JPH0814844A - Three-dimensional measurement method for contour - Google Patents

Three-dimensional measurement method for contour

Info

Publication number
JPH0814844A
JPH0814844A JP14820894A JP14820894A JPH0814844A JP H0814844 A JPH0814844 A JP H0814844A JP 14820894 A JP14820894 A JP 14820894A JP 14820894 A JP14820894 A JP 14820894A JP H0814844 A JPH0814844 A JP H0814844A
Authority
JP
Japan
Prior art keywords
data
grating
fringe
measured
contour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14820894A
Other languages
Japanese (ja)
Inventor
Noriaki Fujiwara
憲明 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP14820894A priority Critical patent/JPH0814844A/en
Publication of JPH0814844A publication Critical patent/JPH0814844A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure an object contour according to actual arrangement by making a plane correction for contour data obtained from a fringe image via the deformation grating projection method. CONSTITUTION:A beam through a grating 3 and a projection lens 4 after emission from a light source 1a, forms fringe images on the surface of a measurement object at equal pitches (i.e., deformation grating projection method). Then, the picture element data of the fringe images is inputted to a computer 11 through a CCD camera 7, a controller 9 and an input board 10. Thereafter, the grating 3 is moved by 1/4 pitch on the operation of a table controller 12 and the fringe images are similarly photographed. The data so obtained is repeatedly inputted to the computer 11 by four times and jointed across the entire surface of the object, thereby obtaining overall contour data. Then, this data is subjected to a plane correction, using an equation Z=a+bX+cY, where (a), (b) and (c) are conversion parameters, X and Y are the coordinates of contour data for analysis and Z is correction height.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非接触で計測対象物体
の表面形状を求める表面形状3次元計測方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-dimensional surface shape measuring method for non-contactly obtaining the surface shape of an object to be measured.

【0002】[0002]

【従来の技術】従来、機械部品や接点等の電気部品の表
面を非接触で高精度に計測する方法として、三角測量の
原理を応用した光触針を計測ヘッドとし、XYテーブル
の上に計測対象物体を設置して、このXYテーブルを駆
動することにより表面形状を計測するものや、走査型電
子顕微鏡を用いて電子ビームを計測対象物体面にあて、
反射したビームを複数のセンサーで捕らえて演算により
形状に直す方法がある。
2. Description of the Related Art Conventionally, as a method of highly accurately measuring the surfaces of electrical parts such as mechanical parts and contacts in a non-contact manner, an optical contact probe applying the principle of triangulation is used as a measuring head and measured on an XY table. A target object is installed and the surface shape is measured by driving this XY table, or an electron beam is applied to the measurement target object surface using a scanning electron microscope.
There is a method in which the reflected beam is captured by multiple sensors and the shape is calculated by calculation.

【0003】しかし、三角測量の原理を応用したもの
は、XYテーブルのスキャニングに時間を要するため実
用にならない場合があり、走査型電子顕微鏡を用いたも
のは、計測対象物体の前処理として蒸着が必要なため、
厳密には非接触とは言えず、計測対象物体が使用できな
くなることがある。
However, an application of the principle of triangulation may not be practical because it takes time to scan an XY table, and an application of a scanning electron microscope requires evaporation as a pretreatment of an object to be measured. Because it is necessary
Strictly speaking, it cannot be said to be non-contact, and the object to be measured may become unusable.

【0004】そこで、特開平4−278406号に開示
されるように、計測対象物体の表面に対し斜め方向に位
置する光源より格子を投影し、図5に示す計測対象物体
2 の表面にできた縞画像A の明度を格子の投影方向とは
別の角度から計測する変形格子投影法を用い、その縞画
像A を演算処理することにより、物体の3次元の表面形
状を求める縞走査法がある。この変形格子投影法、縞走
査法を用いた計測装置は、光を放出する光源と、一定間
隔のピッチからなる格子と、格子を通過した光を計測対
象物体に縞画像として投影する投影レンズと、計測対象
物体の表面の縞画像を撮影する撮影レンズと、撮影レン
ズで撮影した縞画像を入力するCCDカメラと、CCD
カメラの映像より計測対象物体の表面形状を演算して求
める制御部とを有している。この計測装置は、光源、格
子、投影レンズ、計測対象物体からなる投影系を計測対
象物体の法線方向から一定角度を有する方向に、計測対
象物体、撮影レンズ、CCDカメラからなる撮影系を計
測対象物体の法線方向に設けている。
Therefore, as disclosed in Japanese Patent Laid-Open No. 4-278406, a grating is projected from a light source positioned obliquely to the surface of the object to be measured, and the object to be measured shown in FIG.
By using the modified grid projection method that measures the brightness of the striped image A formed on the surface of 2 from an angle different from the projection direction of the grid, the striped image A is processed to calculate the three-dimensional surface shape of the object. There is a fringe scanning method required. The measuring device using the modified grid projection method and the fringe scanning method includes a light source that emits light, a grating that has a constant pitch, and a projection lens that projects light that has passed through the grating as a fringe image onto a measurement target object. , A taking lens for taking a striped image of the surface of the object to be measured, a CCD camera for inputting a striped image taken by the taking lens, and a CCD
And a control unit that calculates and obtains the surface shape of the measurement target object from the image of the camera. This measuring device measures a projection system including a light source, a grating, a projection lens, and an object to be measured in a direction having a certain angle from a normal line direction of the object to be measured, and an imaging system including an object to be measured, a taking lens, and a CCD camera. It is provided in the direction normal to the target object.

【0005】[0005]

【発明が解決しようとする課題】前述した変形格子投影
法、縞走査法を用いた表面形状3次元計測方法は、投影
系が計測対象物体2 の法線方向から一定角度を有する方
向に設けているため、縞画像を演算処理する縞走査法で
求められた物体の3次元の表面形状を示す形状データB
が、図6に示すように傾いた状態となる。従って、傾い
た状態のまま形状データをグラフ等で表示し、物体の表
面形状を観察していた。
In the three-dimensional surface shape measuring method using the modified grid projection method and the fringe scanning method described above, the projection system is provided in a direction having a constant angle from the normal direction of the object 2 to be measured. Therefore, the shape data B indicating the three-dimensional surface shape of the object obtained by the stripe scanning method for calculating the stripe image
However, it is in a tilted state as shown in FIG. Therefore, the shape data is displayed in a graph or the like in the tilted state to observe the surface shape of the object.

【0006】本発明は、かかる事由に鑑みてなしたもの
で、その目的とするところは、物体の表面形状が実際の
配置の通りに得られる表面形状3次元計測方法を提供す
るにある。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a three-dimensional surface shape measuring method by which the surface shape of an object can be obtained according to the actual arrangement.

【0007】[0007]

【課題を解決するための手段】かかる課題を解決するた
めに、請求項1記載の表面形状3次元計測方法は、計測
対象物体の表面に対して斜め方向から投影した格子を別
の角度から観察する変形格子投影法により複数の縞画像
を得、該縞画像から縞走査法により形状データを求める
表面形状3次元計測方法において、前記形状データを平
面補正することにより計測対象物体の表面形状を求める
方法としている。
In order to solve such a problem, according to a surface shape three-dimensional measuring method as set forth in claim 1, a grid projected obliquely onto the surface of the object to be measured is observed from another angle. In the three-dimensional surface shape measuring method for obtaining a plurality of fringe images by the modified grid projection method and for obtaining shape data from the fringe images by the fringe scanning method, the surface shape of the object to be measured is obtained by plane-correcting the shape data. I have a method.

【0008】[0008]

【作用】請求項1記載の方法によれば、縞走査法で得ら
れた形状データを平面補正することにより、計測対象物
体面に対して斜め方向から投影しても、形状データが傾
くことなしに、物体の表面形状が実際の配置の通りに得
られる。
According to the method of claim 1, the shape data obtained by the fringe scanning method is plane-corrected so that the shape data does not tilt even when projected from an oblique direction onto the object surface to be measured. Moreover, the surface shape of the object is obtained as it is actually arranged.

【0009】[0009]

【実施例】以下、本発明の一実施例を図1乃至図4に基
づいて説明する。図1は本発明の表面形状3次元計測方
法の平面補正を示すフローチャートであり、図2はその
方法を実施するための構成である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a flow chart showing plane correction of a surface shape three-dimensional measuring method of the present invention, and FIG. 2 is a configuration for carrying out the method.

【0010】1 は光源であり、ランプ1a、レンズ1b、反
射板1cを有して光を放出する。光は後述する格子、投影
レンズを通り、計測対象物体2 の法線に対して一定角度
をもって当てられる。
Reference numeral 1 denotes a light source, which has a lamp 1a, a lens 1b, and a reflector 1c, and emits light. The light passes through a grating and a projection lens, which will be described later, and is applied to the measurement target object 2 at a constant angle.

【0011】3 は格子であり、一定間隔のピッチからな
る隙間を光が通過するよう構成されている。この格子
は、光が通過する所としない所の2パターンを有するよ
うに、金属、樹脂、木材、あるいは液晶等で形成され
る。
Reference numeral 3 denotes a grating, which is configured to allow light to pass through a gap having a constant pitch. This grid is formed of metal, resin, wood, liquid crystal, or the like so as to have two patterns of a place where light passes and a place where light does not pass.

【0012】4 は投影レンズであり、格子3 を通過した
光を計測対象物体2 の表面に投影し、明暗を有する縞模
様からなる縞画像を形成する。この投影レンズ4 の光軸
は、格子3 に対して垂直になっており、計測対象物体2
の法線に対して一定角度を有している。5 は計測台であ
り、計測対象物体2 を載置する。
Reference numeral 4 denotes a projection lens, which projects the light passing through the grating 3 onto the surface of the object 2 to be measured to form a striped image having a striped pattern having light and dark. The optical axis of this projection lens 4 is perpendicular to the grating 3 and
It has a certain angle with respect to the normal line. 5 is a measuring table on which the object 2 to be measured is placed.

【0013】6 は撮影レンズであり、計測対象物体2 の
表面の縞画像を撮影するものであって、計測対象物体2
の真上に設けられている。ところで、光源1 、格子3 、
投影レンズ4 、計測対象物体2 からなる光軸を投影系、
計測対象物体2 、撮影レンズ6 からなる光軸を撮影系と
呼ぶ。従って、投影系は計測対象物体2 の法線に対して
一定角度を有するように、また、撮影系は計測対象物体
2 の法線方向に設けられている。
Reference numeral 6 denotes a photographing lens for photographing a fringe image of the surface of the measurement target object 2 and
It is located right above. By the way, light source 1, grating 3,
The projection lens 4, the optical axis consisting of the measurement target object 2
The optical axis consisting of the object to be measured 2 and the taking lens 6 is called the taking system. Therefore, the projection system should have a certain angle with respect to the normal line of the object to be measured 2, and the imaging system should be
It is provided in the normal direction of 2.

【0014】7 はCCDカメラであり、撮影レンズ6 で
撮影した縞画像を映像として入力する。
Reference numeral 7 denotes a CCD camera, which inputs a striped image taken by the taking lens 6 as a video.

【0015】8 は制御部であり、CCDカメラ7 の映像
より計測対象物体2 の表面形状を演算して求める。この
制御部8 は、カメラコントローラ9 、画像入力ボード1
0、コンピュータ11、テーブルコントローラ12より構成
されており、CCDカメラ7 に入力された縞画像を、カ
メラコントローラ9 、画像入力ボード10を介してコンピ
ュータ11に入力する。テーブルコントローラ12は、格子
3 の位置をピッチ方向に移動させるものであり、コンピ
ュータ11で制御される。
Reference numeral 8 is a control unit which calculates the surface shape of the object 2 to be measured from the image of the CCD camera 7. The control unit 8 includes a camera controller 9 and an image input board 1
0, a computer 11 and a table controller 12 are provided, and the striped image input to the CCD camera 7 is input to the computer 11 via the camera controller 9 and the image input board 10. Table controller 12 grid
The position of 3 is moved in the pitch direction, and is controlled by the computer 11.

【0016】次に、以上の構成を用いた表面形状3次元
計測方法について説明する。光源1を点灯することで、
格子3 、投影レンズ4 を通過した光は、計測対象物体2
の表面に投影系から見て等間隔のピッチの縞画像を形成
する。それを撮影レンズ6 で撮影系から観察することに
より、計測対象物体2 の表面の凹凸に応じた変形格子か
らなる縞画像を撮影することができる。これが、変形格
子投影法である。その縞画像の画素データを、CCDカ
メラ7 、カメラコントローラ9 、画像入力ボード10を経
て、コンピュータ11に入力したあとで、テーブルコント
ローラ12により格子3 を格子の1/4ピッチだけピッチ
方向に移動させる。そして上記と同様に縞画像を撮影す
る。これを4回繰り返し、4種類の縞画像(縞画像1、
縞画像2、縞画像3、縞画像4)を画素データとしてコ
ンピュータ11に入力する。
Next, a three-dimensional surface shape measuring method using the above configuration will be described. By turning on the light source 1,
The light that has passed through the grating 3 and the projection lens 4 is
Fringe images are formed on the surface of the substrate at evenly spaced pitches when viewed from the projection system. By observing the fringe image with the photographic lens 6 from the photographic system, it is possible to capture a fringe image composed of a deformed lattice corresponding to the unevenness of the surface of the measurement target object 2. This is the modified grid projection method. After inputting the pixel data of the striped image to the computer 11 via the CCD camera 7, the camera controller 9 and the image input board 10, the table controller 12 moves the lattice 3 in the pitch direction by ¼ pitch of the lattice. . Then, a striped image is captured in the same manner as above. This is repeated four times, and four types of striped images (striped image 1,
The striped image 2, striped image 3, striped image 4) are input to the computer 11 as pixel data.

【0017】計測対象物体2 の任意の位置での各縞画像
の画素の光強度をI1,I2,I3,I4とすると、任
意の位置の位相φは、次の式で求められる。
Assuming that the light intensities of the pixels of each fringe image at any position of the object to be measured 2 are I1, I2, I3, I4, the phase φ at any position can be calculated by the following equation.

【0018】 φ=tan-1((I2−I4)/(I1−I3)) このデータを計測対象物体の表面全体にわたってつなぎ
合わせることで、全体の形状データが得られる。なお、
以上のような演算をすることを縞走査法と呼ぶ。この形
状データB は、図4(a)に示すように傾いたものとな
っている。
Φ = tan −1 ((I 2 −I 4) / (I 1 −I 3)) By connecting this data over the entire surface of the measurement target object, the entire shape data can be obtained. In addition,
Performing the above calculation is called a stripe scanning method. The shape data B is inclined as shown in FIG.

【0019】次に、前記の形状データB を平面補正する
方法について説明する。この形状データを平面補正する
式を Z=a+bX+cY とする。この式において、a、b、cは変換パラメー
タ、X、Yは解析しようとする形状データの座標、Zは
補正高さである。
Next, a method of plane-correcting the shape data B will be described. The equation for plane correction of this shape data is Z = a + bX + cY. In this equation, a, b and c are conversion parameters, X and Y are coordinates of shape data to be analyzed, and Z is a corrected height.

【0020】ここで、格子3 の一定間隔のピッチからな
る隙間と平行にY軸を設定することにより、 c=0 とすることができる。次に、図3に示すように、格子3
を通る光の鉛直方向ピッチをp、平面に縞画像を形成し
た場合の1ピッチ当たりのCCDカメラ7 上の画素数を
nとすると b=p/n とすることができる。また、解析領域開始点でZ=0と
なる形状データのX軸上の点をx1 とすると、 a=−bx1 とすることができる。従って、 Z=−bx1 +bX =−p/n(x1 −X) となる。この式より各Xの位置における補正高さZを計
算し、形状データの位相φよりZを減算することによ
り、平面補正した形状データが得られる。ただし、位相
φより補正高さZを減算するためには、位相飛び補正と
単位変換が必要である。位相飛び補正は、πより−πに
飛ぶ位相を連続的にするものであり、位相飛び補正をし
たあと、 Z(φ)=pφ/(2π) と単位変換することにより、位相φより補正高さZを減
算することが可能となる。
Here, c = 0 can be set by setting the Y axis in parallel with the gaps of the grating 3 having a constant pitch. Then, as shown in FIG.
B = p / n, where p is the vertical pitch of light passing therethrough and n is the number of pixels on the CCD camera 7 per pitch when a striped image is formed on a plane. Further, if the point on the X axis of the shape data where Z = 0 at the analysis region start point is x 1 , then a = −bx 1 can be obtained. Therefore, Z = -bx 1 + bX = -p / n (x 1 -X). The corrected height Z at each X position is calculated from this equation, and Z is subtracted from the phase φ of the shape data to obtain plane-corrected shape data. However, in order to subtract the correction height Z from the phase φ, phase jump correction and unit conversion are necessary. The phase jump correction is to make the phase jumping from π to −π continuous. After performing the phase jump correction, the unit conversion is performed as Z (φ) = pφ / (2π) to obtain a correction higher than the phase φ. It becomes possible to subtract Z.

【0021】従って、以上により求められた平面補正さ
れた形状データより、実際の配置の通りの計測対象物体
2 の3次元表面形状が求められる。
Therefore, from the plane-corrected shape data obtained as described above, the object to be measured according to the actual arrangement is measured.
A three-dimensional surface shape of 2 is required.

【0022】なお、格子3 は、光が通過する所としない
所の2パターンを有するものとしたが、これに限定され
るものではなく、徐々に光の通過量が変化するような液
晶パターンで形成してもよい。また、4画面利用の縞走
査法について説明したが、特に4画面に限定されるもの
ではなく、3画面以上で利用することが可能である。
Although the grating 3 has two patterns, that is, a place where light passes and a place where light does not pass, it is not limited to this, and it has a liquid crystal pattern in which the amount of passing light gradually changes. You may form. Further, the fringe scanning method using four screens has been described, but the present invention is not particularly limited to four screens, and three or more screens can be used.

【0023】[0023]

【発明の効果】請求項1記載の表面形状3次元計測方法
は、縞走査法で得られた形状データを平面補正すること
により、計測対象物体面に対して斜め方向から投影して
も、形状データが傾くことなしに、物体の表面形状が実
際の配置の通りに得られるので、解析しやすくなる。
According to the surface shape three-dimensional measuring method of the first aspect, the shape data obtained by the fringe scanning method is subjected to plane correction so that the shape can be projected even in an oblique direction onto the object surface to be measured. The surface shape of the object can be obtained according to the actual arrangement without tilting the data, which facilitates analysis.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の表面形状3次元計測方法の平面補正を
示すフローチャートである。
FIG. 1 is a flowchart showing plane correction of a surface shape three-dimensional measuring method of the present invention.

【図2】その表面形状3次元計測方法の構成を示すブロ
ック図である。
FIG. 2 is a block diagram showing a configuration of a three-dimensional surface shape measuring method.

【図3】その計測対象物体に光が当たる様子を示す側面
図である。
FIG. 3 is a side view showing how the object to be measured is exposed to light.

【図4】その形状データを平面補正するための座標を示
す説明図である。
FIG. 4 is an explanatory diagram showing coordinates for plane correction of the shape data.

【図5】本発明の従来例を示す計測対象物体の表面上の
縞画像を示す平面図である。
FIG. 5 is a plan view showing a striped image on the surface of a measurement target object showing a conventional example of the present invention.

【図6】その形状データである。FIG. 6 shows the shape data.

【符号の説明】[Explanation of symbols]

1 光源 2 計測対象物体 3 格子 4 投影レンズ 5 計測台 6 撮影レンズ 7 CCDカメラ 8 制御部 9 カメラコントロール 10 画像入力ボード 11 コンピュータ 12 テーブルコントローラ 1 Light source 2 Object to be measured 3 Lattice 4 Projection lens 5 Measuring stand 6 Photographing lens 7 CCD camera 8 Controller 9 Camera control 10 Image input board 11 Computer 12 Table controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 計測対象物体の表面に対して斜め方向
から投影した格子を別の角度から観察する変形格子投影
法により複数の縞画像を得、該縞画像から縞走査法によ
り形状データを求める表面形状3次元計測方法におい
て、前記形状データを平面補正することにより計測対象
物体の表面形状を求めることを特徴とする表面形状3次
元計測方法。
1. A plurality of fringe images are obtained by a modified lattice projection method in which a lattice projected obliquely to the surface of a measurement target object is observed from another angle, and shape data is obtained from the fringe images by a fringe scanning method. In the three-dimensional surface shape measuring method, the surface shape of a measurement target object is obtained by performing plane correction on the shape data.
JP14820894A 1994-06-29 1994-06-29 Three-dimensional measurement method for contour Pending JPH0814844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14820894A JPH0814844A (en) 1994-06-29 1994-06-29 Three-dimensional measurement method for contour

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14820894A JPH0814844A (en) 1994-06-29 1994-06-29 Three-dimensional measurement method for contour

Publications (1)

Publication Number Publication Date
JPH0814844A true JPH0814844A (en) 1996-01-19

Family

ID=15447688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14820894A Pending JPH0814844A (en) 1994-06-29 1994-06-29 Three-dimensional measurement method for contour

Country Status (1)

Country Link
JP (1) JPH0814844A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100383816B1 (en) * 2000-06-26 2003-05-16 한국전력공사 A 3-D shape measuring method and system using a adaptive area clustering

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100383816B1 (en) * 2000-06-26 2003-05-16 한국전력공사 A 3-D shape measuring method and system using a adaptive area clustering

Similar Documents

Publication Publication Date Title
US8199335B2 (en) Three-dimensional shape measuring apparatus, three-dimensional shape measuring method, three-dimensional shape measuring program, and recording medium
US10302422B2 (en) Measurement system, measurement method, robot control method, robot, robot system, and picking apparatus
JP3878033B2 (en) 3D measuring device
JP4744610B2 (en) 3D measuring device
JP3937024B2 (en) Detection of misalignment, pattern rotation, distortion, and misalignment using moiré fringes
JP5375201B2 (en) 3D shape measuring method and 3D shape measuring apparatus
JP5443303B2 (en) Appearance inspection apparatus and appearance inspection method
TWI582383B (en) Three-dimensional measuring device
JP2004109106A (en) Method and apparatus for inspecting surface defect
TWI567364B (en) Structured light generating apparatus, measuring system and method thereof
JP6522344B2 (en) Height detection device, coating device and height detection method
JP5385703B2 (en) Inspection device, inspection method, and inspection program
JP5612969B2 (en) Appearance inspection apparatus and appearance inspection method
JP2004309240A (en) Three-dimensional shape measuring apparatus
TWI568989B (en) Full-range image detecting system and method thereof
JP3921547B2 (en) Shape measuring method and apparatus using line sensor and line projector
JPH0814844A (en) Three-dimensional measurement method for contour
JP2011002401A (en) Correction coefficient calculating method in luminance measuring apparatus, and luminance measuring apparatus
JP2009036631A (en) Device of measuring three-dimensional shape and method of manufacturing same
JP2009128030A (en) Grid projection type moire device and shape measuring method
JPH07218226A (en) Three-dimesional measuring apparatus of surface shape
JP2008170282A (en) Shape measuring device
JPH0814882A (en) Device for measuring three-dimensional surface shape
JP2985635B2 (en) Surface shape 3D measurement method
JP6729248B2 (en) Inspection device, inspection method, inspection program, and object manufacturing method