TWI568989B - Full-range image detecting system and method thereof - Google Patents
Full-range image detecting system and method thereof Download PDFInfo
- Publication number
- TWI568989B TWI568989B TW104133182A TW104133182A TWI568989B TW I568989 B TWI568989 B TW I568989B TW 104133182 A TW104133182 A TW 104133182A TW 104133182 A TW104133182 A TW 104133182A TW I568989 B TWI568989 B TW I568989B
- Authority
- TW
- Taiwan
- Prior art keywords
- tested
- image
- coordinate information
- light source
- planar light
- Prior art date
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Description
本發明是有關於一種檢測系統,且特別是有關於一種全域式影像檢測系統及其檢測方法。 The present invention relates to a detection system, and more particularly to a global image detection system and a detection method thereof.
隨著晶圓薄化趨勢,晶圓翹曲變形可達毫米(mm)等級。也由於翹曲量增加,當一般的自動光學檢測(Automatic optical inspection,AOI)系統的對焦範圍不夠大和尋焦的速度不夠快時,將造成自動光學量測系統的對焦不易,延長了檢測時間,造成檢測的效果不佳,而影響到後續製程的進行。 As wafers become thinner, wafer warpage can be measured in millimeters (mm). Also, due to the increase in the amount of warpage, when the focus range of the general automatic optical inspection (AOI) system is not large enough and the speed of focusing is not fast enough, the focus of the automatic optical measuring system is not easy, and the detection time is prolonged. The detection results are not good, which affects the subsequent process.
在現有技術中,主要的對焦方式分成主動式對焦以及被動式對焦兩種方式,其中被動式對焦利用粗調與細調兩階段的方式尋焦,主動式對焦利用光源產生的光透過對焦光柵的投影經過物鏡投射至物體表面,將物面反射的光柵影像與原光柵影像進行相位比對,以提高對焦速度,然而,主動式對焦的成本相對較高。 In the prior art, the main focusing modes are divided into active focusing and passive focusing, wherein the passive focusing uses a coarse adjustment and a fine adjustment two-stage focusing, and the active focusing uses the projection of the light generated by the light source through the focusing grating. The objective lens is projected onto the surface of the object, and the raster image reflected by the object surface is phase-aligned with the original raster image to improve the focusing speed. However, the cost of active focusing is relatively high.
本發明係有關於一種全域式影像檢測系統及其檢測 方法,可克服習知技術之缺失,針對全域式影像的檢測進行改善,以提高檢測的速度及精準度。 The invention relates to a global image detection system and detection thereof The method can overcome the lack of the prior art and improve the detection of the global image to improve the detection speed and accuracy.
根據本發明之一方面,提出一種全域式影像檢測系統,包括一平面光源、一影像擷取裝置、一光學位置量測裝置、一處理單元以及一量測模組。平面光源用以投射具有週期變化的光影像於一待測物上。影像擷取裝置用以擷取經由待測物反射之一反射光影像。光學位置量測裝置用以偵測待測物上至少三個量測點的相對座標,以擬合出一平面。處理單元用以計算反射光影像相位移後之相位變化,並根據相位變化計算待測物的表面形貌的一相對高度分布,且計算待測物的表面形貌相對於此平面的一絕對高度分布,以得到一絕對座標資訊。量測模組根據絕對座標資訊對待測物的表面進行檢測。 According to an aspect of the invention, a global image detection system is provided, comprising a planar light source, an image capturing device, an optical position measuring device, a processing unit and a measuring module. The planar light source is used to project a light image with a periodic change on a test object. The image capturing device is configured to capture an image of the reflected light through one of the objects reflected by the object to be tested. The optical position measuring device is configured to detect relative coordinates of at least three measuring points on the object to be tested to fit a plane. The processing unit is configured to calculate a phase change after the phase shift of the reflected light image, and calculate a relative height distribution of the surface topography of the object to be tested according to the phase change, and calculate an absolute height of the surface topography of the object to be tested relative to the plane Distribution to get an absolute coordinate information. The measurement module detects the surface of the object to be tested based on the absolute coordinate information.
根據本發明之一方面,提出一種全域式影像檢測方法,包括下列步驟。以一平面光源投射具有週期變化的光影像於一待測物上。擷取經由待測物反射之一反射光影像。偵測待測物上至少三個量測點的相對座標,以擬合出一絕對高度座標系。計算反射光影像相位移後之相位變化,並根據相位變化計算待測物的表面形貌的一相對高度分布。計算待測物的表面形貌於絕對高度座標系中的一絕對高度分布,以得到一絕對座標資訊。根據座標資訊對待測物的表面進行檢測。 According to an aspect of the invention, a global image detection method is provided, comprising the following steps. A plane light source is projected onto the object to be tested with a periodically varying light image. The image is reflected by one of the reflections of the object to be tested. The relative coordinates of at least three measuring points on the object to be tested are detected to fit an absolute height coordinate system. The phase change after the phase shift of the reflected light image is calculated, and a relative height distribution of the surface topography of the object to be tested is calculated according to the phase change. Calculate an absolute height distribution of the surface topography of the object to be measured in the absolute height coordinate system to obtain an absolute coordinate information. The surface of the object to be tested is detected based on the coordinate information.
為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:
10‧‧‧待測物 10‧‧‧Test object
11‧‧‧光影像 11‧‧‧Light image
12‧‧‧條紋 12‧‧‧ stripes
100‧‧‧全域式影像檢測系統 100‧‧‧Global Image Detection System
101‧‧‧全域式影像檢測裝置 101‧‧‧Global image detection device
110‧‧‧平面光源 110‧‧‧ planar light source
120‧‧‧處理單元 120‧‧‧Processing unit
121‧‧‧光影像控制模組 121‧‧‧Light Image Control Module
122‧‧‧影像校正模組 122‧‧‧Image Correction Module
123‧‧‧計算模組 123‧‧‧Computation Module
124‧‧‧相位展開模組 124‧‧‧ Phase Expansion Module
125‧‧‧平整化模組 125‧‧‧ flattening module
130‧‧‧影像擷取裝置 130‧‧‧Image capture device
140‧‧‧光感測裝置 140‧‧‧Light sensing device
150‧‧‧量測模組 150‧‧‧Measurement module
160‧‧‧定位平台 160‧‧‧ Positioning platform
A、B、C‧‧‧量測點 A, B, C‧‧‧ measuring points
θ1‧‧‧旋轉角度 θ1‧‧‧Rotation angle
L‧‧‧距離 L‧‧‧ distance
α‧‧‧角度 ‧‧‧‧ angle
Z‧‧‧高度 Z‧‧‧ Height
(xo,yo)‧‧‧圓心位置 (x o , y o ) ‧ ‧ center position
(xn,yn)‧‧‧對位槽位置 (x n , y n ) ‧‧‧ alignment slot position
第1圖繪示依照本發明一實施例之全域式影像檢測方法的流程圖。 FIG. 1 is a flow chart of a global image detection method according to an embodiment of the invention.
第2圖繪示依照本發明一實施例之全域式影像檢測系統的示意圖。 FIG. 2 is a schematic diagram of a global image detection system according to an embodiment of the invention.
第3圖繪示一實施例之全域式影像檢測裝置的示意圖。 FIG. 3 is a schematic diagram of a global image detecting apparatus according to an embodiment.
第4圖繪示一實施例之光影像的示意圖。 FIG. 4 is a schematic diagram of an optical image of an embodiment.
第5圖繪示依照本發明一實施例之全域式影像對焦方法的流程圖。 FIG. 5 is a flow chart of a global image focusing method according to an embodiment of the invention.
第6圖繪示待測物的圓心位置、對位槽位置及旋轉角度。 Figure 6 shows the center position of the object to be tested, the position of the alignment groove, and the angle of rotation.
本實施例之全域式影像檢測系統及其檢測方法,藉由量測待測物(例如晶圓)的表面形貌及其相對高度分佈,並輸出參考座標資訊(例如晶圓圓心位置、對位槽位置及旋轉角度以及影像之解析度等),以作為量測模組(例如光學顯微鏡或光干涉儀)及定位平台的移動資訊,縮短對焦時間,使量測模組能做逐點快速量測。 The global image detecting system and the detecting method thereof of the embodiment measure the surface topography and the relative height distribution of the object to be tested (for example, a wafer), and output reference coordinate information (for example, wafer center position and alignment) The position of the groove and the angle of rotation and the resolution of the image, etc., as the movement information of the measurement module (such as optical microscope or optical interferometer) and the positioning platform, shorten the focusing time, and enable the measurement module to do the point-by-point rapid amount Measurement.
以晶圓表面檢測為例,先量測晶圓的表面形貌的相對高度分布,並將晶圓的表面形貌的相對高度及參考座標資訊提供給量測模組,以省去傳統量測模組需進行粗調及細調等尋焦步驟及縮減細掃描行程,解決晶圓翹曲所造成的對焦議題。 Taking the wafer surface inspection as an example, the relative height distribution of the surface topography of the wafer is measured, and the relative height of the surface topography of the wafer and the reference coordinate information are provided to the measurement module to eliminate the traditional measurement. The module needs to perform the focus adjustment steps such as coarse adjustment and fine adjustment, and reduce the fine scan stroke to solve the focus problem caused by wafer warpage.
以下係提出實施例進行詳細說明,實施例僅用以作為範例說明,並非用以限縮本發明欲保護之範圍。 The embodiments are described in detail below, and the embodiments are only intended to be illustrative and not intended to limit the scope of the invention.
請參照第1圖,其繪示依照本發明一實施例之全域式影像檢測方法的流程圖。本實施例之全域式影像檢測方法包括下列步驟:在步驟S101中,以一平面光源投射具有週期變化的光影像於一待測物上。在步驟S102中,擷取經由待測物反射之一反射光影像。在步驟S103中,計算反射光影像相位移後之相位變化,並根據相位變化計算待測物的表面形貌的一相對高度分布。在步驟S104中,偵測待測物上至少三個量測點的相對座標,以擬合出一平面。在步驟S105中,計算待測物的表面形貌相對於此平面的一絕對高度分布,以得到一絕對座標資訊。在步驟S106中,根據絕對座標資訊對待測物的表面進行檢測。 Please refer to FIG. 1 , which illustrates a flow chart of a global image detection method according to an embodiment of the invention. The global image detection method of this embodiment includes the following steps: in step S101, a light image with a periodic change is projected on a test object by a planar light source. In step S102, the reflected light image is reflected from one of the objects reflected by the object to be tested. In step S103, a phase change after the phase shift of the reflected light image is calculated, and a relative height distribution of the surface topography of the object to be tested is calculated according to the phase change. In step S104, relative coordinates of at least three measurement points on the object to be tested are detected to fit a plane. In step S105, an absolute height distribution of the surface topography of the object to be tested relative to the plane is calculated to obtain an absolute coordinate information. In step S106, the surface of the object to be tested is detected based on the absolute coordinate information.
請參照第2圖,其繪示依照本發明一實施例之全域式影像檢測系統的示意圖。根據上述之步驟S101~S106,全域式影像檢測系統100包括一平面光源110、一處理單元120、一影像擷取裝置130、一光感測裝置140、一量測模組150以及一定位平台160。定位平台160用以承載一待測物10,例如是晶圓或半導體基板。有關平面光源110、處理單元120以及影像擷取裝置130的配置及細部內容請一併參照第3圖及第4圖之說明。以下先以第3圖之全域式影像檢測裝置101來說明第1圖之步驟S101~S103。 Please refer to FIG. 2, which is a schematic diagram of a global image detection system according to an embodiment of the invention. The global image detection system 100 includes a planar light source 110, a processing unit 120, an image capturing device 130, a light sensing device 140, a measuring module 150, and a positioning platform 160. . The positioning platform 160 is used to carry an object to be tested 10, such as a wafer or a semiconductor substrate. For the arrangement and details of the planar light source 110, the processing unit 120, and the image capturing device 130, please refer to the description of FIGS. 3 and 4 together. Hereinafter, steps S101 to S103 of Fig. 1 will be described with reference to the global image detecting device 101 of Fig. 3.
請參照第3圖,處理單元120包括一光影像控制模組121、一影像校正模組122、一計算模組123、一相位展開模組124以及一平整化模組125。在步驟S101中,平面光源110用以 投射具有週期變化之一光影像11(參照第4圖)於一待測物10上,且光影像11可被待測物10反射後形成一反射光影像。反射光影像與投射在待測物10上之光影像11同樣具有週期變化,其差異僅在於:當待測物10表面沒有斜率變化時,反射光影像不會產生偏移或變形,如同投射之光影像。然而,當待測物10的表面有微小斜率變化時,反射光影像會產生偏移或變形,且反射光影像的偏移量δy與待測物10表面斜率的變化量呈正相關,如以下的關係式(1):δy=L[tan(α+2θ)-tan(α)] (1)其中L:平面光源110與待測物10之間的距離 Referring to FIG. 3 , the processing unit 120 includes an optical image control module 121 , an image correction module 122 , a calculation module 123 , a phase expansion module 124 , and a planarization module 125 . In step S101, the planar light source 110 is configured to project a light image 11 (refer to FIG. 4) having a periodic change on an object to be tested 10, and the light image 11 can be reflected by the object 10 to form a reflected light image. . The reflected light image has the same periodic variation as the light image 11 projected on the object to be tested 10, and the difference is only that when the surface of the object to be tested 10 has no slope change, the reflected light image does not shift or deform, just like the projection. Light image. However, when there is a slight slope change on the surface of the object to be tested 10, the reflected light image may be offset or deformed, and the offset δ y of the reflected light image is positively correlated with the amount of change in the slope of the surface of the object 10 to be tested, such as Relationship (1): δy = L [tan( α + 2 θ ) - tan( α )] (1) where L : distance between the planar light source 110 and the object to be tested 10
α:影像擷取裝置130擷取影像之角度 α : image capturing device 130 captures the angle of the image
θ:待測物10表面斜率變化量當待測物10表面斜率變化量θ很小時,可將上式簡化為δy=2Lθsec2 α (2) θ: 10 surface slope variation when the object 10 under test surface inclination change amount [theta] is small, the equation can be simplified as δy = 2 Lθ sec 2 α ( 2)
因此,可藉由反射光影像的偏移量δy來計算待測物10表面斜率的變化量θ。 Therefore, the amount of change θ of the slope of the surface of the object 10 to be measured can be calculated by the offset δ y of the reflected light image.
接著,請參照第4圖之光影像11,其例如是由週期變化之長條狀之條紋12所組成。在另一實施例中,光影像可由週期變化之同心圓狀之條紋所組成。這些明暗相間之條紋12可由週期2π的正弦波或方波經訊號處理而產生於平面光源110中,再以平面光源110投射至待測物10上,以形成具有週期變化之光影像11。平面光源110例如由一平面顯示器產生,平面顯示器用 以接收由光影像控制模組121所輸入之控制訊號,並且由平面顯示器中多個畫素單元的明暗變化產生所需的光影像11。在一實施例中,每個條紋12的寬度由對應的畫素單元的數量來決定,例如10~20個左右,並可藉由控制畫素單元中液晶分子的透光度,來決定產生亮條紋或暗條紋。 Next, please refer to the optical image 11 of FIG. 4, which is composed of, for example, strips 12 of long strips that change periodically. In another embodiment, the light image may be composed of periodically varying concentric stripes. These light and dark stripes 12 can be generated by the sine wave or square wave of the period 2π by the signal processing in the planar light source 110, and then projected onto the object 10 by the planar light source 110 to form the optical image 11 having a periodic variation. The planar light source 110 is generated, for example, by a flat display, for a flat panel display. The control signal input by the optical image control module 121 is received, and the desired optical image 11 is generated by the brightness change of the plurality of pixel units in the flat display. In an embodiment, the width of each stripe 12 is determined by the number of corresponding pixel units, for example, 10 to 20, and can be determined by controlling the transmittance of liquid crystal molecules in the pixel unit. Stripes or dark stripes.
在步驟S102中,光影像控制模組121例如是可程式化控制之模組,用以產生上述之光影像11,並控制光影像11相對於待測物10沿著至少一方向等間隔地移動,以產生相位移。舉例來說,光影像係以三步相位移法或四步相位移法等間隔地移動以產生多個光影像(例如6個或8個)。在第4圖中,光影像11移動的方向可為長條狀之條紋12的排列方向(圖中為X方向)。在第2圖中,當產生預定數量的光影像之後,影像擷取裝置130可依序擷取此些反射光影像,並由影像校正模組122進行反射光影像之扭曲校正處理。此外,為了得到二維的相位圖,光影像控制模組121可分別產生兩正交之光影像,並使各光影像沿著X方向移動或Y方向移動以產生不同方向之相位移。當然,本實施例不限定為兩正交之光影像,亦可為任意夾角之兩光影像。 In step S102, the optical image control module 121 is, for example, a programmable control module for generating the optical image 11 and controlling the optical image 11 to move at least equal intervals along at least one direction with respect to the object 10 to be tested. To produce a phase shift. For example, the light image is moved at equal intervals by a three-step phase shift method or a four-step phase shift method to generate a plurality of light images (for example, six or eight). In Fig. 4, the direction in which the optical image 11 moves can be the direction in which the strips 12 of the strips are arranged (the X direction in the figure). In FIG. 2, after a predetermined number of optical images are generated, the image capturing device 130 can sequentially capture the reflected light images, and the image correcting module 122 performs distortion correction processing on the reflected light images. In addition, in order to obtain a two-dimensional phase map, the optical image control module 121 can respectively generate two orthogonal optical images, and move the optical images along the X direction or the Y direction to generate phase shifts in different directions. Of course, the embodiment is not limited to two orthogonal optical images, and may also be two optical images of any angle.
上述中,三步相位移法需取三張相位移的光影像,且第一張影像I1與第二張影像I2之相差移為2π/3,第二張影像I2與第三張影像I3之相位移為4π/3,其聯立方程式如下:
其中,I0為背景光的強度,A為光波的振幅,為光影像中各座標點(x,y)的相位值。 Where I 0 is the intensity of the background light and A is the amplitude of the light wave. The phase value of each coordinate point (x, y) in the light image.
此外,四步相位移法需取四張相位移條紋的影像,且第一張影像I1與第二張影像I2之相差移為π/2,第二張影像I2與第三張影像I3之相位移為π,第三張影像I3與第四張影像I4之相位移為3π/2,其聯立方程式如下:
其中,I0為背景光的強度,A為光波的振幅,為光影像中各座標點(x,y)的相位值。 Where I 0 is the intensity of the background light and A is the amplitude of the light wave. The phase value of each coordinate point (x, y) in the light image.
在步驟S103中,由於各座標點(x,y)的相位變化△與反射光影像的偏移量δy呈正比。因此,第2圖之計算模組123可計算此些影像中各座標點(x,y)的相位變化△,以得知待測
物10的表面形貌。若關係式(2)中,以相位變化△表示反射光影像的偏移量δy,可表示如下:
其中P:反射光影像之週期 Where P : the period of the reflected light image
由關係式(3)可知,待測物10表面斜率的變化量θ可由相位變化△得知。由於上述使用的三步相位移法或四步相位移法都是以反正切(tan-1)函數為基礎,且相位被限制在-π/2到π/2之間,因此相位圖為不連續之相位分佈圖。若要使不連續之相位恢復為原來連續0~Nπ週期(N為整數)之相位,則需進行相位展開之運算。 It can be known from the relation (3) that the variation amount θ of the surface slope of the object to be tested 10 can be changed by the phase Δ. Learned. Since the three-step phase shift method or the four-step phase shift method used above is based on the arc tangent (tan -1 ) function, and the phase is limited to between -π/2 and π/2, the phase map is not Continuous phase distribution map. To restore the discontinuous phase to the phase of the original continuous 0~Nπ period (N is an integer), the phase expansion operation is required.
請參照第3圖,相位展開模組124對各座標點的相位值進行相位展開,以得到一相位展開圖。簡言之,相位展開之運算是通過一特定之數學演算法,將相位圖中相鄰兩相位差超過某一定限定者,加上或減去其差值來消除截斷線,使其恢復為連續相位。因此,光影像中各座標點的相位值可經由相位移及相位展開法來獲得。 Referring to FIG. 3, the phase unwrapping module 124 performs phase unwrapping on the phase values of the respective coordinate points to obtain a phase unwrapping map. In short, the phase unwrapping operation is to solve the problem that the adjacent two phase differences in the phase map exceed a certain limit by adding a subtraction of the difference to eliminate the cut line and restore it to continuous. Phase. Therefore, the phase values of the respective punctuation points in the optical image can be obtained by the phase shift and phase expansion methods.
接著,平整化模組125可對相位展開圖進行平整化,以得到待測物10的表面形貌之相對高度分布。簡言之,平整化之處理係將各個座標點的相位拉至相同水平來比較其變化量,以利於計算待測物10的表面形貌的一相對高度分布。其中, 待測物10上各座標點的相對高度分布以Wi(x,y,z)表示。 Then, the planarization module 125 can planarize the phase unwrapped image to obtain a relative height distribution of the surface topography of the object 10 to be tested. In short, the flattening process compares the phase of each coordinate point to the same level to compare the amount of change to facilitate calculation of a relative height distribution of the surface topography of the object 10 to be tested. among them, The relative height distribution of each coordinate point on the object to be tested 10 is represented by Wi(x, y, z).
請參照第5圖,其繪示依照本發明一實施例之全域式影像對焦方法的流程圖,其中步驟S201~S204如同上述所介紹的步驟S101~S103,在步驟S201中以一平面光源110投射,以產生多張週期變化的光影像,並擷取多張週期變化的反射光影像。在步驟S202中對反射光影像進行扭曲校正,以將傾斜投影至待測物10之光影像修正為正投影至待測物10的光影像。在步驟S203中計算反射光影像相位移後之相位變化,以得到待測物10的表面形貌。在步驟S203中,根據相位展開結果計算待測物10的表面形貌的一相對高度分布,以Wi(x,y,z)表示。 Referring to FIG. 5, a flowchart of a global image focusing method according to an embodiment of the present invention is illustrated. Steps S201 to S204 are projected as a planar light source 110 in step S201, as in steps S101 to S103 described above. To generate multiple periodic changes in the light image, and to capture multiple periodic changes in the reflected light image. In step S202, the reflected light image is subjected to distortion correction to correct the light image obliquely projected onto the object to be tested 10 to be orthographically projected to the light image of the object to be tested 10. The phase change after the phase shift of the reflected light image is calculated in step S203 to obtain the surface topography of the object 10 to be tested. In step S203, a relative height distribution of the surface topography of the object to be tested 10 is calculated based on the phase unwrapping result, expressed by Wi(x, y, z).
接著,請參照步驟S205~S207,如同上述所介紹的步驟S104。在步驟S205中,以平面光源110投射一均勻光影像(無週期變化的條紋12)至待測物10上,並且影像擷取裝置130擷取反射後的均勻光影像。在步驟S206中,對反射後的均勻光影像進行扭曲校正,以將傾斜投影至待測物10之均勻光影像修正為正投影至待測物10的均勻光影像。接著,根據待測物10上至少三個量測點的相對座標,以擬合出一平面。如第6圖所示。在步驟S207中,處理單元120根據三個量測點A、B、C的座標位置擬合出的平面,來計算待測物10的圓心位置(xo,yo)、對位槽位置(xn,yn)及旋轉角度θ1以及影像解析度等座標資訊,以得到待測物10之一平面座標系。上述用以偵測待測物10上至少三個量測點A、B、C的相對座標的裝置例如是雷射感測器或是其他具有 光學定位功能的光感測裝置140,如第2圖所示。 Next, please refer to steps S205 to S207, as in step S104 described above. In step S205, a uniform light image (strips 12 without periodic changes) is projected onto the object to be tested 10 by the planar light source 110, and the image capturing device 130 captures the reflected uniform light image. In step S206, the reflected uniform light image is subjected to distortion correction to correct the uniform light image obliquely projected onto the object to be tested 10 to be uniformly projected onto the uniform light image of the object to be tested 10. Then, according to the relative coordinates of at least three measuring points on the object 10 to be measured, a plane is fitted. As shown in Figure 6. In step S207, the processing unit 120 calculates the center position (x o , y o ) of the object to be tested 10 and the position of the alignment slot according to the planes fitted to the coordinate positions of the three measurement points A, B, and C ( The coordinate information such as x n , y n ) and the rotation angle θ1 and the image resolution are obtained to obtain a plane coordinate system of the object to be tested 10 . The device for detecting relative coordinates of at least three measuring points A, B, and C on the object to be tested 10 is, for example, a laser sensor or other light sensing device 140 having an optical positioning function, such as the second The figure shows.
接著,在步驟S208中,上述的圓心位置(xo,yo)以及影像解析度是用以連結上述待測物10之平面座標系與其他座標系統(例如定位平台160的座標系統及量測模組150的座標系統),此外,對位槽的旋轉角度θ1用來修正待測物10擺置時的旋轉角度誤差。在步驟S209中,根據絕對座標資訊,調整量測模組150的高度,以對待測物10的表面進行檢測。因此,在第2圖中,處理單元120可根據絕對座標資訊控制定位平台160移動待測物10至一座標位置(x,y),且量測模組150可根據絕對座標資訊調整高度Z,以調整光學顯微鏡或光干涉儀與待測物10之間的一焦距。在另一實施例中,當量測模組150包括一探針卡電性檢測裝置時,可根據絕對座標資訊調整探針卡電性檢測裝置與待測物10之間的間隙,以使探針卡電性檢測裝置與待測物10電性接觸。 Next, in step S208, the center position (x o , y o ) and the image resolution are used to link the coordinate coordinate system of the object to be tested 10 with other coordinate systems (for example, the coordinate system and measurement of the positioning platform 160). The coordinate system of the module 150), in addition, the rotation angle θ1 of the alignment groove is used to correct the rotation angle error when the object 10 is placed. In step S209, the height of the measurement module 150 is adjusted based on the absolute coordinate information to detect the surface of the object to be tested 10. Therefore, in FIG. 2, the processing unit 120 can control the positioning platform 160 to move the object to be tested 10 to the target position (x, y) according to the absolute coordinate information, and the measurement module 150 can adjust the height Z according to the absolute coordinate information. To adjust a focal length between the optical microscope or the optical interferometer and the object to be tested 10. In another embodiment, when the equivalent measurement module 150 includes a probe card electrical detection device, the gap between the probe card electrical detection device and the object to be tested 10 can be adjusted according to the absolute coordinate information to enable the detection. The needle card electrical detecting device is in electrical contact with the object to be tested 10.
有關絕對座標資訊之演算方法,請參照如下。在步驟S105中,當處理單元120得到三個量測點A、B、C的相對座標之後,如下列計算公式,以此三個量測點的座標位置擬合出一平面Q(x,y,z),並將待測物10的表面形貌的相對高度分布Wi(x,y,z)與此平面Q(x,y,z)進行曲面重疊演算,以計算待測物10的表面形貌相對於此平面Q(x,y,z)的一絕對高度分布,而得到一絕對座標資訊。此絕對座標資訊可做為實際待測物10表面的絕對高度座標系Zi(x,y,z),其中 Zi(x,y,z)=Wi(x,y,z)+Q(x,y,z)-P(xi,yi,zi) For the calculation method of absolute coordinate information, please refer to the following. In step S105, after the processing unit 120 obtains the relative coordinates of the three measurement points A, B, and C, the coordinates of the three measurement points are fitted to a plane Q (x, y) according to the following calculation formula. , z), and superimposing the relative height distribution Wi(x, y, z) of the surface topography of the object to be tested 10 on the surface Q(x, y, z) to calculate the surface of the object to be tested 10 An absolute height distribution of the topography relative to the plane Q(x, y, z) yields an absolute coordinate information. This absolute coordinate information can be used as the absolute height coordinate system Zi(x, y, z) of the surface of the actual object 10 to be tested, wherein Zi(x,y,z)=Wi(x,y,z)+Q(x,y,z)-P(xi,yi,zi)
P(xi,yi,zi)為絕對高度座標系中一參考座標點(例如三個量測點A、B、C其中之一點)的座標。 P(xi, yi, zi) is a coordinate of a reference coordinate point in the absolute height coordinate system (for example, one of the three measurement points A, B, and C).
在步驟S106中,當量測模組150得到絕對座標資訊之後,可根據絕對座標資訊對待測物10的表面進行檢測,例如對焦、掃描或進行一電性檢測。量測模組150例如是光學顯微鏡、光干涉儀或探針卡電性檢測裝置等。因此,在本實施例中,當全域式影像檢測系統100透過影像高度資訊修正待測物10上多個待測點(xi,yi)與量測模組150之間的絕對高度之後,處理單元120將可控制量測模組150在垂直軸上移動並直接到達定位,不需經過粗調定位,以節省量測模組150的對焦時間或對位時間。 In step S106, after the absolute measurement information is obtained by the equivalent measurement module 150, the surface of the object to be tested 10 can be detected according to the absolute coordinate information, such as focusing, scanning, or performing an electrical detection. The measurement module 150 is, for example, an optical microscope, an optical interferometer, or a probe card electrical detection device. Therefore, in the embodiment, when the global image detecting system 100 corrects the absolute height between the plurality of to-be-measured points (x i , yi) on the object to be tested 10 and the measuring module 150 through the image height information, the processing is performed. The unit 120 moves the controllable measurement module 150 on the vertical axis and directly reaches the positioning without the need for coarse adjustment to save the focus time or the alignment time of the measurement module 150.
本發明上述實施例所揭露之全域式影像檢測系統及其檢測方法中,處理單元根據絕對座標資訊控制定位平台移動待測物至一座標位置,且量測模組可根據絕對座標資訊控制的高度,使量測模組在垂直軸上移動並直接到達定位,因此對焦速度非常快,且利於逐點進行快速檢測。本系統相對於一般被動式對焦利用粗調與細調兩階段的方式尋焦來得快,且成本相對於主動式對焦的成本相對較低,因而突破目前現有技術的瓶頸。此外,本系統還能針對待測物上的表面形貌(例如凸塊高度分布)、表面缺陷及翹曲量進行量測,以符合系統的多方面需求。 In the global image detecting system and the detecting method thereof disclosed in the above embodiments of the present invention, the processing unit controls the positioning platform to move the object to be tested to a target position according to the absolute coordinate information, and the measuring module can control the height according to the absolute coordinate information. The measurement module moves on the vertical axis and directly reaches the positioning, so the focusing speed is very fast, and it is convenient for quick detection point by point. Compared with the general passive focus, the system uses the coarse adjustment and the fine adjustment two-stage method to obtain the focus quickly, and the cost is relatively low compared with the active focus, thus breaking the bottleneck of the prior art. In addition, the system can measure the surface topography (such as bump height distribution), surface defects and warpage on the object to be tested to meet the various requirements of the system.
綜上所述,雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識 者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In conclusion, the present invention has been disclosed in the above preferred embodiments, and is not intended to limit the present invention. General knowledge in the technical field to which the present invention pertains Various changes and modifications can be made without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
10‧‧‧待測物 10‧‧‧Test object
100‧‧‧全域式影像檢測系統 100‧‧‧Global Image Detection System
110‧‧‧平面光源 110‧‧‧ planar light source
120‧‧‧處理單元 120‧‧‧Processing unit
130‧‧‧影像擷取裝置 130‧‧‧Image capture device
140‧‧‧光感測裝置 140‧‧‧Light sensing device
150‧‧‧量測模組 150‧‧‧Measurement module
160‧‧‧定位平台 160‧‧‧ Positioning platform
Z‧‧‧高度 Z‧‧‧ Height
Claims (12)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510727145.6A CN106168466B (en) | 2015-05-21 | 2015-10-30 | Global image detection system and detection method thereof |
US14/978,482 US10277790B2 (en) | 2015-05-21 | 2015-12-22 | Full-range image detecting system and method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562164671P | 2015-05-21 | 2015-05-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201641914A TW201641914A (en) | 2016-12-01 |
TWI568989B true TWI568989B (en) | 2017-02-01 |
Family
ID=58055578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104133182A TWI568989B (en) | 2015-05-21 | 2015-10-08 | Full-range image detecting system and method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI568989B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10461281B2 (en) | 2018-03-30 | 2019-10-29 | Industrial Technology Research Institute | Light emitting device |
TWI676000B (en) * | 2018-07-17 | 2019-11-01 | 財團法人工業技術研究院 | Surface topography optical measuring system and surface topography optical measuring method |
TWI770459B (en) * | 2019-02-25 | 2022-07-11 | 日月光半導體製造股份有限公司 | Optical measurement equipment and method for measuring warpage of a workpiece |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112415239A (en) * | 2019-08-20 | 2021-02-26 | 汉民测试系统股份有限公司 | Probe card |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4641972A (en) * | 1984-09-14 | 1987-02-10 | New York Institute Of Technology | Method and apparatus for surface profilometry |
US5539676A (en) * | 1993-04-15 | 1996-07-23 | Tokyo Electron Limited | Method of identifying probe position and probing method in prober |
US6597460B2 (en) * | 2000-05-19 | 2003-07-22 | Zygo Corporation | Height scanning interferometer for determining the absolute position and surface profile of an object with respect to a datum |
WO2007059088A2 (en) * | 2005-11-15 | 2007-05-24 | Zygo Corporation | Interferometer and method for measuring characteristics of optically unresolved surface features |
WO2010107434A1 (en) * | 2009-03-19 | 2010-09-23 | General Electric Company | Optical gage and three-dimensional surface profile measurement method |
US20130135715A1 (en) * | 2011-11-29 | 2013-05-30 | National Taipei University Of Technology | Chromatic confocal microscope system and signal process method of the same |
-
2015
- 2015-10-08 TW TW104133182A patent/TWI568989B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4641972A (en) * | 1984-09-14 | 1987-02-10 | New York Institute Of Technology | Method and apparatus for surface profilometry |
US5539676A (en) * | 1993-04-15 | 1996-07-23 | Tokyo Electron Limited | Method of identifying probe position and probing method in prober |
US6597460B2 (en) * | 2000-05-19 | 2003-07-22 | Zygo Corporation | Height scanning interferometer for determining the absolute position and surface profile of an object with respect to a datum |
WO2007059088A2 (en) * | 2005-11-15 | 2007-05-24 | Zygo Corporation | Interferometer and method for measuring characteristics of optically unresolved surface features |
WO2010107434A1 (en) * | 2009-03-19 | 2010-09-23 | General Electric Company | Optical gage and three-dimensional surface profile measurement method |
US20130135715A1 (en) * | 2011-11-29 | 2013-05-30 | National Taipei University Of Technology | Chromatic confocal microscope system and signal process method of the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10461281B2 (en) | 2018-03-30 | 2019-10-29 | Industrial Technology Research Institute | Light emitting device |
TWI676000B (en) * | 2018-07-17 | 2019-11-01 | 財團法人工業技術研究院 | Surface topography optical measuring system and surface topography optical measuring method |
US10571252B2 (en) | 2018-07-17 | 2020-02-25 | Industrial Technology Research Institute | Surface topography optical measuring system and surface topography optical measuring method |
TWI770459B (en) * | 2019-02-25 | 2022-07-11 | 日月光半導體製造股份有限公司 | Optical measurement equipment and method for measuring warpage of a workpiece |
Also Published As
Publication number | Publication date |
---|---|
TW201641914A (en) | 2016-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10277790B2 (en) | Full-range image detecting system and method thereof | |
CN105301865B (en) | Automatic focusing system | |
US10302422B2 (en) | Measurement system, measurement method, robot control method, robot, robot system, and picking apparatus | |
TWI568989B (en) | Full-range image detecting system and method thereof | |
WO2018163530A1 (en) | Three-dimensional shape measurement device, three-dimensional shape measurement method, and program | |
JP7228690B2 (en) | 3D sensor with oppositely arranged channels | |
JP6417645B2 (en) | Alignment method for surface profile measuring device | |
KR20180021132A (en) | Interference roll-off measurements using static fringe patterns | |
US20230213334A1 (en) | Optical system using enhanced static fringe capture | |
JP2011007710A (en) | Inspection device, inspection method and inspection program | |
CN103676487A (en) | Workpiece height measuring device and correcting method thereof | |
TWI458964B (en) | Surface defect detecting device and measuring method thereof | |
US20160238380A1 (en) | Image measuring method and image measuring apparatus | |
KR20100126017A (en) | Apparatus for measurment of three-dimensional shape | |
JP2009058459A (en) | Profile measuring system | |
JP6704813B2 (en) | Measuring apparatus, exposure apparatus, and article manufacturing method | |
JP7537930B2 (en) | Shape measurement method | |
JP2012068188A (en) | Adjustment method | |
KR101333299B1 (en) | 3D Shape Mesurement Mehod and Device by using Amplitude of Projection Grating | |
JP6386954B2 (en) | Surface shape measuring apparatus and surface shape measuring method | |
TW201506995A (en) | Exposure device | |
JP2008170282A (en) | Shape measuring device | |
KR20130023305A (en) | Inspection apparatus and compensating method thereof | |
JP5494758B2 (en) | Shape measuring device | |
JP4265786B2 (en) | Height measuring method, height measuring apparatus, and signal processing method |