって誘起される出力信号を測定し得るように配
設された測定コイル6とからなり、当該測定コイル6
は、測定領域3内に被測定試料7があるとき、測定領域
3内において交流外部磁界によって誘起される被測定信
号φB(X)を測定できる主測定コイルBと当該測定領域3
から所定の間隔離れた位置±αにおいて交流外部磁界に
よって誘起された出力信号(調整測定信号)φAc(X±
a) を測定する外部磁界相殺用測定コイルACとから構
成されており、当該主測定コイルBは、更に測定領域3
内の磁力線の前方に位置する第一主測定コイルB1と、後
方に位置する第二主測定コイルB2とが所定の間隔離れて
配設された構成になっていて、測定領域3内において交
流外部磁界によって誘起される被測定信号φB(X)が、当
該第一主測定コイルB1と第二主測定コイルB2の磁界を合
成した出力信号として測定できるように構成されてお
り、前記外部磁界相殺用測定コイルACは、当該測定領
域3から磁力線の前方向に所定の間隔離れた位置+αに
おいて交流外部磁界によって誘起された出力信号(調整
測定信号)φA(X+a) を測定する第1外部磁界相殺用測
定コイルAと,当該測定領域3から磁力線の後方向に所
定の間隔離れた位置−αにおいて交流外部磁界によって
誘起された出力信号同出力信号(調整測定信号)φC(X-
a) を測定する第2磁界相殺用測定コイルCとから構成
されるようにしたことを特徴とする交流電磁誘導方式に
よる被測定試料の磁気的物理量測定用の改良型交流式電
磁誘導センサー。
15. An AC external magnetic field induced when an AC current is applied is applied to a measurement region 3 and its peripheral region 4 having a size that encloses the sample 7 to be measured, and moreover, the range of the measurement region 3 and its peripheral region 4 In order to measure the output signal induced by the AC external magnetic field in the AC external magnetic field applying coil 5 in which the magnetic field distribution is set to be uniform, and in the predetermined measurement area 3 and its peripheral area 4. The measurement coil 6 is provided, and the measurement coil 6 is provided.
Is a main measurement coil B capable of measuring a measured signal φ B (X) induced by an AC external magnetic field in the measurement area 3 when the measured sample 7 is present in the measurement area 3 and the measurement area 3
Output signal (adjustment measurement signal) φ Ac (X ±
a) and a measuring coil AC for canceling the external magnetic field for measuring a).
The first main measurement coil B1 located in front of the magnetic field lines in the inside and the second main measurement coil B2 located in the rear are arranged so as to be separated by a predetermined distance. The measured signal φ B (X) induced by the magnetic field is configured so that it can be measured as an output signal obtained by combining the magnetic fields of the first main measurement coil B1 and the second main measurement coil B2, and the external magnetic field cancellation is performed. The measurement coil AC for measurement measures the output signal (adjustment measurement signal) φ A (X + a) induced by the AC external magnetic field at a position + α separated from the measurement region 3 in the forward direction of the magnetic field lines by a predetermined distance. External magnetic field canceling measurement coil A and output signal induced by an AC external magnetic field at a position -α which is separated from the measurement area 3 in the rear direction of the magnetic field lines by a predetermined distance (adjustment measurement signal) φ C (X-
An improved AC electromagnetic induction sensor for measuring a magnetic physical quantity of a sample to be measured by an AC electromagnetic induction method, characterized in that it is configured by a second magnetic field cancellation measurement coil C for measuring a).
JP16636694A 1994-06-24 1994-06-24 Method and instrument for measuring magnetic physical quantity of sample using ac electromagnetic induction system, method and instrument for measuring weight, and ac electromagnetic induction sensor Pending JPH0814994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16636694A JPH0814994A (en) 1994-06-24 1994-06-24 Method and instrument for measuring magnetic physical quantity of sample using ac electromagnetic induction system, method and instrument for measuring weight, and ac electromagnetic induction sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16636694A JPH0814994A (en) 1994-06-24 1994-06-24 Method and instrument for measuring magnetic physical quantity of sample using ac electromagnetic induction system, method and instrument for measuring weight, and ac electromagnetic induction sensor

Publications (1)

Publication Number Publication Date
JPH0814994A true JPH0814994A (en) 1996-01-19

Family

ID=15830074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16636694A Pending JPH0814994A (en) 1994-06-24 1994-06-24 Method and instrument for measuring magnetic physical quantity of sample using ac electromagnetic induction system, method and instrument for measuring weight, and ac electromagnetic induction sensor

Country Status (1)

Country Link
JP (1) JPH0814994A (en)

Similar Documents

Publication Publication Date Title
US10144987B2 (en) Sensors
EP2707705B1 (en) Surface property inspection device and surface property inspection method
Wei et al. Analysis of the lift-off effect of a U-shaped ACFM system
Cardelli et al. Surface field measurements in vector characterization of Si-Fe magnetic steel samples
JPS60152950A (en) Eddy current nondestructive testing method and device thereof
GB2490393A (en) Monitoring microstructure of a metal target
US20150276675A1 (en) Alternating Current Field Measurement System
JP2007187551A (en) Apparatus for measuring complex magnetic characteristics and method for measuring crystal particle size of magnetic substance
JPH07128295A (en) Method for measuring crystal grain size of steel plate
JPH0814994A (en) Method and instrument for measuring magnetic physical quantity of sample using ac electromagnetic induction system, method and instrument for measuring weight, and ac electromagnetic induction sensor
JPH07198770A (en) Improved probe device and method for measuring critical superconducting current in non-contacting state
JPH073406B2 (en) Hardness measuring method
Deyneka et al. Non-destructive testing of ferromagnetic materials using hand inductive sensor
Terekhin et al. Evaluating specific electrical conductivity of two-layered nonmagnetic objects by pulsed eddy-current method
JP5387735B1 (en) Mixing rate measuring method and mixing rate measuring device
JPH05280921A (en) Section measuring device of steel material
JP3020620B2 (en) On-line measurement method of martensite content in cold rolling of metastable austenitic stainless steel strip
RU1777067C (en) Method of determination of parameters of surface defect of type of crack on ferromagnetic object
JP3328733B2 (en) Weight measuring method, weight measuring device and cylindrical electromagnetic induction sensor
JPH063327A (en) Instrument for comparing and measuring magnetic material
JPS6061655A (en) Nondestructive material inspection method and device
SU949486A1 (en) Method of checking residual stresses in non-magnetic metal articles
JP2008089562A (en) Nondestructive inspection device and inspection method by device
KR20190062500A (en) Surface property inspection method and surface property inspection device
Muzhitsky et al. Computerized units for electromagnetic non-destructive testing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

A131 Notification of reasons for refusal

Effective date: 20040420

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20040817

Free format text: JAPANESE INTERMEDIATE CODE: A02